Properties

Label 2442.2.bd
Level $2442$
Weight $2$
Character orbit 2442.bd
Rep. character $\chi_{2442}(23,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $496$
Sturm bound $912$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2442.bd (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 111 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(912\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2442, [\chi])\).

Total New Old
Modular forms 1856 496 1360
Cusp forms 1792 496 1296
Eisenstein series 64 0 64

Trace form

\( 496 q + 4 q^{9} - 4 q^{12} + 40 q^{13} + 12 q^{15} + 248 q^{16} - 40 q^{19} + 72 q^{28} + 88 q^{31} + 8 q^{34} + 64 q^{37} + 8 q^{39} + 48 q^{40} - 24 q^{42} - 40 q^{43} - 64 q^{45} - 176 q^{49} + 8 q^{51}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2442, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2442, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2442, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1221, [\chi])\)\(^{\oplus 2}\)