Properties

Label 2442.2.b
Level $2442$
Weight $2$
Character orbit 2442.b
Rep. character $\chi_{2442}(593,\cdot)$
Character field $\Q$
Dimension $144$
Sturm bound $912$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2442 = 2 \cdot 3 \cdot 11 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2442.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Sturm bound: \(912\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2442, [\chi])\).

Total New Old
Modular forms 464 144 320
Cusp forms 448 144 304
Eisenstein series 16 0 16

Trace form

\( 144 q + 4 q^{3} + 144 q^{4} + 12 q^{9} + 4 q^{12} + 16 q^{15} + 144 q^{16} + 16 q^{22} - 168 q^{25} + 4 q^{27} + 8 q^{31} - 40 q^{33} + 24 q^{34} + 12 q^{36} - 16 q^{42} - 64 q^{45} + 4 q^{48} - 88 q^{49}+ \cdots + 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2442, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2442, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2442, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1221, [\chi])\)\(^{\oplus 2}\)