Properties

Label 243.5.b
Level $243$
Weight $5$
Character orbit 243.b
Rep. character $\chi_{243}(242,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $10$
Sturm bound $135$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 243.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(135\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(243, [\chi])\).

Total New Old
Modular forms 117 48 69
Cusp forms 99 48 51
Eisenstein series 18 0 18

Trace form

\( 48 q - 384 q^{4} - 39 q^{7} + 15 q^{13} + 3072 q^{16} + 231 q^{19} - 6000 q^{25} + 1248 q^{28} - 2208 q^{31} - 1206 q^{34} - 1551 q^{37} + 4950 q^{40} + 2112 q^{43} - 5418 q^{46} + 19233 q^{49} - 480 q^{52}+ \cdots - 65361 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(243, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
243.5.b.a 243.b 3.b $1$ $25.119$ \(\Q\) \(\Q(\sqrt{-3}) \) 243.5.b.a \(0\) \(0\) \(0\) \(-94\) $\mathrm{U}(1)[D_{2}]$ \(q+2^{4}q^{4}-94q^{7}+191q^{13}+2^{8}q^{16}+\cdots\)
243.5.b.b 243.b 3.b $1$ $25.119$ \(\Q\) \(\Q(\sqrt{-3}) \) 243.5.b.b \(0\) \(0\) \(0\) \(23\) $\mathrm{U}(1)[D_{2}]$ \(q+2^{4}q^{4}+23q^{7}+146q^{13}+2^{8}q^{16}+\cdots\)
243.5.b.c 243.b 3.b $2$ $25.119$ \(\Q(\sqrt{-39}) \) None 243.5.b.c \(0\) \(0\) \(0\) \(-32\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{2}-23q^{4}+\beta q^{5}-2^{4}q^{7}+7\beta q^{8}+\cdots\)
243.5.b.d 243.b 3.b $2$ $25.119$ \(\Q(\sqrt{-3}) \) None 243.5.b.d \(0\) \(0\) \(0\) \(100\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{2}-11 q^{4}-5\beta q^{5}+50 q^{7}+\cdots\)
243.5.b.e 243.b 3.b $2$ $25.119$ \(\Q(\sqrt{-6}) \) None 243.5.b.e \(0\) \(0\) \(0\) \(-110\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{2}+10q^{4}-2^{4}\beta q^{5}-55q^{7}+\cdots\)
243.5.b.f 243.b 3.b $4$ $25.119$ 4.0.2238912.1 None 243.5.b.f \(0\) \(0\) \(0\) \(92\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-20+2\beta _{3})q^{4}+(4\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
243.5.b.g 243.b 3.b $4$ $25.119$ 4.0.16727328.1 None 243.5.b.g \(0\) \(0\) \(0\) \(128\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-2^{4}+\beta _{3})q^{4}+(-\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\)
243.5.b.h 243.b 3.b $4$ $25.119$ \(\Q(\sqrt{-3}, \sqrt{7})\) None 243.5.b.h \(0\) \(0\) \(0\) \(-40\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(-8+\beta _{2})q^{4}+(3\beta _{1}-\beta _{3})q^{5}+\cdots\)
243.5.b.i 243.b 3.b $4$ $25.119$ 4.0.225816.1 None 243.5.b.i \(0\) \(0\) \(0\) \(-28\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{2}q^{4}+(\beta _{1}+\beta _{3})q^{5}+(-5+\cdots)q^{7}+\cdots\)
243.5.b.j 243.b 3.b $24$ $25.119$ None 243.5.b.j \(0\) \(0\) \(0\) \(-78\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{5}^{\mathrm{old}}(243, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(243, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)