Defining parameters
| Level: | \( N \) | \(=\) | \( 243 = 3^{5} \) |
| Weight: | \( k \) | \(=\) | \( 5 \) |
| Character orbit: | \([\chi]\) | \(=\) | 243.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 10 \) | ||
| Sturm bound: | \(135\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(243, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 117 | 48 | 69 |
| Cusp forms | 99 | 48 | 51 |
| Eisenstein series | 18 | 0 | 18 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(243, [\chi])\) into newform subspaces
Decomposition of \(S_{5}^{\mathrm{old}}(243, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(243, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)