Properties

Label 243.5
Level 243
Weight 5
Dimension 6816
Nonzero newspaces 5
Sturm bound 21870
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 243 = 3^{5} \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 5 \)
Sturm bound: \(21870\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(243))\).

Total New Old
Modular forms 8937 7008 1929
Cusp forms 8559 6816 1743
Eisenstein series 378 192 186

Trace form

\( 6816 q - 36 q^{2} - 54 q^{3} - 60 q^{4} - 36 q^{5} - 54 q^{6} - 60 q^{7} - 36 q^{8} - 54 q^{9} - 84 q^{10} - 36 q^{11} - 54 q^{12} - 60 q^{13} - 36 q^{14} - 54 q^{15} + 36 q^{16} - 36 q^{17} - 54 q^{18}+ \cdots + 167184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(243))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
243.5.b \(\chi_{243}(242, \cdot)\) 243.5.b.a 1 1
243.5.b.b 1
243.5.b.c 2
243.5.b.d 2
243.5.b.e 2
243.5.b.f 4
243.5.b.g 4
243.5.b.h 4
243.5.b.i 4
243.5.b.j 24
243.5.d \(\chi_{243}(80, \cdot)\) 243.5.d.a 2 2
243.5.d.b 2
243.5.d.c 2
243.5.d.d 2
243.5.d.e 4
243.5.d.f 4
243.5.d.g 4
243.5.d.h 4
243.5.d.i 8
243.5.d.j 8
243.5.d.k 8
243.5.d.l 48
243.5.f \(\chi_{243}(26, \cdot)\) n/a 264 6
243.5.h \(\chi_{243}(8, \cdot)\) n/a 630 18
243.5.j \(\chi_{243}(2, \cdot)\) n/a 5778 54

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(243))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(243)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)