Defining parameters
| Level: | \( N \) | \(=\) | \( 243 = 3^{5} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 243.h (of order \(54\) and degree \(18\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 81 \) |
| Character field: | \(\Q(\zeta_{54})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(81\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(243, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1026 | 342 | 684 |
| Cusp forms | 918 | 306 | 612 |
| Eisenstein series | 108 | 36 | 72 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(243, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 243.3.h.a | $306$ | $6.621$ | None | \(18\) | \(0\) | \(18\) | \(-18\) | ||
Decomposition of \(S_{3}^{\mathrm{old}}(243, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(243, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)