Properties

Label 24200.2.a.ct
Level $24200$
Weight $2$
Character orbit 24200.a
Self dual yes
Analytic conductor $193.238$
Dimension $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24200,2,Mod(1,24200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24200.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 24200 = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 24200.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2,0,0,0,1,0,6,0,0,0,1,0,0,0,-12,0,-14,0,1,0,2,0,0,0,-14, 0,9,0,11,0,0,0,0,0,-13,0,18,0,8,0,3,0,0,0,-7,0,-1,0,-14,0,-11,0,0,0,7, 0,10,0,17,0,15,0,0,0,5,0,-4,0,-5,0,-6,0,0,0,0,0,-7,0,-8,0,20,0,0,0,-3, 0,11,0,6,0,10,0,0,0,-4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(193.237972891\)
Dimension: \(4\)
Coefficient field: 4.4.5225.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + x + 11 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 4 q - 2 q^{3} + q^{7} + 6 q^{9} + q^{13} - 12 q^{17} - 14 q^{19} + q^{21} + 2 q^{23} - 14 q^{27} + 9 q^{29} + 11 q^{31} - 13 q^{37} + 18 q^{39} + 8 q^{41} + 3 q^{43} - 7 q^{47} - q^{49} - 14 q^{51}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.