Properties

Label 24200.2.a
Level $24200$
Weight $2$
Character orbit 24200.a
Rep. character $\chi_{24200}(1,\cdot)$
Character field $\Q$
Dimension $518$
Newform subspaces $120$
Sturm bound $7920$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 24200 = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 24200.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 120 \)
Sturm bound: \(7920\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(24200))\).

Total New Old
Modular forms 4104 518 3586
Cusp forms 3817 518 3299
Eisenstein series 287 0 287

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(504\)\(57\)\(447\)\(469\)\(57\)\(412\)\(35\)\(0\)\(35\)
\(+\)\(+\)\(-\)\(-\)\(519\)\(66\)\(453\)\(483\)\(66\)\(417\)\(36\)\(0\)\(36\)
\(+\)\(-\)\(+\)\(-\)\(522\)\(71\)\(451\)\(486\)\(71\)\(415\)\(36\)\(0\)\(36\)
\(+\)\(-\)\(-\)\(+\)\(507\)\(65\)\(442\)\(471\)\(65\)\(406\)\(36\)\(0\)\(36\)
\(-\)\(+\)\(+\)\(-\)\(522\)\(63\)\(459\)\(486\)\(63\)\(423\)\(36\)\(0\)\(36\)
\(-\)\(+\)\(-\)\(+\)\(507\)\(59\)\(448\)\(471\)\(59\)\(412\)\(36\)\(0\)\(36\)
\(-\)\(-\)\(+\)\(+\)\(504\)\(67\)\(437\)\(468\)\(67\)\(401\)\(36\)\(0\)\(36\)
\(-\)\(-\)\(-\)\(-\)\(519\)\(70\)\(449\)\(483\)\(70\)\(413\)\(36\)\(0\)\(36\)
Plus space\(+\)\(2022\)\(248\)\(1774\)\(1879\)\(248\)\(1631\)\(143\)\(0\)\(143\)
Minus space\(-\)\(2082\)\(270\)\(1812\)\(1938\)\(270\)\(1668\)\(144\)\(0\)\(144\)

Trace form

\( 518 q + 2 q^{3} + 518 q^{9} + 4 q^{13} + 6 q^{19} + 12 q^{23} + 20 q^{27} - 16 q^{29} + 4 q^{31} - 6 q^{37} + 8 q^{39} - 10 q^{41} + 8 q^{43} - 8 q^{47} + 546 q^{49} + 34 q^{51} + 2 q^{53} - 32 q^{57} - 2 q^{59}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(24200))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5 11
24200.2.a.a 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-3\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-2q^{7}+6q^{9}-4q^{13}-5q^{17}+\cdots\)
24200.2.a.b 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-3\) \(0\) \(1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+q^{7}+6q^{9}-6q^{13}+3q^{17}+\cdots\)
24200.2.a.c 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-2\) \(0\) \(-2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-2q^{7}+q^{9}+4q^{17}-4q^{19}+\cdots\)
24200.2.a.d 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-2\) \(0\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+2q^{7}+q^{9}+4q^{13}+4q^{19}+\cdots\)
24200.2.a.e 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-2\) \(0\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+4q^{7}+q^{9}-6q^{13}+2q^{17}+\cdots\)
24200.2.a.f 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-1\) \(0\) \(-5\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-5q^{7}-2q^{9}-6q^{13}+4q^{17}+\cdots\)
24200.2.a.g 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-1\) \(0\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-4q^{7}-2q^{9}-4q^{13}-4q^{17}+\cdots\)
24200.2.a.h 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-1\) \(0\) \(-3\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-3q^{7}-2q^{9}+4q^{13}-3q^{17}+\cdots\)
24200.2.a.i 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-1\) \(0\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{7}-2q^{9}-q^{17}-q^{19}+q^{21}+\cdots\)
24200.2.a.j 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-1\) \(0\) \(3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{7}-2q^{9}-4q^{13}+3q^{17}+\cdots\)
24200.2.a.k 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-1\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+4q^{7}-2q^{9}+4q^{13}+4q^{17}+\cdots\)
24200.2.a.l 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(-1\) \(0\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+5q^{7}-2q^{9}+6q^{13}-4q^{17}+\cdots\)
24200.2.a.m 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(0\) \(0\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{7}-3q^{9}-3q^{13}-3q^{17}+4q^{19}+\cdots\)
24200.2.a.n 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(0\) \(0\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-4q^{7}-3q^{9}-2q^{13}+2q^{17}-4q^{19}+\cdots\)
24200.2.a.o 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(0\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}-3q^{9}-4q^{13}-4q^{17}+6q^{29}+\cdots\)
24200.2.a.p 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(0\) \(0\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{7}-3q^{9}+8q^{19}+8q^{23}-10q^{29}+\cdots\)
24200.2.a.q 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(0\) \(0\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{7}-3q^{9}-2q^{13}-2q^{17}-6q^{19}+\cdots\)
24200.2.a.r 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(0\) \(0\) \(-1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{7}-3q^{9}-2q^{13}-2q^{17}+6q^{19}+\cdots\)
24200.2.a.s 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{7}-3q^{9}+2q^{13}+2q^{17}-6q^{19}+\cdots\)
24200.2.a.t 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(0\) \(0\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{7}-3q^{9}+2q^{13}+2q^{17}+6q^{19}+\cdots\)
24200.2.a.u 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(0\) \(0\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{7}-3q^{9}+3q^{13}+3q^{17}-4q^{19}+\cdots\)
24200.2.a.v 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(0\) \(0\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+4q^{7}-3q^{9}+6q^{13}-6q^{17}-4q^{19}+\cdots\)
24200.2.a.w 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(1\) \(0\) \(-5\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-5q^{7}-2q^{9}-6q^{13}+4q^{17}+\cdots\)
24200.2.a.x 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(1\) \(0\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}-2q^{9}+q^{17}-q^{19}+q^{21}+\cdots\)
24200.2.a.y 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(1\) \(0\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+5q^{7}-2q^{9}+6q^{13}-4q^{17}+\cdots\)
24200.2.a.z 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(2\) \(0\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-4q^{7}+q^{9}+6q^{13}-2q^{17}+\cdots\)
24200.2.a.ba 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(2\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-2q^{7}+q^{9}-4q^{13}+4q^{19}+\cdots\)
24200.2.a.bb 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(2\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{9}-2q^{13}+6q^{17}+2q^{23}+\cdots\)
24200.2.a.bc 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(2\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{3}+q^{9}+2q^{13}-6q^{17}+2q^{23}+\cdots\)
24200.2.a.bd 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(2\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+2q^{7}+q^{9}-4q^{17}-4q^{19}+\cdots\)
24200.2.a.be 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(3\) \(0\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-2q^{7}+6q^{9}-6q^{17}-4q^{19}+\cdots\)
24200.2.a.bf 24200.a 1.a $1$ $193.238$ \(\Q\) None \(0\) \(3\) \(0\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+2q^{7}+6q^{9}+4q^{13}+5q^{17}+\cdots\)
24200.2.a.bg 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.bh 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(0\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.bi 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.bj 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{2}) \) None \(0\) \(-2\) \(0\) \(2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.bk 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{3}) \) None \(0\) \(-2\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.bl 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(-2\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24200.2.a.bm 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(-1\) \(0\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.bn 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(-1\) \(0\) \(-3\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.bo 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{17}) \) None \(0\) \(-1\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.bp 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.bq 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{17}) \) None \(0\) \(-1\) \(0\) \(3\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.br 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(-1\) \(0\) \(4\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.bs 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{17}) \) None \(0\) \(-1\) \(0\) \(5\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.bt 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{3}) \) None \(0\) \(0\) \(0\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.bu 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{3}) \) None \(0\) \(0\) \(0\) \(4\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.bv 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(0\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.bw 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(0\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.bx 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{17}) \) None \(0\) \(1\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.by 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(0\) \(1\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.bz 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(0\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.ca 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(0\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.cb 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(1\) \(0\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24200.2.a.cc 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.cd 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.ce 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(0\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.cf 24200.a 1.a $2$ $193.238$ \(\Q(\sqrt{5}) \) None \(0\) \(2\) \(0\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.cg 24200.a 1.a $3$ $193.238$ 3.3.837.1 None \(0\) \(-3\) \(0\) \(3\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.ch 24200.a 1.a $3$ $193.238$ 3.3.788.1 None \(0\) \(-1\) \(0\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.ci 24200.a 1.a $3$ $193.238$ 3.3.404.1 None \(0\) \(-1\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.cj 24200.a 1.a $3$ $193.238$ 3.3.404.1 None \(0\) \(-1\) \(0\) \(1\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.ck 24200.a 1.a $3$ $193.238$ 3.3.788.1 None \(0\) \(-1\) \(0\) \(3\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.cl 24200.a 1.a $3$ $193.238$ 3.3.1229.1 None \(0\) \(-1\) \(0\) \(3\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.cm 24200.a 1.a $3$ $193.238$ 3.3.1229.1 None \(0\) \(1\) \(0\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.cn 24200.a 1.a $3$ $193.238$ 3.3.568.1 None \(0\) \(1\) \(0\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.co 24200.a 1.a $3$ $193.238$ 3.3.568.1 None \(0\) \(1\) \(0\) \(1\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.cp 24200.a 1.a $3$ $193.238$ 3.3.837.1 None \(0\) \(3\) \(0\) \(-3\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.cq 24200.a 1.a $4$ $193.238$ 4.4.53401.1 None \(0\) \(-3\) \(0\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.cr 24200.a 1.a $4$ $193.238$ 4.4.53401.1 None \(0\) \(-3\) \(0\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.cs 24200.a 1.a $4$ $193.238$ 4.4.5225.1 None \(0\) \(-2\) \(0\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.ct 24200.a 1.a $4$ $193.238$ 4.4.5225.1 None \(0\) \(-2\) \(0\) \(1\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.cu 24200.a 1.a $4$ $193.238$ 4.4.54764.1 None \(0\) \(-1\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.cv 24200.a 1.a $4$ $193.238$ 4.4.54764.1 None \(0\) \(1\) \(0\) \(-1\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.cw 24200.a 1.a $4$ $193.238$ 4.4.725.1 None \(0\) \(2\) \(0\) \(-7\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.cx 24200.a 1.a $4$ $193.238$ 4.4.4752.1 None \(0\) \(2\) \(0\) \(-6\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.cy 24200.a 1.a $4$ $193.238$ 4.4.4752.1 None \(0\) \(2\) \(0\) \(6\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.cz 24200.a 1.a $4$ $193.238$ 4.4.725.1 None \(0\) \(2\) \(0\) \(7\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.da 24200.a 1.a $4$ $193.238$ 4.4.53401.1 None \(0\) \(3\) \(0\) \(-1\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.db 24200.a 1.a $4$ $193.238$ 4.4.53401.1 None \(0\) \(3\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.dc 24200.a 1.a $5$ $193.238$ 5.5.8653488.1 None \(0\) \(-2\) \(0\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24200.2.a.dd 24200.a 1.a $5$ $193.238$ 5.5.8653488.1 None \(0\) \(-2\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24200.2.a.de 24200.a 1.a $5$ $193.238$ 5.5.19850940.1 None \(0\) \(-1\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.df 24200.a 1.a $5$ $193.238$ 5.5.19850940.1 None \(0\) \(-1\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.dg 24200.a 1.a $5$ $193.238$ 5.5.19850940.1 None \(0\) \(1\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.dh 24200.a 1.a $5$ $193.238$ 5.5.19850940.1 None \(0\) \(1\) \(0\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.di 24200.a 1.a $5$ $193.238$ 5.5.8653488.1 None \(0\) \(2\) \(0\) \(-2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.dj 24200.a 1.a $5$ $193.238$ 5.5.8653488.1 None \(0\) \(2\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.dk 24200.a 1.a $6$ $193.238$ 6.6.45753625.1 None \(0\) \(-2\) \(0\) \(-6\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.dl 24200.a 1.a $6$ $193.238$ 6.6.299273216.1 None \(0\) \(-2\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.dm 24200.a 1.a $6$ $193.238$ 6.6.299273216.1 None \(0\) \(-2\) \(0\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.dn 24200.a 1.a $6$ $193.238$ 6.6.45753625.1 None \(0\) \(-2\) \(0\) \(6\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.do 24200.a 1.a $6$ $193.238$ 6.6.22733568.1 None \(0\) \(2\) \(0\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.dp 24200.a 1.a $6$ $193.238$ 6.6.299273216.1 None \(0\) \(2\) \(0\) \(-2\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.dq 24200.a 1.a $6$ $193.238$ 6.6.299273216.1 None \(0\) \(2\) \(0\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.dr 24200.a 1.a $6$ $193.238$ 6.6.22733568.1 None \(0\) \(2\) \(0\) \(4\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.ds 24200.a 1.a $6$ $193.238$ 6.6.25903625.1 None \(0\) \(3\) \(0\) \(-7\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.dt 24200.a 1.a $6$ $193.238$ 6.6.25903625.1 None \(0\) \(3\) \(0\) \(7\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.du 24200.a 1.a $8$ $193.238$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-1\) \(0\) \(-6\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.dv 24200.a 1.a $8$ $193.238$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-1\) \(0\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24200.2.a.dw 24200.a 1.a $8$ $193.238$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-1\) \(0\) \(2\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.dx 24200.a 1.a $8$ $193.238$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(-1\) \(0\) \(6\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.dy 24200.a 1.a $8$ $193.238$ 8.8.\(\cdots\).1 not computed \(0\) \(0\) \(0\) \(-2\) $-$ $-$ $+$
24200.2.a.dz 24200.a 1.a $8$ $193.238$ 8.8.\(\cdots\).1 not computed \(0\) \(0\) \(0\) \(2\) $+$ $-$ $+$
24200.2.a.ea 24200.a 1.a $8$ $193.238$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(1\) \(0\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.eb 24200.a 1.a $8$ $193.238$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None \(0\) \(1\) \(0\) \(2\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.ec 24200.a 1.a $10$ $193.238$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-4\) \(0\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24200.2.a.ed 24200.a 1.a $10$ $193.238$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(-4\) \(0\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24200.2.a.ee 24200.a 1.a $10$ $193.238$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(4\) \(0\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.ef 24200.a 1.a $10$ $193.238$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None \(0\) \(4\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.eg 24200.a 1.a $12$ $193.238$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(-3\) \(0\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$
24200.2.a.eh 24200.a 1.a $12$ $193.238$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(-3\) \(0\) \(4\) $-$ $+$ $+$ $\mathrm{SU}(2)$
24200.2.a.ei 24200.a 1.a $12$ $193.238$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(3\) \(0\) \(-4\) $+$ $-$ $+$ $\mathrm{SU}(2)$
24200.2.a.ej 24200.a 1.a $12$ $193.238$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(3\) \(0\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.ek 24200.a 1.a $16$ $193.238$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) not computed \(0\) \(0\) \(0\) \(-10\) $-$ $-$ $+$
24200.2.a.el 24200.a 1.a $16$ $193.238$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) not computed \(0\) \(0\) \(0\) \(10\) $+$ $-$ $+$
24200.2.a.em 24200.a 1.a $18$ $193.238$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-4\) \(0\) \(-1\) $-$ $-$ $+$ $\mathrm{SU}(2)$
24200.2.a.en 24200.a 1.a $18$ $193.238$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(-4\) \(0\) \(1\) $+$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.eo 24200.a 1.a $18$ $193.238$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(4\) \(0\) \(-1\) $-$ $-$ $-$ $\mathrm{SU}(2)$
24200.2.a.ep 24200.a 1.a $18$ $193.238$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(0\) \(4\) \(0\) \(1\) $+$ $-$ $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(24200))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(24200)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(550))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(968))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1210))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2420))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3025))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4840))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6050))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(12100))\)\(^{\oplus 2}\)