Defining parameters
| Level: | \( N \) | \(=\) | \( 24200 = 2^{3} \cdot 5^{2} \cdot 11^{2} \) | 
| Weight: | \( k \) | \(=\) | \( 2 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 24200.a (trivial) | 
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 120 \) | ||
| Sturm bound: | \(7920\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(24200))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 4104 | 518 | 3586 | 
| Cusp forms | 3817 | 518 | 3299 | 
| Eisenstein series | 287 | 0 | 287 | 
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(5\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(504\) | \(57\) | \(447\) | \(469\) | \(57\) | \(412\) | \(35\) | \(0\) | \(35\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(519\) | \(66\) | \(453\) | \(483\) | \(66\) | \(417\) | \(36\) | \(0\) | \(36\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(522\) | \(71\) | \(451\) | \(486\) | \(71\) | \(415\) | \(36\) | \(0\) | \(36\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(507\) | \(65\) | \(442\) | \(471\) | \(65\) | \(406\) | \(36\) | \(0\) | \(36\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(522\) | \(63\) | \(459\) | \(486\) | \(63\) | \(423\) | \(36\) | \(0\) | \(36\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(507\) | \(59\) | \(448\) | \(471\) | \(59\) | \(412\) | \(36\) | \(0\) | \(36\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(504\) | \(67\) | \(437\) | \(468\) | \(67\) | \(401\) | \(36\) | \(0\) | \(36\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(519\) | \(70\) | \(449\) | \(483\) | \(70\) | \(413\) | \(36\) | \(0\) | \(36\) | |||
| Plus space | \(+\) | \(2022\) | \(248\) | \(1774\) | \(1879\) | \(248\) | \(1631\) | \(143\) | \(0\) | \(143\) | |||||
| Minus space | \(-\) | \(2082\) | \(270\) | \(1812\) | \(1938\) | \(270\) | \(1668\) | \(144\) | \(0\) | \(144\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(24200))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | 11 | |||||||
| 24200.2.a.a | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-3\) | \(0\) | \(-2\) | $-$ | $-$ | $-$ | \(q-3q^{3}-2q^{7}+6q^{9}-4q^{13}-5q^{17}+\cdots\) | |
| 24200.2.a.b | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-3\) | \(0\) | \(1\) | $+$ | $+$ | $-$ | \(q-3q^{3}+q^{7}+6q^{9}-6q^{13}+3q^{17}+\cdots\) | |
| 24200.2.a.c | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $+$ | $-$ | $-$ | \(q-2q^{3}-2q^{7}+q^{9}+4q^{17}-4q^{19}+\cdots\) | |
| 24200.2.a.d | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $+$ | $-$ | $-$ | \(q-2q^{3}+2q^{7}+q^{9}+4q^{13}+4q^{19}+\cdots\) | |
| 24200.2.a.e | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-2\) | \(0\) | \(4\) | $-$ | $-$ | $-$ | \(q-2q^{3}+4q^{7}+q^{9}-6q^{13}+2q^{17}+\cdots\) | |
| 24200.2.a.f | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-5\) | $+$ | $-$ | $-$ | \(q-q^{3}-5q^{7}-2q^{9}-6q^{13}+4q^{17}+\cdots\) | |
| 24200.2.a.g | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-4\) | $+$ | $+$ | $+$ | \(q-q^{3}-4q^{7}-2q^{9}-4q^{13}-4q^{17}+\cdots\) | |
| 24200.2.a.h | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-3\) | $-$ | $+$ | $+$ | \(q-q^{3}-3q^{7}-2q^{9}+4q^{13}-3q^{17}+\cdots\) | |
| 24200.2.a.i | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $-$ | $-$ | \(q-q^{3}-q^{7}-2q^{9}-q^{17}-q^{19}+q^{21}+\cdots\) | |
| 24200.2.a.j | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(3\) | $+$ | $+$ | $+$ | \(q-q^{3}+3q^{7}-2q^{9}-4q^{13}+3q^{17}+\cdots\) | |
| 24200.2.a.k | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(4\) | $-$ | $+$ | $+$ | \(q-q^{3}+4q^{7}-2q^{9}+4q^{13}+4q^{17}+\cdots\) | |
| 24200.2.a.l | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(-1\) | \(0\) | \(5\) | $-$ | $-$ | $-$ | \(q-q^{3}+5q^{7}-2q^{9}+6q^{13}-4q^{17}+\cdots\) | |
| 24200.2.a.m | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | $-$ | $+$ | $-$ | \(q-4q^{7}-3q^{9}-3q^{13}-3q^{17}+4q^{19}+\cdots\) | |
| 24200.2.a.n | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | $+$ | $+$ | $-$ | \(q-4q^{7}-3q^{9}-2q^{13}+2q^{17}-4q^{19}+\cdots\) | |
| 24200.2.a.o | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-2\) | $-$ | $+$ | $-$ | \(q-2q^{7}-3q^{9}-4q^{13}-4q^{17}+6q^{29}+\cdots\) | |
| 24200.2.a.p | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-2\) | $+$ | $+$ | $-$ | \(q-2q^{7}-3q^{9}+8q^{19}+8q^{23}-10q^{29}+\cdots\) | |
| 24200.2.a.q | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-1\) | $+$ | $+$ | $-$ | \(q-q^{7}-3q^{9}-2q^{13}-2q^{17}-6q^{19}+\cdots\) | |
| 24200.2.a.r | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(-1\) | $+$ | $-$ | $-$ | \(q-q^{7}-3q^{9}-2q^{13}-2q^{17}+6q^{19}+\cdots\) | |
| 24200.2.a.s | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | \(q+q^{7}-3q^{9}+2q^{13}+2q^{17}-6q^{19}+\cdots\) | |
| 24200.2.a.t | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | \(q+q^{7}-3q^{9}+2q^{13}+2q^{17}+6q^{19}+\cdots\) | |
| 24200.2.a.u | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(4\) | $+$ | $+$ | $-$ | \(q+4q^{7}-3q^{9}+3q^{13}+3q^{17}-4q^{19}+\cdots\) | |
| 24200.2.a.v | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(0\) | \(0\) | \(4\) | $+$ | $+$ | $-$ | \(q+4q^{7}-3q^{9}+6q^{13}-6q^{17}-4q^{19}+\cdots\) | |
| 24200.2.a.w | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(-5\) | $+$ | $-$ | $-$ | \(q+q^{3}-5q^{7}-2q^{9}-6q^{13}+4q^{17}+\cdots\) | |
| 24200.2.a.x | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(1\) | $+$ | $-$ | $-$ | \(q+q^{3}+q^{7}-2q^{9}+q^{17}-q^{19}+q^{21}+\cdots\) | |
| 24200.2.a.y | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(1\) | \(0\) | \(5\) | $-$ | $-$ | $-$ | \(q+q^{3}+5q^{7}-2q^{9}+6q^{13}-4q^{17}+\cdots\) | |
| 24200.2.a.z | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(-4\) | $+$ | $-$ | $-$ | \(q+2q^{3}-4q^{7}+q^{9}+6q^{13}-2q^{17}+\cdots\) | |
| 24200.2.a.ba | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $-$ | $-$ | \(q+2q^{3}-2q^{7}+q^{9}-4q^{13}+4q^{19}+\cdots\) | |
| 24200.2.a.bb | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(0\) | $-$ | $+$ | $+$ | \(q+2q^{3}+q^{9}-2q^{13}+6q^{17}+2q^{23}+\cdots\) | |
| 24200.2.a.bc | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(0\) | $+$ | $+$ | $+$ | \(q+2q^{3}+q^{9}+2q^{13}-6q^{17}+2q^{23}+\cdots\) | |
| 24200.2.a.bd | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(2\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | \(q+2q^{3}+2q^{7}+q^{9}-4q^{17}-4q^{19}+\cdots\) | |
| 24200.2.a.be | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(3\) | \(0\) | \(-2\) | $+$ | $+$ | $-$ | \(q+3q^{3}-2q^{7}+6q^{9}-6q^{17}-4q^{19}+\cdots\) | |
| 24200.2.a.bf | $1$ | $193.238$ | \(\Q\) | None | \(0\) | \(3\) | \(0\) | \(2\) | $+$ | $+$ | $-$ | \(q+3q^{3}+2q^{7}+6q^{9}+4q^{13}+5q^{17}+\cdots\) | |
| 24200.2.a.bg | $2$ | $193.238$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.bh | $2$ | $193.238$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.bi | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $-$ | $-$ | ||
| 24200.2.a.bj | $2$ | $193.238$ | \(\Q(\sqrt{2}) \) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.bk | $2$ | $193.238$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.bl | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-2\) | \(0\) | \(2\) | $+$ | $-$ | $+$ | ||
| 24200.2.a.bm | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-1\) | \(0\) | \(-4\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.bn | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-1\) | \(0\) | \(-3\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.bo | $2$ | $193.238$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-1\) | \(0\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.bp | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.bq | $2$ | $193.238$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-1\) | \(0\) | \(3\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.br | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(-1\) | \(0\) | \(4\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.bs | $2$ | $193.238$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(-1\) | \(0\) | \(5\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.bt | $2$ | $193.238$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(0\) | \(-4\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.bu | $2$ | $193.238$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(0\) | \(4\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.bv | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(0\) | \(-4\) | $+$ | $-$ | $-$ | ||
| 24200.2.a.bw | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.bx | $2$ | $193.238$ | \(\Q(\sqrt{17}) \) | None | \(0\) | \(1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.by | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(0\) | \(1\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.bz | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(0\) | \(1\) | $+$ | $-$ | $-$ | ||
| 24200.2.a.ca | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(0\) | \(3\) | $-$ | $-$ | $-$ | ||
| 24200.2.a.cb | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(1\) | \(0\) | \(4\) | $-$ | $-$ | $+$ | ||
| 24200.2.a.cc | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.cd | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.ce | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.cf | $2$ | $193.238$ | \(\Q(\sqrt{5}) \) | None | \(0\) | \(2\) | \(0\) | \(2\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.cg | $3$ | $193.238$ | 3.3.837.1 | None | \(0\) | \(-3\) | \(0\) | \(3\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.ch | $3$ | $193.238$ | 3.3.788.1 | None | \(0\) | \(-1\) | \(0\) | \(-3\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.ci | $3$ | $193.238$ | 3.3.404.1 | None | \(0\) | \(-1\) | \(0\) | \(-1\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.cj | $3$ | $193.238$ | 3.3.404.1 | None | \(0\) | \(-1\) | \(0\) | \(1\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.ck | $3$ | $193.238$ | 3.3.788.1 | None | \(0\) | \(-1\) | \(0\) | \(3\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.cl | $3$ | $193.238$ | 3.3.1229.1 | None | \(0\) | \(-1\) | \(0\) | \(3\) | $+$ | $-$ | $-$ | ||
| 24200.2.a.cm | $3$ | $193.238$ | 3.3.1229.1 | None | \(0\) | \(1\) | \(0\) | \(-3\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.cn | $3$ | $193.238$ | 3.3.568.1 | None | \(0\) | \(1\) | \(0\) | \(-1\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.co | $3$ | $193.238$ | 3.3.568.1 | None | \(0\) | \(1\) | \(0\) | \(1\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.cp | $3$ | $193.238$ | 3.3.837.1 | None | \(0\) | \(3\) | \(0\) | \(-3\) | $-$ | $-$ | $-$ | ||
| 24200.2.a.cq | $4$ | $193.238$ | 4.4.53401.1 | None | \(0\) | \(-3\) | \(0\) | \(-1\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.cr | $4$ | $193.238$ | 4.4.53401.1 | None | \(0\) | \(-3\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.cs | $4$ | $193.238$ | 4.4.5225.1 | None | \(0\) | \(-2\) | \(0\) | \(-1\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.ct | $4$ | $193.238$ | 4.4.5225.1 | None | \(0\) | \(-2\) | \(0\) | \(1\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.cu | $4$ | $193.238$ | 4.4.54764.1 | None | \(0\) | \(-1\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | ||
| 24200.2.a.cv | $4$ | $193.238$ | 4.4.54764.1 | None | \(0\) | \(1\) | \(0\) | \(-1\) | $+$ | $-$ | $-$ | ||
| 24200.2.a.cw | $4$ | $193.238$ | 4.4.725.1 | None | \(0\) | \(2\) | \(0\) | \(-7\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.cx | $4$ | $193.238$ | 4.4.4752.1 | None | \(0\) | \(2\) | \(0\) | \(-6\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.cy | $4$ | $193.238$ | 4.4.4752.1 | None | \(0\) | \(2\) | \(0\) | \(6\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.cz | $4$ | $193.238$ | 4.4.725.1 | None | \(0\) | \(2\) | \(0\) | \(7\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.da | $4$ | $193.238$ | 4.4.53401.1 | None | \(0\) | \(3\) | \(0\) | \(-1\) | $+$ | $-$ | $-$ | ||
| 24200.2.a.db | $4$ | $193.238$ | 4.4.53401.1 | None | \(0\) | \(3\) | \(0\) | \(1\) | $-$ | $-$ | $-$ | ||
| 24200.2.a.dc | $5$ | $193.238$ | 5.5.8653488.1 | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | ||
| 24200.2.a.dd | $5$ | $193.238$ | 5.5.8653488.1 | None | \(0\) | \(-2\) | \(0\) | \(2\) | $+$ | $-$ | $+$ | ||
| 24200.2.a.de | $5$ | $193.238$ | 5.5.19850940.1 | None | \(0\) | \(-1\) | \(0\) | \(0\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.df | $5$ | $193.238$ | 5.5.19850940.1 | None | \(0\) | \(-1\) | \(0\) | \(0\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.dg | $5$ | $193.238$ | 5.5.19850940.1 | None | \(0\) | \(1\) | \(0\) | \(0\) | $+$ | $-$ | $-$ | ||
| 24200.2.a.dh | $5$ | $193.238$ | 5.5.19850940.1 | None | \(0\) | \(1\) | \(0\) | \(0\) | $-$ | $-$ | $-$ | ||
| 24200.2.a.di | $5$ | $193.238$ | 5.5.8653488.1 | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.dj | $5$ | $193.238$ | 5.5.8653488.1 | None | \(0\) | \(2\) | \(0\) | \(2\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.dk | $6$ | $193.238$ | 6.6.45753625.1 | None | \(0\) | \(-2\) | \(0\) | \(-6\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.dl | $6$ | $193.238$ | 6.6.299273216.1 | None | \(0\) | \(-2\) | \(0\) | \(-2\) | $-$ | $-$ | $-$ | ||
| 24200.2.a.dm | $6$ | $193.238$ | 6.6.299273216.1 | None | \(0\) | \(-2\) | \(0\) | \(2\) | $+$ | $-$ | $-$ | ||
| 24200.2.a.dn | $6$ | $193.238$ | 6.6.45753625.1 | None | \(0\) | \(-2\) | \(0\) | \(6\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.do | $6$ | $193.238$ | 6.6.22733568.1 | None | \(0\) | \(2\) | \(0\) | \(-4\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.dp | $6$ | $193.238$ | 6.6.299273216.1 | None | \(0\) | \(2\) | \(0\) | \(-2\) | $-$ | $-$ | $-$ | ||
| 24200.2.a.dq | $6$ | $193.238$ | 6.6.299273216.1 | None | \(0\) | \(2\) | \(0\) | \(2\) | $+$ | $-$ | $-$ | ||
| 24200.2.a.dr | $6$ | $193.238$ | 6.6.22733568.1 | None | \(0\) | \(2\) | \(0\) | \(4\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.ds | $6$ | $193.238$ | 6.6.25903625.1 | None | \(0\) | \(3\) | \(0\) | \(-7\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.dt | $6$ | $193.238$ | 6.6.25903625.1 | None | \(0\) | \(3\) | \(0\) | \(7\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.du | $8$ | $193.238$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-1\) | \(0\) | \(-6\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.dv | $8$ | $193.238$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-1\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | ||
| 24200.2.a.dw | $8$ | $193.238$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-1\) | \(0\) | \(2\) | $+$ | $-$ | $-$ | ||
| 24200.2.a.dx | $8$ | $193.238$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(-1\) | \(0\) | \(6\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.dy | $8$ | $193.238$ | 8.8.\(\cdots\).1 | not computed | \(0\) | \(0\) | \(0\) | \(-2\) | $-$ | $-$ | $+$ | ||
| 24200.2.a.dz | $8$ | $193.238$ | 8.8.\(\cdots\).1 | not computed | \(0\) | \(0\) | \(0\) | \(2\) | $+$ | $-$ | $+$ | ||
| 24200.2.a.ea | $8$ | $193.238$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(1\) | \(0\) | \(-2\) | $-$ | $+$ | $-$ | ||
| 24200.2.a.eb | $8$ | $193.238$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(1\) | \(0\) | \(2\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.ec | $10$ | $193.238$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-4\) | \(0\) | \(-2\) | $+$ | $-$ | $+$ | ||
| 24200.2.a.ed | $10$ | $193.238$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(-4\) | \(0\) | \(2\) | $-$ | $-$ | $+$ | ||
| 24200.2.a.ee | $10$ | $193.238$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(4\) | \(0\) | \(-2\) | $+$ | $+$ | $+$ | ||
| 24200.2.a.ef | $10$ | $193.238$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(4\) | \(0\) | \(2\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.eg | $12$ | $193.238$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-3\) | \(0\) | \(-4\) | $+$ | $+$ | $-$ | ||
| 24200.2.a.eh | $12$ | $193.238$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-3\) | \(0\) | \(4\) | $-$ | $+$ | $+$ | ||
| 24200.2.a.ei | $12$ | $193.238$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(3\) | \(0\) | \(-4\) | $+$ | $-$ | $+$ | ||
| 24200.2.a.ej | $12$ | $193.238$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(3\) | \(0\) | \(4\) | $-$ | $-$ | $-$ | ||
| 24200.2.a.ek | $16$ | $193.238$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | not computed | \(0\) | \(0\) | \(0\) | \(-10\) | $-$ | $-$ | $+$ | ||
| 24200.2.a.el | $16$ | $193.238$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | not computed | \(0\) | \(0\) | \(0\) | \(10\) | $+$ | $-$ | $+$ | ||
| 24200.2.a.em | $18$ | $193.238$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-4\) | \(0\) | \(-1\) | $-$ | $-$ | $+$ | ||
| 24200.2.a.en | $18$ | $193.238$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(-4\) | \(0\) | \(1\) | $+$ | $-$ | $-$ | ||
| 24200.2.a.eo | $18$ | $193.238$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(4\) | \(0\) | \(-1\) | $-$ | $-$ | $-$ | ||
| 24200.2.a.ep | $18$ | $193.238$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(4\) | \(0\) | \(1\) | $+$ | $-$ | $+$ | ||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(24200))\) into lower level spaces
  \( S_{2}^{\mathrm{old}}(\Gamma_0(24200)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(275))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(550))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(605))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(968))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1100))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1210))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2200))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2420))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3025))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(4840))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6050))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(12100))\)\(^{\oplus 2}\)
            