Properties

Label 2400.3.p.c
Level $2400$
Weight $3$
Character orbit 2400.p
Analytic conductor $65.395$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,3,Mod(1999,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.1999"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2400.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0,0,-96,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.3952634465\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 96 q^{9} + 64 q^{11} - 64 q^{19} + 256 q^{49} - 192 q^{51} + 256 q^{59} + 288 q^{81} + 960 q^{91} - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1999.1 0 1.73205i 0 0 0 10.9881 0 −3.00000 0
1999.2 0 1.73205i 0 0 0 10.9881 0 −3.00000 0
1999.3 0 1.73205i 0 0 0 −2.13685 0 −3.00000 0
1999.4 0 1.73205i 0 0 0 −2.13685 0 −3.00000 0
1999.5 0 1.73205i 0 0 0 11.8458 0 −3.00000 0
1999.6 0 1.73205i 0 0 0 11.8458 0 −3.00000 0
1999.7 0 1.73205i 0 0 0 −0.610378 0 −3.00000 0
1999.8 0 1.73205i 0 0 0 −0.610378 0 −3.00000 0
1999.9 0 1.73205i 0 0 0 −2.71814 0 −3.00000 0
1999.10 0 1.73205i 0 0 0 −2.71814 0 −3.00000 0
1999.11 0 1.73205i 0 0 0 6.06690 0 −3.00000 0
1999.12 0 1.73205i 0 0 0 6.06690 0 −3.00000 0
1999.13 0 1.73205i 0 0 0 0.610378 0 −3.00000 0
1999.14 0 1.73205i 0 0 0 0.610378 0 −3.00000 0
1999.15 0 1.73205i 0 0 0 8.37149 0 −3.00000 0
1999.16 0 1.73205i 0 0 0 8.37149 0 −3.00000 0
1999.17 0 1.73205i 0 0 0 2.13685 0 −3.00000 0
1999.18 0 1.73205i 0 0 0 2.13685 0 −3.00000 0
1999.19 0 1.73205i 0 0 0 −6.06690 0 −3.00000 0
1999.20 0 1.73205i 0 0 0 −6.06690 0 −3.00000 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1999.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
8.d odd 2 1 inner
40.e odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.3.p.c 32
4.b odd 2 1 600.3.p.c 32
5.b even 2 1 inner 2400.3.p.c 32
5.c odd 4 1 2400.3.g.c 16
5.c odd 4 1 2400.3.g.d 16
8.b even 2 1 600.3.p.c 32
8.d odd 2 1 inner 2400.3.p.c 32
20.d odd 2 1 600.3.p.c 32
20.e even 4 1 600.3.g.b 16
20.e even 4 1 600.3.g.c yes 16
40.e odd 2 1 inner 2400.3.p.c 32
40.f even 2 1 600.3.p.c 32
40.i odd 4 1 600.3.g.b 16
40.i odd 4 1 600.3.g.c yes 16
40.k even 4 1 2400.3.g.c 16
40.k even 4 1 2400.3.g.d 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.3.g.b 16 20.e even 4 1
600.3.g.b 16 40.i odd 4 1
600.3.g.c yes 16 20.e even 4 1
600.3.g.c yes 16 40.i odd 4 1
600.3.p.c 32 4.b odd 2 1
600.3.p.c 32 8.b even 2 1
600.3.p.c 32 20.d odd 2 1
600.3.p.c 32 40.f even 2 1
2400.3.g.c 16 5.c odd 4 1
2400.3.g.c 16 40.k even 4 1
2400.3.g.d 16 5.c odd 4 1
2400.3.g.d 16 40.k even 4 1
2400.3.p.c 32 1.a even 1 1 trivial
2400.3.p.c 32 5.b even 2 1 inner
2400.3.p.c 32 8.d odd 2 1 inner
2400.3.p.c 32 40.e odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{16} - 456 T_{7}^{14} + 80796 T_{7}^{12} - 7020664 T_{7}^{10} + 309600966 T_{7}^{8} + \cdots + 41593807233 \) acting on \(S_{3}^{\mathrm{new}}(2400, [\chi])\). Copy content Toggle raw display