Newspace parameters
| Level: | \( N \) | \(=\) | \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2400.p (of order \(2\), degree \(1\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(65.3952634465\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Twist minimal: | no (minimal twist has level 600) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1999.1 | 0 | − | 1.73205i | 0 | 0 | 0 | 10.9881 | 0 | −3.00000 | 0 | |||||||||||||||||
| 1999.2 | 0 | 1.73205i | 0 | 0 | 0 | 10.9881 | 0 | −3.00000 | 0 | ||||||||||||||||||
| 1999.3 | 0 | − | 1.73205i | 0 | 0 | 0 | −2.13685 | 0 | −3.00000 | 0 | |||||||||||||||||
| 1999.4 | 0 | 1.73205i | 0 | 0 | 0 | −2.13685 | 0 | −3.00000 | 0 | ||||||||||||||||||
| 1999.5 | 0 | − | 1.73205i | 0 | 0 | 0 | 11.8458 | 0 | −3.00000 | 0 | |||||||||||||||||
| 1999.6 | 0 | 1.73205i | 0 | 0 | 0 | 11.8458 | 0 | −3.00000 | 0 | ||||||||||||||||||
| 1999.7 | 0 | − | 1.73205i | 0 | 0 | 0 | −0.610378 | 0 | −3.00000 | 0 | |||||||||||||||||
| 1999.8 | 0 | 1.73205i | 0 | 0 | 0 | −0.610378 | 0 | −3.00000 | 0 | ||||||||||||||||||
| 1999.9 | 0 | − | 1.73205i | 0 | 0 | 0 | −2.71814 | 0 | −3.00000 | 0 | |||||||||||||||||
| 1999.10 | 0 | 1.73205i | 0 | 0 | 0 | −2.71814 | 0 | −3.00000 | 0 | ||||||||||||||||||
| 1999.11 | 0 | − | 1.73205i | 0 | 0 | 0 | 6.06690 | 0 | −3.00000 | 0 | |||||||||||||||||
| 1999.12 | 0 | 1.73205i | 0 | 0 | 0 | 6.06690 | 0 | −3.00000 | 0 | ||||||||||||||||||
| 1999.13 | 0 | − | 1.73205i | 0 | 0 | 0 | 0.610378 | 0 | −3.00000 | 0 | |||||||||||||||||
| 1999.14 | 0 | 1.73205i | 0 | 0 | 0 | 0.610378 | 0 | −3.00000 | 0 | ||||||||||||||||||
| 1999.15 | 0 | − | 1.73205i | 0 | 0 | 0 | 8.37149 | 0 | −3.00000 | 0 | |||||||||||||||||
| 1999.16 | 0 | 1.73205i | 0 | 0 | 0 | 8.37149 | 0 | −3.00000 | 0 | ||||||||||||||||||
| 1999.17 | 0 | − | 1.73205i | 0 | 0 | 0 | 2.13685 | 0 | −3.00000 | 0 | |||||||||||||||||
| 1999.18 | 0 | 1.73205i | 0 | 0 | 0 | 2.13685 | 0 | −3.00000 | 0 | ||||||||||||||||||
| 1999.19 | 0 | − | 1.73205i | 0 | 0 | 0 | −6.06690 | 0 | −3.00000 | 0 | |||||||||||||||||
| 1999.20 | 0 | 1.73205i | 0 | 0 | 0 | −6.06690 | 0 | −3.00000 | 0 | ||||||||||||||||||
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 5.b | even | 2 | 1 | inner |
| 8.d | odd | 2 | 1 | inner |
| 40.e | odd | 2 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 2400.3.p.c | 32 | |
| 4.b | odd | 2 | 1 | 600.3.p.c | 32 | ||
| 5.b | even | 2 | 1 | inner | 2400.3.p.c | 32 | |
| 5.c | odd | 4 | 1 | 2400.3.g.c | 16 | ||
| 5.c | odd | 4 | 1 | 2400.3.g.d | 16 | ||
| 8.b | even | 2 | 1 | 600.3.p.c | 32 | ||
| 8.d | odd | 2 | 1 | inner | 2400.3.p.c | 32 | |
| 20.d | odd | 2 | 1 | 600.3.p.c | 32 | ||
| 20.e | even | 4 | 1 | 600.3.g.b | ✓ | 16 | |
| 20.e | even | 4 | 1 | 600.3.g.c | yes | 16 | |
| 40.e | odd | 2 | 1 | inner | 2400.3.p.c | 32 | |
| 40.f | even | 2 | 1 | 600.3.p.c | 32 | ||
| 40.i | odd | 4 | 1 | 600.3.g.b | ✓ | 16 | |
| 40.i | odd | 4 | 1 | 600.3.g.c | yes | 16 | |
| 40.k | even | 4 | 1 | 2400.3.g.c | 16 | ||
| 40.k | even | 4 | 1 | 2400.3.g.d | 16 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 600.3.g.b | ✓ | 16 | 20.e | even | 4 | 1 | |
| 600.3.g.b | ✓ | 16 | 40.i | odd | 4 | 1 | |
| 600.3.g.c | yes | 16 | 20.e | even | 4 | 1 | |
| 600.3.g.c | yes | 16 | 40.i | odd | 4 | 1 | |
| 600.3.p.c | 32 | 4.b | odd | 2 | 1 | ||
| 600.3.p.c | 32 | 8.b | even | 2 | 1 | ||
| 600.3.p.c | 32 | 20.d | odd | 2 | 1 | ||
| 600.3.p.c | 32 | 40.f | even | 2 | 1 | ||
| 2400.3.g.c | 16 | 5.c | odd | 4 | 1 | ||
| 2400.3.g.c | 16 | 40.k | even | 4 | 1 | ||
| 2400.3.g.d | 16 | 5.c | odd | 4 | 1 | ||
| 2400.3.g.d | 16 | 40.k | even | 4 | 1 | ||
| 2400.3.p.c | 32 | 1.a | even | 1 | 1 | trivial | |
| 2400.3.p.c | 32 | 5.b | even | 2 | 1 | inner | |
| 2400.3.p.c | 32 | 8.d | odd | 2 | 1 | inner | |
| 2400.3.p.c | 32 | 40.e | odd | 2 | 1 | inner | |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{16} - 456 T_{7}^{14} + 80796 T_{7}^{12} - 7020664 T_{7}^{10} + 309600966 T_{7}^{8} + \cdots + 41593807233 \)
acting on \(S_{3}^{\mathrm{new}}(2400, [\chi])\).