Properties

Label 2400.3.j.d.799.8
Level $2400$
Weight $3$
Character 2400.799
Analytic conductor $65.395$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,3,Mod(799,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.799"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2400.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-16,0,24,0,0,0,0,0,0,0,0,0,0,0,96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.3952634465\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.8
Root \(0.535233 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 2400.799
Dual form 2400.3.j.d.799.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{3} +9.40034 q^{7} +3.00000 q^{9} +10.2658i q^{11} -22.1543i q^{13} +30.7181i q^{17} +34.0627i q^{19} +16.2819 q^{21} -10.3735 q^{23} +5.19615 q^{27} +25.4164 q^{29} +33.3338i q^{31} +17.7809i q^{33} -10.5670i q^{37} -38.3724i q^{39} -62.2047 q^{41} -54.6732 q^{43} -37.8419 q^{47} +39.3664 q^{49} +53.2053i q^{51} +82.6051i q^{53} +58.9984i q^{57} +33.7021i q^{59} +78.0215 q^{61} +28.2010 q^{63} +131.316 q^{67} -17.9674 q^{69} +22.6109i q^{71} -60.9732i q^{73} +96.5020i q^{77} -27.8901i q^{79} +9.00000 q^{81} +70.7268 q^{83} +44.0225 q^{87} -28.7655 q^{89} -208.258i q^{91} +57.7358i q^{93} -10.5744i q^{97} +30.7974i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{7} + 24 q^{9} + 96 q^{21} - 16 q^{23} + 96 q^{29} + 112 q^{41} - 128 q^{43} - 272 q^{47} + 184 q^{49} + 80 q^{61} - 48 q^{63} + 320 q^{67} + 144 q^{69} + 72 q^{81} - 320 q^{83} + 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 9.40034 1.34291 0.671453 0.741047i \(-0.265671\pi\)
0.671453 + 0.741047i \(0.265671\pi\)
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 10.2658i 0.933254i 0.884454 + 0.466627i \(0.154531\pi\)
−0.884454 + 0.466627i \(0.845469\pi\)
\(12\) 0 0
\(13\) − 22.1543i − 1.70418i −0.523395 0.852090i \(-0.675335\pi\)
0.523395 0.852090i \(-0.324665\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 30.7181i 1.80695i 0.428646 + 0.903473i \(0.358991\pi\)
−0.428646 + 0.903473i \(0.641009\pi\)
\(18\) 0 0
\(19\) 34.0627i 1.79278i 0.443270 + 0.896388i \(0.353818\pi\)
−0.443270 + 0.896388i \(0.646182\pi\)
\(20\) 0 0
\(21\) 16.2819 0.775327
\(22\) 0 0
\(23\) −10.3735 −0.451020 −0.225510 0.974241i \(-0.572405\pi\)
−0.225510 + 0.974241i \(0.572405\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615 0.192450
\(28\) 0 0
\(29\) 25.4164 0.876428 0.438214 0.898871i \(-0.355611\pi\)
0.438214 + 0.898871i \(0.355611\pi\)
\(30\) 0 0
\(31\) 33.3338i 1.07528i 0.843173 + 0.537642i \(0.180685\pi\)
−0.843173 + 0.537642i \(0.819315\pi\)
\(32\) 0 0
\(33\) 17.7809i 0.538815i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 10.5670i − 0.285595i −0.989752 0.142798i \(-0.954390\pi\)
0.989752 0.142798i \(-0.0456098\pi\)
\(38\) 0 0
\(39\) − 38.3724i − 0.983909i
\(40\) 0 0
\(41\) −62.2047 −1.51719 −0.758594 0.651564i \(-0.774113\pi\)
−0.758594 + 0.651564i \(0.774113\pi\)
\(42\) 0 0
\(43\) −54.6732 −1.27147 −0.635734 0.771908i \(-0.719303\pi\)
−0.635734 + 0.771908i \(0.719303\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −37.8419 −0.805146 −0.402573 0.915388i \(-0.631884\pi\)
−0.402573 + 0.915388i \(0.631884\pi\)
\(48\) 0 0
\(49\) 39.3664 0.803395
\(50\) 0 0
\(51\) 53.2053i 1.04324i
\(52\) 0 0
\(53\) 82.6051i 1.55859i 0.626659 + 0.779293i \(0.284422\pi\)
−0.626659 + 0.779293i \(0.715578\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 58.9984i 1.03506i
\(58\) 0 0
\(59\) 33.7021i 0.571221i 0.958346 + 0.285611i \(0.0921964\pi\)
−0.958346 + 0.285611i \(0.907804\pi\)
\(60\) 0 0
\(61\) 78.0215 1.27904 0.639520 0.768774i \(-0.279133\pi\)
0.639520 + 0.768774i \(0.279133\pi\)
\(62\) 0 0
\(63\) 28.2010 0.447635
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 131.316 1.95994 0.979971 0.199142i \(-0.0638154\pi\)
0.979971 + 0.199142i \(0.0638154\pi\)
\(68\) 0 0
\(69\) −17.9674 −0.260397
\(70\) 0 0
\(71\) 22.6109i 0.318464i 0.987241 + 0.159232i \(0.0509017\pi\)
−0.987241 + 0.159232i \(0.949098\pi\)
\(72\) 0 0
\(73\) − 60.9732i − 0.835250i −0.908620 0.417625i \(-0.862863\pi\)
0.908620 0.417625i \(-0.137137\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 96.5020i 1.25327i
\(78\) 0 0
\(79\) − 27.8901i − 0.353039i −0.984297 0.176519i \(-0.943516\pi\)
0.984297 0.176519i \(-0.0564838\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 70.7268 0.852130 0.426065 0.904693i \(-0.359899\pi\)
0.426065 + 0.904693i \(0.359899\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 44.0225 0.506006
\(88\) 0 0
\(89\) −28.7655 −0.323208 −0.161604 0.986856i \(-0.551667\pi\)
−0.161604 + 0.986856i \(0.551667\pi\)
\(90\) 0 0
\(91\) − 208.258i − 2.28855i
\(92\) 0 0
\(93\) 57.7358i 0.620815i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 10.5744i − 0.109014i −0.998513 0.0545071i \(-0.982641\pi\)
0.998513 0.0545071i \(-0.0173587\pi\)
\(98\) 0 0
\(99\) 30.7974i 0.311085i
\(100\) 0 0
\(101\) −10.7519 −0.106454 −0.0532271 0.998582i \(-0.516951\pi\)
−0.0532271 + 0.998582i \(0.516951\pi\)
\(102\) 0 0
\(103\) −70.8109 −0.687485 −0.343742 0.939064i \(-0.611695\pi\)
−0.343742 + 0.939064i \(0.611695\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 38.3936 0.358818 0.179409 0.983775i \(-0.442581\pi\)
0.179409 + 0.983775i \(0.442581\pi\)
\(108\) 0 0
\(109\) −156.704 −1.43765 −0.718826 0.695190i \(-0.755320\pi\)
−0.718826 + 0.695190i \(0.755320\pi\)
\(110\) 0 0
\(111\) − 18.3026i − 0.164888i
\(112\) 0 0
\(113\) − 148.344i − 1.31278i −0.754422 0.656389i \(-0.772083\pi\)
0.754422 0.656389i \(-0.227917\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 66.4630i − 0.568060i
\(118\) 0 0
\(119\) 288.760i 2.42656i
\(120\) 0 0
\(121\) 15.6134 0.129037
\(122\) 0 0
\(123\) −107.742 −0.875949
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 109.508 0.862267 0.431133 0.902288i \(-0.358114\pi\)
0.431133 + 0.902288i \(0.358114\pi\)
\(128\) 0 0
\(129\) −94.6967 −0.734083
\(130\) 0 0
\(131\) − 48.7899i − 0.372442i −0.982508 0.186221i \(-0.940376\pi\)
0.982508 0.186221i \(-0.0596241\pi\)
\(132\) 0 0
\(133\) 320.201i 2.40753i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 44.6433i 0.325863i 0.986637 + 0.162932i \(0.0520950\pi\)
−0.986637 + 0.162932i \(0.947905\pi\)
\(138\) 0 0
\(139\) 111.352i 0.801094i 0.916276 + 0.400547i \(0.131180\pi\)
−0.916276 + 0.400547i \(0.868820\pi\)
\(140\) 0 0
\(141\) −65.5440 −0.464851
\(142\) 0 0
\(143\) 227.432 1.59043
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 68.1846 0.463841
\(148\) 0 0
\(149\) 41.7071 0.279914 0.139957 0.990158i \(-0.455304\pi\)
0.139957 + 0.990158i \(0.455304\pi\)
\(150\) 0 0
\(151\) − 53.3242i − 0.353140i −0.984288 0.176570i \(-0.943500\pi\)
0.984288 0.176570i \(-0.0565002\pi\)
\(152\) 0 0
\(153\) 92.1542i 0.602315i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 86.5304i − 0.551149i −0.961280 0.275574i \(-0.911132\pi\)
0.961280 0.275574i \(-0.0888680\pi\)
\(158\) 0 0
\(159\) 143.076i 0.899850i
\(160\) 0 0
\(161\) −97.5140 −0.605677
\(162\) 0 0
\(163\) 36.4719 0.223754 0.111877 0.993722i \(-0.464314\pi\)
0.111877 + 0.993722i \(0.464314\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 219.793 1.31612 0.658062 0.752963i \(-0.271376\pi\)
0.658062 + 0.752963i \(0.271376\pi\)
\(168\) 0 0
\(169\) −321.815 −1.90423
\(170\) 0 0
\(171\) 102.188i 0.597592i
\(172\) 0 0
\(173\) − 51.3508i − 0.296825i −0.988926 0.148413i \(-0.952584\pi\)
0.988926 0.148413i \(-0.0474164\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 58.3737i 0.329795i
\(178\) 0 0
\(179\) 80.2049i 0.448072i 0.974581 + 0.224036i \(0.0719233\pi\)
−0.974581 + 0.224036i \(0.928077\pi\)
\(180\) 0 0
\(181\) −114.578 −0.633027 −0.316514 0.948588i \(-0.602512\pi\)
−0.316514 + 0.948588i \(0.602512\pi\)
\(182\) 0 0
\(183\) 135.137 0.738455
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −315.345 −1.68634
\(188\) 0 0
\(189\) 48.8456 0.258442
\(190\) 0 0
\(191\) − 71.0845i − 0.372170i −0.982534 0.186085i \(-0.940420\pi\)
0.982534 0.186085i \(-0.0595801\pi\)
\(192\) 0 0
\(193\) 25.1660i 0.130394i 0.997872 + 0.0651970i \(0.0207676\pi\)
−0.997872 + 0.0651970i \(0.979232\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 247.751i 1.25762i 0.777559 + 0.628810i \(0.216458\pi\)
−0.777559 + 0.628810i \(0.783542\pi\)
\(198\) 0 0
\(199\) − 72.5171i − 0.364407i −0.983261 0.182204i \(-0.941677\pi\)
0.983261 0.182204i \(-0.0583230\pi\)
\(200\) 0 0
\(201\) 227.446 1.13157
\(202\) 0 0
\(203\) 238.923 1.17696
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −31.1204 −0.150340
\(208\) 0 0
\(209\) −349.681 −1.67312
\(210\) 0 0
\(211\) 67.7838i 0.321250i 0.987015 + 0.160625i \(0.0513510\pi\)
−0.987015 + 0.160625i \(0.948649\pi\)
\(212\) 0 0
\(213\) 39.1632i 0.183865i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 313.349i 1.44400i
\(218\) 0 0
\(219\) − 105.609i − 0.482232i
\(220\) 0 0
\(221\) 680.539 3.07936
\(222\) 0 0
\(223\) 133.216 0.597381 0.298690 0.954350i \(-0.403450\pi\)
0.298690 + 0.954350i \(0.403450\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 100.300 0.441851 0.220926 0.975291i \(-0.429092\pi\)
0.220926 + 0.975291i \(0.429092\pi\)
\(228\) 0 0
\(229\) −14.8076 −0.0646622 −0.0323311 0.999477i \(-0.510293\pi\)
−0.0323311 + 0.999477i \(0.510293\pi\)
\(230\) 0 0
\(231\) 167.146i 0.723577i
\(232\) 0 0
\(233\) 267.030i 1.14605i 0.819538 + 0.573025i \(0.194230\pi\)
−0.819538 + 0.573025i \(0.805770\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 48.3070i − 0.203827i
\(238\) 0 0
\(239\) − 21.4827i − 0.0898858i −0.998990 0.0449429i \(-0.985689\pi\)
0.998990 0.0449429i \(-0.0143106\pi\)
\(240\) 0 0
\(241\) 12.7498 0.0529039 0.0264520 0.999650i \(-0.491579\pi\)
0.0264520 + 0.999650i \(0.491579\pi\)
\(242\) 0 0
\(243\) 15.5885 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 754.638 3.05521
\(248\) 0 0
\(249\) 122.502 0.491977
\(250\) 0 0
\(251\) − 198.528i − 0.790950i −0.918477 0.395475i \(-0.870580\pi\)
0.918477 0.395475i \(-0.129420\pi\)
\(252\) 0 0
\(253\) − 106.492i − 0.420916i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 417.753i 1.62550i 0.582615 + 0.812748i \(0.302029\pi\)
−0.582615 + 0.812748i \(0.697971\pi\)
\(258\) 0 0
\(259\) − 99.3336i − 0.383527i
\(260\) 0 0
\(261\) 76.2492 0.292143
\(262\) 0 0
\(263\) 61.0555 0.232150 0.116075 0.993240i \(-0.462969\pi\)
0.116075 + 0.993240i \(0.462969\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −49.8233 −0.186604
\(268\) 0 0
\(269\) 459.039 1.70647 0.853233 0.521530i \(-0.174639\pi\)
0.853233 + 0.521530i \(0.174639\pi\)
\(270\) 0 0
\(271\) 92.9034i 0.342817i 0.985200 + 0.171408i \(0.0548318\pi\)
−0.985200 + 0.171408i \(0.945168\pi\)
\(272\) 0 0
\(273\) − 360.714i − 1.32130i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 415.661i 1.50058i 0.661108 + 0.750291i \(0.270087\pi\)
−0.661108 + 0.750291i \(0.729913\pi\)
\(278\) 0 0
\(279\) 100.001i 0.358428i
\(280\) 0 0
\(281\) −271.730 −0.967011 −0.483506 0.875341i \(-0.660637\pi\)
−0.483506 + 0.875341i \(0.660637\pi\)
\(282\) 0 0
\(283\) 208.707 0.737482 0.368741 0.929532i \(-0.379789\pi\)
0.368741 + 0.929532i \(0.379789\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −584.745 −2.03744
\(288\) 0 0
\(289\) −654.600 −2.26505
\(290\) 0 0
\(291\) − 18.3154i − 0.0629394i
\(292\) 0 0
\(293\) − 27.7933i − 0.0948577i −0.998875 0.0474288i \(-0.984897\pi\)
0.998875 0.0474288i \(-0.0151027\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 53.3426i 0.179605i
\(298\) 0 0
\(299\) 229.817i 0.768619i
\(300\) 0 0
\(301\) −513.946 −1.70746
\(302\) 0 0
\(303\) −18.6228 −0.0614613
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 236.018 0.768789 0.384394 0.923169i \(-0.374410\pi\)
0.384394 + 0.923169i \(0.374410\pi\)
\(308\) 0 0
\(309\) −122.648 −0.396919
\(310\) 0 0
\(311\) 87.7923i 0.282290i 0.989989 + 0.141145i \(0.0450784\pi\)
−0.989989 + 0.141145i \(0.954922\pi\)
\(312\) 0 0
\(313\) − 177.589i − 0.567376i −0.958917 0.283688i \(-0.908442\pi\)
0.958917 0.283688i \(-0.0915581\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 437.410i 1.37984i 0.723885 + 0.689921i \(0.242355\pi\)
−0.723885 + 0.689921i \(0.757645\pi\)
\(318\) 0 0
\(319\) 260.920i 0.817930i
\(320\) 0 0
\(321\) 66.4996 0.207164
\(322\) 0 0
\(323\) −1046.34 −3.23945
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −271.419 −0.830028
\(328\) 0 0
\(329\) −355.726 −1.08124
\(330\) 0 0
\(331\) − 198.207i − 0.598814i −0.954125 0.299407i \(-0.903211\pi\)
0.954125 0.299407i \(-0.0967889\pi\)
\(332\) 0 0
\(333\) − 31.7011i − 0.0951984i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 541.738i − 1.60753i −0.594946 0.803766i \(-0.702827\pi\)
0.594946 0.803766i \(-0.297173\pi\)
\(338\) 0 0
\(339\) − 256.939i − 0.757933i
\(340\) 0 0
\(341\) −342.198 −1.00351
\(342\) 0 0
\(343\) −90.5593 −0.264021
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 654.377 1.88581 0.942906 0.333059i \(-0.108081\pi\)
0.942906 + 0.333059i \(0.108081\pi\)
\(348\) 0 0
\(349\) 363.418 1.04131 0.520655 0.853767i \(-0.325688\pi\)
0.520655 + 0.853767i \(0.325688\pi\)
\(350\) 0 0
\(351\) − 115.117i − 0.327970i
\(352\) 0 0
\(353\) − 335.772i − 0.951195i −0.879663 0.475597i \(-0.842232\pi\)
0.879663 0.475597i \(-0.157768\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 500.147i 1.40097i
\(358\) 0 0
\(359\) − 479.525i − 1.33573i −0.744285 0.667863i \(-0.767209\pi\)
0.744285 0.667863i \(-0.232791\pi\)
\(360\) 0 0
\(361\) −799.271 −2.21405
\(362\) 0 0
\(363\) 27.0432 0.0744993
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 690.724 1.88208 0.941041 0.338292i \(-0.109849\pi\)
0.941041 + 0.338292i \(0.109849\pi\)
\(368\) 0 0
\(369\) −186.614 −0.505729
\(370\) 0 0
\(371\) 776.516i 2.09303i
\(372\) 0 0
\(373\) 295.228i 0.791496i 0.918359 + 0.395748i \(0.129515\pi\)
−0.918359 + 0.395748i \(0.870485\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 563.084i − 1.49359i
\(378\) 0 0
\(379\) 314.112i 0.828791i 0.910097 + 0.414396i \(0.136007\pi\)
−0.910097 + 0.414396i \(0.863993\pi\)
\(380\) 0 0
\(381\) 189.673 0.497830
\(382\) 0 0
\(383\) −68.8331 −0.179721 −0.0898605 0.995954i \(-0.528642\pi\)
−0.0898605 + 0.995954i \(0.528642\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −164.019 −0.423823
\(388\) 0 0
\(389\) −357.730 −0.919613 −0.459807 0.888019i \(-0.652081\pi\)
−0.459807 + 0.888019i \(0.652081\pi\)
\(390\) 0 0
\(391\) − 318.653i − 0.814968i
\(392\) 0 0
\(393\) − 84.5066i − 0.215030i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 715.056i − 1.80115i −0.434703 0.900574i \(-0.643146\pi\)
0.434703 0.900574i \(-0.356854\pi\)
\(398\) 0 0
\(399\) 554.605i 1.38999i
\(400\) 0 0
\(401\) 624.362 1.55701 0.778506 0.627637i \(-0.215978\pi\)
0.778506 + 0.627637i \(0.215978\pi\)
\(402\) 0 0
\(403\) 738.488 1.83248
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 108.479 0.266533
\(408\) 0 0
\(409\) 183.591 0.448877 0.224438 0.974488i \(-0.427945\pi\)
0.224438 + 0.974488i \(0.427945\pi\)
\(410\) 0 0
\(411\) 77.3244i 0.188137i
\(412\) 0 0
\(413\) 316.811i 0.767096i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 192.868i 0.462512i
\(418\) 0 0
\(419\) 130.389i 0.311192i 0.987821 + 0.155596i \(0.0497298\pi\)
−0.987821 + 0.155596i \(0.950270\pi\)
\(420\) 0 0
\(421\) −194.504 −0.462005 −0.231002 0.972953i \(-0.574201\pi\)
−0.231002 + 0.972953i \(0.574201\pi\)
\(422\) 0 0
\(423\) −113.526 −0.268382
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 733.429 1.71763
\(428\) 0 0
\(429\) 393.924 0.918237
\(430\) 0 0
\(431\) − 172.160i − 0.399444i −0.979853 0.199722i \(-0.935996\pi\)
0.979853 0.199722i \(-0.0640038\pi\)
\(432\) 0 0
\(433\) 161.682i 0.373400i 0.982417 + 0.186700i \(0.0597793\pi\)
−0.982417 + 0.186700i \(0.940221\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 353.349i − 0.808578i
\(438\) 0 0
\(439\) − 820.549i − 1.86913i −0.355789 0.934566i \(-0.615788\pi\)
0.355789 0.934566i \(-0.384212\pi\)
\(440\) 0 0
\(441\) 118.099 0.267798
\(442\) 0 0
\(443\) 772.107 1.74291 0.871453 0.490480i \(-0.163178\pi\)
0.871453 + 0.490480i \(0.163178\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 72.2388 0.161608
\(448\) 0 0
\(449\) −367.146 −0.817696 −0.408848 0.912602i \(-0.634069\pi\)
−0.408848 + 0.912602i \(0.634069\pi\)
\(450\) 0 0
\(451\) − 638.581i − 1.41592i
\(452\) 0 0
\(453\) − 92.3602i − 0.203886i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 122.079i 0.267131i 0.991040 + 0.133565i \(0.0426426\pi\)
−0.991040 + 0.133565i \(0.957357\pi\)
\(458\) 0 0
\(459\) 159.616i 0.347747i
\(460\) 0 0
\(461\) 233.565 0.506650 0.253325 0.967381i \(-0.418476\pi\)
0.253325 + 0.967381i \(0.418476\pi\)
\(462\) 0 0
\(463\) 16.6739 0.0360127 0.0180064 0.999838i \(-0.494268\pi\)
0.0180064 + 0.999838i \(0.494268\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −119.734 −0.256391 −0.128195 0.991749i \(-0.540918\pi\)
−0.128195 + 0.991749i \(0.540918\pi\)
\(468\) 0 0
\(469\) 1234.42 2.63202
\(470\) 0 0
\(471\) − 149.875i − 0.318206i
\(472\) 0 0
\(473\) − 561.263i − 1.18660i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 247.815i 0.519529i
\(478\) 0 0
\(479\) − 359.494i − 0.750510i −0.926922 0.375255i \(-0.877555\pi\)
0.926922 0.375255i \(-0.122445\pi\)
\(480\) 0 0
\(481\) −234.105 −0.486705
\(482\) 0 0
\(483\) −168.899 −0.349688
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −573.644 −1.17791 −0.588957 0.808164i \(-0.700461\pi\)
−0.588957 + 0.808164i \(0.700461\pi\)
\(488\) 0 0
\(489\) 63.1711 0.129184
\(490\) 0 0
\(491\) 338.696i 0.689809i 0.938638 + 0.344904i \(0.112089\pi\)
−0.938638 + 0.344904i \(0.887911\pi\)
\(492\) 0 0
\(493\) 780.743i 1.58366i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 212.550i 0.427666i
\(498\) 0 0
\(499\) − 468.632i − 0.939142i −0.882895 0.469571i \(-0.844409\pi\)
0.882895 0.469571i \(-0.155591\pi\)
\(500\) 0 0
\(501\) 380.692 0.759865
\(502\) 0 0
\(503\) −627.373 −1.24726 −0.623631 0.781719i \(-0.714343\pi\)
−0.623631 + 0.781719i \(0.714343\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −557.400 −1.09941
\(508\) 0 0
\(509\) 501.143 0.984564 0.492282 0.870436i \(-0.336163\pi\)
0.492282 + 0.870436i \(0.336163\pi\)
\(510\) 0 0
\(511\) − 573.169i − 1.12166i
\(512\) 0 0
\(513\) 176.995i 0.345020i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 388.477i − 0.751406i
\(518\) 0 0
\(519\) − 88.9422i − 0.171372i
\(520\) 0 0
\(521\) 535.165 1.02719 0.513594 0.858033i \(-0.328314\pi\)
0.513594 + 0.858033i \(0.328314\pi\)
\(522\) 0 0
\(523\) −291.291 −0.556963 −0.278481 0.960442i \(-0.589831\pi\)
−0.278481 + 0.960442i \(0.589831\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1023.95 −1.94298
\(528\) 0 0
\(529\) −421.391 −0.796581
\(530\) 0 0
\(531\) 101.106i 0.190407i
\(532\) 0 0
\(533\) 1378.10i 2.58556i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 138.919i 0.258695i
\(538\) 0 0
\(539\) 404.127i 0.749772i
\(540\) 0 0
\(541\) 160.869 0.297355 0.148678 0.988886i \(-0.452498\pi\)
0.148678 + 0.988886i \(0.452498\pi\)
\(542\) 0 0
\(543\) −198.455 −0.365478
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −543.958 −0.994439 −0.497220 0.867625i \(-0.665646\pi\)
−0.497220 + 0.867625i \(0.665646\pi\)
\(548\) 0 0
\(549\) 234.064 0.426347
\(550\) 0 0
\(551\) 865.753i 1.57124i
\(552\) 0 0
\(553\) − 262.176i − 0.474098i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 682.329i − 1.22501i −0.790468 0.612503i \(-0.790163\pi\)
0.790468 0.612503i \(-0.209837\pi\)
\(558\) 0 0
\(559\) 1211.25i 2.16681i
\(560\) 0 0
\(561\) −546.194 −0.973608
\(562\) 0 0
\(563\) 635.777 1.12927 0.564633 0.825342i \(-0.309018\pi\)
0.564633 + 0.825342i \(0.309018\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 84.6031 0.149212
\(568\) 0 0
\(569\) −202.561 −0.355995 −0.177998 0.984031i \(-0.556962\pi\)
−0.177998 + 0.984031i \(0.556962\pi\)
\(570\) 0 0
\(571\) − 911.868i − 1.59697i −0.602017 0.798483i \(-0.705636\pi\)
0.602017 0.798483i \(-0.294364\pi\)
\(572\) 0 0
\(573\) − 123.122i − 0.214873i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 641.689i 1.11211i 0.831145 + 0.556056i \(0.187686\pi\)
−0.831145 + 0.556056i \(0.812314\pi\)
\(578\) 0 0
\(579\) 43.5889i 0.0752830i
\(580\) 0 0
\(581\) 664.856 1.14433
\(582\) 0 0
\(583\) −848.007 −1.45456
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 155.622 0.265115 0.132557 0.991175i \(-0.457681\pi\)
0.132557 + 0.991175i \(0.457681\pi\)
\(588\) 0 0
\(589\) −1135.44 −1.92774
\(590\) 0 0
\(591\) 429.117i 0.726087i
\(592\) 0 0
\(593\) − 202.248i − 0.341060i −0.985353 0.170530i \(-0.945452\pi\)
0.985353 0.170530i \(-0.0545479\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 125.603i − 0.210391i
\(598\) 0 0
\(599\) 256.049i 0.427460i 0.976893 + 0.213730i \(0.0685613\pi\)
−0.976893 + 0.213730i \(0.931439\pi\)
\(600\) 0 0
\(601\) −723.075 −1.20312 −0.601560 0.798828i \(-0.705454\pi\)
−0.601560 + 0.798828i \(0.705454\pi\)
\(602\) 0 0
\(603\) 393.948 0.653314
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −871.890 −1.43639 −0.718196 0.695841i \(-0.755032\pi\)
−0.718196 + 0.695841i \(0.755032\pi\)
\(608\) 0 0
\(609\) 413.827 0.679518
\(610\) 0 0
\(611\) 838.362i 1.37211i
\(612\) 0 0
\(613\) − 1027.53i − 1.67623i −0.545491 0.838117i \(-0.683657\pi\)
0.545491 0.838117i \(-0.316343\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 250.905i − 0.406652i −0.979111 0.203326i \(-0.934825\pi\)
0.979111 0.203326i \(-0.0651752\pi\)
\(618\) 0 0
\(619\) − 704.772i − 1.13857i −0.822142 0.569283i \(-0.807221\pi\)
0.822142 0.569283i \(-0.192779\pi\)
\(620\) 0 0
\(621\) −53.9021 −0.0867988
\(622\) 0 0
\(623\) −270.405 −0.434037
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −605.666 −0.965974
\(628\) 0 0
\(629\) 324.598 0.516055
\(630\) 0 0
\(631\) − 481.066i − 0.762387i −0.924495 0.381193i \(-0.875513\pi\)
0.924495 0.381193i \(-0.124487\pi\)
\(632\) 0 0
\(633\) 117.405i 0.185474i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 872.136i − 1.36913i
\(638\) 0 0
\(639\) 67.8327i 0.106155i
\(640\) 0 0
\(641\) 509.057 0.794161 0.397080 0.917784i \(-0.370023\pi\)
0.397080 + 0.917784i \(0.370023\pi\)
\(642\) 0 0
\(643\) −943.939 −1.46802 −0.734012 0.679137i \(-0.762354\pi\)
−0.734012 + 0.679137i \(0.762354\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −787.201 −1.21669 −0.608347 0.793671i \(-0.708167\pi\)
−0.608347 + 0.793671i \(0.708167\pi\)
\(648\) 0 0
\(649\) −345.979 −0.533095
\(650\) 0 0
\(651\) 542.736i 0.833697i
\(652\) 0 0
\(653\) − 184.869i − 0.283107i −0.989931 0.141553i \(-0.954790\pi\)
0.989931 0.141553i \(-0.0452097\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 182.920i − 0.278417i
\(658\) 0 0
\(659\) 928.276i 1.40861i 0.709896 + 0.704307i \(0.248742\pi\)
−0.709896 + 0.704307i \(0.751258\pi\)
\(660\) 0 0
\(661\) 948.317 1.43467 0.717335 0.696728i \(-0.245362\pi\)
0.717335 + 0.696728i \(0.245362\pi\)
\(662\) 0 0
\(663\) 1178.73 1.77787
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −263.656 −0.395286
\(668\) 0 0
\(669\) 230.737 0.344898
\(670\) 0 0
\(671\) 800.953i 1.19367i
\(672\) 0 0
\(673\) − 355.386i − 0.528063i −0.964514 0.264031i \(-0.914948\pi\)
0.964514 0.264031i \(-0.0850522\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 107.844i − 0.159296i −0.996823 0.0796481i \(-0.974620\pi\)
0.996823 0.0796481i \(-0.0253797\pi\)
\(678\) 0 0
\(679\) − 99.4027i − 0.146396i
\(680\) 0 0
\(681\) 173.725 0.255103
\(682\) 0 0
\(683\) −229.914 −0.336624 −0.168312 0.985734i \(-0.553832\pi\)
−0.168312 + 0.985734i \(0.553832\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −25.6476 −0.0373327
\(688\) 0 0
\(689\) 1830.06 2.65611
\(690\) 0 0
\(691\) 998.502i 1.44501i 0.691366 + 0.722505i \(0.257009\pi\)
−0.691366 + 0.722505i \(0.742991\pi\)
\(692\) 0 0
\(693\) 289.506i 0.417757i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1910.81i − 2.74147i
\(698\) 0 0
\(699\) 462.509i 0.661672i
\(700\) 0 0
\(701\) −563.962 −0.804510 −0.402255 0.915528i \(-0.631774\pi\)
−0.402255 + 0.915528i \(0.631774\pi\)
\(702\) 0 0
\(703\) 359.942 0.512008
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −101.071 −0.142958
\(708\) 0 0
\(709\) 54.7374 0.0772037 0.0386018 0.999255i \(-0.487710\pi\)
0.0386018 + 0.999255i \(0.487710\pi\)
\(710\) 0 0
\(711\) − 83.6702i − 0.117680i
\(712\) 0 0
\(713\) − 345.787i − 0.484974i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 37.2091i − 0.0518956i
\(718\) 0 0
\(719\) − 1026.78i − 1.42807i −0.700108 0.714037i \(-0.746865\pi\)
0.700108 0.714037i \(-0.253135\pi\)
\(720\) 0 0
\(721\) −665.647 −0.923227
\(722\) 0 0
\(723\) 22.0834 0.0305441
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 761.761 1.04781 0.523907 0.851775i \(-0.324474\pi\)
0.523907 + 0.851775i \(0.324474\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) − 1679.45i − 2.29747i
\(732\) 0 0
\(733\) 264.657i 0.361060i 0.983570 + 0.180530i \(0.0577812\pi\)
−0.983570 + 0.180530i \(0.942219\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1348.06i 1.82912i
\(738\) 0 0
\(739\) − 669.696i − 0.906219i −0.891455 0.453109i \(-0.850315\pi\)
0.891455 0.453109i \(-0.149685\pi\)
\(740\) 0 0
\(741\) 1307.07 1.76393
\(742\) 0 0
\(743\) −771.458 −1.03830 −0.519151 0.854683i \(-0.673752\pi\)
−0.519151 + 0.854683i \(0.673752\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 212.180 0.284043
\(748\) 0 0
\(749\) 360.912 0.481859
\(750\) 0 0
\(751\) 335.971i 0.447365i 0.974662 + 0.223683i \(0.0718079\pi\)
−0.974662 + 0.223683i \(0.928192\pi\)
\(752\) 0 0
\(753\) − 343.861i − 0.456655i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 174.316i 0.230272i 0.993350 + 0.115136i \(0.0367304\pi\)
−0.993350 + 0.115136i \(0.963270\pi\)
\(758\) 0 0
\(759\) − 184.449i − 0.243016i
\(760\) 0 0
\(761\) −471.375 −0.619415 −0.309708 0.950832i \(-0.600231\pi\)
−0.309708 + 0.950832i \(0.600231\pi\)
\(762\) 0 0
\(763\) −1473.07 −1.93063
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 746.647 0.973464
\(768\) 0 0
\(769\) −110.326 −0.143467 −0.0717334 0.997424i \(-0.522853\pi\)
−0.0717334 + 0.997424i \(0.522853\pi\)
\(770\) 0 0
\(771\) 723.569i 0.938481i
\(772\) 0 0
\(773\) − 166.817i − 0.215804i −0.994162 0.107902i \(-0.965587\pi\)
0.994162 0.107902i \(-0.0344133\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 172.051i − 0.221430i
\(778\) 0 0
\(779\) − 2118.86i − 2.71998i
\(780\) 0 0
\(781\) −232.119 −0.297207
\(782\) 0 0
\(783\) 132.068 0.168669
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −368.824 −0.468646 −0.234323 0.972159i \(-0.575287\pi\)
−0.234323 + 0.972159i \(0.575287\pi\)
\(788\) 0 0
\(789\) 105.751 0.134032
\(790\) 0 0
\(791\) − 1394.48i − 1.76294i
\(792\) 0 0
\(793\) − 1728.51i − 2.17972i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 883.998i − 1.10916i −0.832132 0.554578i \(-0.812880\pi\)
0.832132 0.554578i \(-0.187120\pi\)
\(798\) 0 0
\(799\) − 1162.43i − 1.45485i
\(800\) 0 0
\(801\) −86.2965 −0.107736
\(802\) 0 0
\(803\) 625.939 0.779500
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 795.079 0.985228
\(808\) 0 0
\(809\) 1035.45 1.27991 0.639955 0.768412i \(-0.278953\pi\)
0.639955 + 0.768412i \(0.278953\pi\)
\(810\) 0 0
\(811\) − 765.157i − 0.943473i −0.881740 0.471737i \(-0.843627\pi\)
0.881740 0.471737i \(-0.156373\pi\)
\(812\) 0 0
\(813\) 160.913i 0.197925i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 1862.32i − 2.27946i
\(818\) 0 0
\(819\) − 624.775i − 0.762851i
\(820\) 0 0
\(821\) −64.7641 −0.0788844 −0.0394422 0.999222i \(-0.512558\pi\)
−0.0394422 + 0.999222i \(0.512558\pi\)
\(822\) 0 0
\(823\) 597.516 0.726022 0.363011 0.931785i \(-0.381749\pi\)
0.363011 + 0.931785i \(0.381749\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −937.277 −1.13335 −0.566673 0.823943i \(-0.691770\pi\)
−0.566673 + 0.823943i \(0.691770\pi\)
\(828\) 0 0
\(829\) 1053.44 1.27074 0.635371 0.772207i \(-0.280847\pi\)
0.635371 + 0.772207i \(0.280847\pi\)
\(830\) 0 0
\(831\) 719.946i 0.866362i
\(832\) 0 0
\(833\) 1209.26i 1.45169i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 173.208i 0.206938i
\(838\) 0 0
\(839\) − 312.763i − 0.372781i −0.982476 0.186390i \(-0.940321\pi\)
0.982476 0.186390i \(-0.0596789\pi\)
\(840\) 0 0
\(841\) −195.006 −0.231874
\(842\) 0 0
\(843\) −470.650 −0.558304
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 146.771 0.173284
\(848\) 0 0
\(849\) 361.492 0.425785
\(850\) 0 0
\(851\) 109.617i 0.128809i
\(852\) 0 0
\(853\) 57.0533i 0.0668855i 0.999441 + 0.0334428i \(0.0106471\pi\)
−0.999441 + 0.0334428i \(0.989353\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 969.837i 1.13166i 0.824520 + 0.565832i \(0.191445\pi\)
−0.824520 + 0.565832i \(0.808555\pi\)
\(858\) 0 0
\(859\) − 1321.85i − 1.53882i −0.638755 0.769410i \(-0.720550\pi\)
0.638755 0.769410i \(-0.279450\pi\)
\(860\) 0 0
\(861\) −1012.81 −1.17632
\(862\) 0 0
\(863\) 384.652 0.445715 0.222858 0.974851i \(-0.428462\pi\)
0.222858 + 0.974851i \(0.428462\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1133.80 −1.30773
\(868\) 0 0
\(869\) 286.314 0.329475
\(870\) 0 0
\(871\) − 2909.22i − 3.34009i
\(872\) 0 0
\(873\) − 31.7231i − 0.0363381i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 138.409i − 0.157821i −0.996882 0.0789106i \(-0.974856\pi\)
0.996882 0.0789106i \(-0.0251442\pi\)
\(878\) 0 0
\(879\) − 48.1394i − 0.0547661i
\(880\) 0 0
\(881\) −1462.25 −1.65976 −0.829882 0.557939i \(-0.811592\pi\)
−0.829882 + 0.557939i \(0.811592\pi\)
\(882\) 0 0
\(883\) −372.564 −0.421929 −0.210965 0.977494i \(-0.567660\pi\)
−0.210965 + 0.977494i \(0.567660\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1152.51 −1.29934 −0.649668 0.760218i \(-0.725092\pi\)
−0.649668 + 0.760218i \(0.725092\pi\)
\(888\) 0 0
\(889\) 1029.41 1.15794
\(890\) 0 0
\(891\) 92.3922i 0.103695i
\(892\) 0 0
\(893\) − 1289.00i − 1.44345i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 398.055i 0.443763i
\(898\) 0 0
\(899\) 847.225i 0.942409i
\(900\) 0 0
\(901\) −2537.47 −2.81628
\(902\) 0 0
\(903\) −890.181 −0.985804
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 741.083 0.817071 0.408535 0.912742i \(-0.366040\pi\)
0.408535 + 0.912742i \(0.366040\pi\)
\(908\) 0 0
\(909\) −32.2556 −0.0354847
\(910\) 0 0
\(911\) 1000.10i 1.09781i 0.835886 + 0.548903i \(0.184954\pi\)
−0.835886 + 0.548903i \(0.815046\pi\)
\(912\) 0 0
\(913\) 726.067i 0.795254i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 458.642i − 0.500155i
\(918\) 0 0
\(919\) 130.002i 0.141460i 0.997495 + 0.0707300i \(0.0225329\pi\)
−0.997495 + 0.0707300i \(0.977467\pi\)
\(920\) 0 0
\(921\) 408.795 0.443860
\(922\) 0 0
\(923\) 500.930 0.542719
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −212.433 −0.229162
\(928\) 0 0
\(929\) −1556.51 −1.67547 −0.837734 0.546078i \(-0.816120\pi\)
−0.837734 + 0.546078i \(0.816120\pi\)
\(930\) 0 0
\(931\) 1340.93i 1.44031i
\(932\) 0 0
\(933\) 152.061i 0.162980i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 19.4457i − 0.0207531i −0.999946 0.0103765i \(-0.996697\pi\)
0.999946 0.0103765i \(-0.00330302\pi\)
\(938\) 0 0
\(939\) − 307.593i − 0.327575i
\(940\) 0 0
\(941\) −1063.66 −1.13035 −0.565176 0.824971i \(-0.691192\pi\)
−0.565176 + 0.824971i \(0.691192\pi\)
\(942\) 0 0
\(943\) 645.278 0.684282
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 343.394 0.362612 0.181306 0.983427i \(-0.441968\pi\)
0.181306 + 0.983427i \(0.441968\pi\)
\(948\) 0 0
\(949\) −1350.82 −1.42342
\(950\) 0 0
\(951\) 757.616i 0.796652i
\(952\) 0 0
\(953\) − 1575.10i − 1.65279i −0.563094 0.826393i \(-0.690389\pi\)
0.563094 0.826393i \(-0.309611\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 451.926i 0.472232i
\(958\) 0 0
\(959\) 419.662i 0.437604i
\(960\) 0 0
\(961\) −150.142 −0.156235
\(962\) 0 0
\(963\) 115.181 0.119606
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1823.70 1.88593 0.942967 0.332886i \(-0.108022\pi\)
0.942967 + 0.332886i \(0.108022\pi\)
\(968\) 0 0
\(969\) −1812.32 −1.87030
\(970\) 0 0
\(971\) 731.769i 0.753624i 0.926290 + 0.376812i \(0.122980\pi\)
−0.926290 + 0.376812i \(0.877020\pi\)
\(972\) 0 0
\(973\) 1046.75i 1.07579i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 382.708i − 0.391717i −0.980632 0.195859i \(-0.937251\pi\)
0.980632 0.195859i \(-0.0627493\pi\)
\(978\) 0 0
\(979\) − 295.301i − 0.301635i
\(980\) 0 0
\(981\) −470.112 −0.479217
\(982\) 0 0
\(983\) −649.146 −0.660372 −0.330186 0.943916i \(-0.607111\pi\)
−0.330186 + 0.943916i \(0.607111\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −616.136 −0.624251
\(988\) 0 0
\(989\) 567.150 0.573458
\(990\) 0 0
\(991\) 702.986i 0.709370i 0.934986 + 0.354685i \(0.115412\pi\)
−0.934986 + 0.354685i \(0.884588\pi\)
\(992\) 0 0
\(993\) − 343.305i − 0.345725i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1221.41i − 1.22508i −0.790439 0.612541i \(-0.790147\pi\)
0.790439 0.612541i \(-0.209853\pi\)
\(998\) 0 0
\(999\) − 54.9078i − 0.0549628i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.3.j.d.799.8 8
4.3 odd 2 2400.3.j.j.799.1 8
5.2 odd 4 480.3.e.a.31.4 8
5.3 odd 4 2400.3.e.g.1951.6 8
5.4 even 2 2400.3.j.j.799.2 8
15.2 even 4 1440.3.e.e.991.4 8
20.3 even 4 2400.3.e.g.1951.3 8
20.7 even 4 480.3.e.a.31.7 yes 8
20.19 odd 2 inner 2400.3.j.d.799.7 8
40.27 even 4 960.3.e.d.511.1 8
40.37 odd 4 960.3.e.d.511.6 8
60.47 odd 4 1440.3.e.e.991.1 8
120.77 even 4 2880.3.e.n.2431.8 8
120.107 odd 4 2880.3.e.n.2431.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.3.e.a.31.4 8 5.2 odd 4
480.3.e.a.31.7 yes 8 20.7 even 4
960.3.e.d.511.1 8 40.27 even 4
960.3.e.d.511.6 8 40.37 odd 4
1440.3.e.e.991.1 8 60.47 odd 4
1440.3.e.e.991.4 8 15.2 even 4
2400.3.e.g.1951.3 8 20.3 even 4
2400.3.e.g.1951.6 8 5.3 odd 4
2400.3.j.d.799.7 8 20.19 odd 2 inner
2400.3.j.d.799.8 8 1.1 even 1 trivial
2400.3.j.j.799.1 8 4.3 odd 2
2400.3.j.j.799.2 8 5.4 even 2
2880.3.e.n.2431.5 8 120.107 odd 4
2880.3.e.n.2431.8 8 120.77 even 4