Properties

Label 2400.3.j.d.799.6
Level $2400$
Weight $3$
Character 2400.799
Analytic conductor $65.395$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,3,Mod(799,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.799"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2400.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-16,0,24,0,0,0,0,0,0,0,0,0,0,0,96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(65.3952634465\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: no (minimal twist has level 480)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.6
Root \(-1.40126 + 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 2400.799
Dual form 2400.3.j.d.799.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{3} +0.456067 q^{7} +3.00000 q^{9} +12.6624i q^{11} +11.2261i q^{13} -33.6463i q^{17} +22.7219i q^{19} +0.789932 q^{21} +27.1581 q^{23} +5.19615 q^{27} -1.41641 q^{29} -39.9748i q^{31} +21.9319i q^{33} +45.4952i q^{37} +19.4442i q^{39} +48.6355 q^{41} -18.8961 q^{43} +4.48288 q^{47} -48.7920 q^{49} -58.2771i q^{51} +42.6769i q^{53} +39.3554i q^{57} +67.0825i q^{59} +11.2605 q^{61} +1.36820 q^{63} -23.6033 q^{67} +47.0392 q^{69} +98.9583i q^{71} +31.9784i q^{73} +5.77491i q^{77} +68.1003i q^{79} +9.00000 q^{81} -67.5883 q^{83} -2.45329 q^{87} -167.081 q^{89} +5.11987i q^{91} -69.2384i q^{93} -10.5744i q^{97} +37.9872i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{7} + 24 q^{9} + 96 q^{21} - 16 q^{23} + 96 q^{29} + 112 q^{41} - 128 q^{43} - 272 q^{47} + 184 q^{49} + 80 q^{61} - 48 q^{63} + 320 q^{67} + 144 q^{69} + 72 q^{81} - 320 q^{83} + 48 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0.456067 0.0651525 0.0325762 0.999469i \(-0.489629\pi\)
0.0325762 + 0.999469i \(0.489629\pi\)
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 12.6624i 1.15113i 0.817757 + 0.575564i \(0.195217\pi\)
−0.817757 + 0.575564i \(0.804783\pi\)
\(12\) 0 0
\(13\) 11.2261i 0.863549i 0.901982 + 0.431774i \(0.142112\pi\)
−0.901982 + 0.431774i \(0.857888\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 33.6463i − 1.97919i −0.143872 0.989596i \(-0.545955\pi\)
0.143872 0.989596i \(-0.454045\pi\)
\(18\) 0 0
\(19\) 22.7219i 1.19589i 0.801538 + 0.597944i \(0.204015\pi\)
−0.801538 + 0.597944i \(0.795985\pi\)
\(20\) 0 0
\(21\) 0.789932 0.0376158
\(22\) 0 0
\(23\) 27.1581 1.18079 0.590393 0.807116i \(-0.298973\pi\)
0.590393 + 0.807116i \(0.298973\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615 0.192450
\(28\) 0 0
\(29\) −1.41641 −0.0488417 −0.0244208 0.999702i \(-0.507774\pi\)
−0.0244208 + 0.999702i \(0.507774\pi\)
\(30\) 0 0
\(31\) − 39.9748i − 1.28951i −0.764389 0.644755i \(-0.776959\pi\)
0.764389 0.644755i \(-0.223041\pi\)
\(32\) 0 0
\(33\) 21.9319i 0.664604i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 45.4952i 1.22960i 0.788683 + 0.614800i \(0.210763\pi\)
−0.788683 + 0.614800i \(0.789237\pi\)
\(38\) 0 0
\(39\) 19.4442i 0.498570i
\(40\) 0 0
\(41\) 48.6355 1.18623 0.593115 0.805117i \(-0.297898\pi\)
0.593115 + 0.805117i \(0.297898\pi\)
\(42\) 0 0
\(43\) −18.8961 −0.439443 −0.219722 0.975563i \(-0.570515\pi\)
−0.219722 + 0.975563i \(0.570515\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.48288 0.0953805 0.0476902 0.998862i \(-0.484814\pi\)
0.0476902 + 0.998862i \(0.484814\pi\)
\(48\) 0 0
\(49\) −48.7920 −0.995755
\(50\) 0 0
\(51\) − 58.2771i − 1.14269i
\(52\) 0 0
\(53\) 42.6769i 0.805225i 0.915370 + 0.402613i \(0.131898\pi\)
−0.915370 + 0.402613i \(0.868102\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 39.3554i 0.690446i
\(58\) 0 0
\(59\) 67.0825i 1.13699i 0.822686 + 0.568496i \(0.192475\pi\)
−0.822686 + 0.568496i \(0.807525\pi\)
\(60\) 0 0
\(61\) 11.2605 0.184599 0.0922995 0.995731i \(-0.470578\pi\)
0.0922995 + 0.995731i \(0.470578\pi\)
\(62\) 0 0
\(63\) 1.36820 0.0217175
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −23.6033 −0.352287 −0.176144 0.984364i \(-0.556362\pi\)
−0.176144 + 0.984364i \(0.556362\pi\)
\(68\) 0 0
\(69\) 47.0392 0.681727
\(70\) 0 0
\(71\) 98.9583i 1.39378i 0.717179 + 0.696889i \(0.245433\pi\)
−0.717179 + 0.696889i \(0.754567\pi\)
\(72\) 0 0
\(73\) 31.9784i 0.438060i 0.975718 + 0.219030i \(0.0702893\pi\)
−0.975718 + 0.219030i \(0.929711\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.77491i 0.0749988i
\(78\) 0 0
\(79\) 68.1003i 0.862029i 0.902345 + 0.431015i \(0.141844\pi\)
−0.902345 + 0.431015i \(0.858156\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) −67.5883 −0.814317 −0.407159 0.913357i \(-0.633480\pi\)
−0.407159 + 0.913357i \(0.633480\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.45329 −0.0281987
\(88\) 0 0
\(89\) −167.081 −1.87731 −0.938655 0.344857i \(-0.887927\pi\)
−0.938655 + 0.344857i \(0.887927\pi\)
\(90\) 0 0
\(91\) 5.11987i 0.0562623i
\(92\) 0 0
\(93\) − 69.2384i − 0.744499i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 10.5744i − 0.109014i −0.998513 0.0545071i \(-0.982641\pi\)
0.998513 0.0545071i \(-0.0173587\pi\)
\(98\) 0 0
\(99\) 37.9872i 0.383709i
\(100\) 0 0
\(101\) −10.1097 −0.100096 −0.0500480 0.998747i \(-0.515937\pi\)
−0.0500480 + 0.998747i \(0.515937\pi\)
\(102\) 0 0
\(103\) 81.2417 0.788754 0.394377 0.918949i \(-0.370960\pi\)
0.394377 + 0.918949i \(0.370960\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 154.027 1.43950 0.719752 0.694231i \(-0.244256\pi\)
0.719752 + 0.694231i \(0.244256\pi\)
\(108\) 0 0
\(109\) 73.2784 0.672279 0.336139 0.941812i \(-0.390879\pi\)
0.336139 + 0.941812i \(0.390879\pi\)
\(110\) 0 0
\(111\) 78.8000i 0.709910i
\(112\) 0 0
\(113\) 138.985i 1.22996i 0.788544 + 0.614978i \(0.210835\pi\)
−0.788544 + 0.614978i \(0.789165\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 33.6784i 0.287850i
\(118\) 0 0
\(119\) − 15.3450i − 0.128949i
\(120\) 0 0
\(121\) −39.3365 −0.325095
\(122\) 0 0
\(123\) 84.2391 0.684871
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 214.913 1.69223 0.846113 0.533004i \(-0.178937\pi\)
0.846113 + 0.533004i \(0.178937\pi\)
\(128\) 0 0
\(129\) −32.7289 −0.253713
\(130\) 0 0
\(131\) − 64.2819i − 0.490701i −0.969434 0.245351i \(-0.921097\pi\)
0.969434 0.245351i \(-0.0789031\pi\)
\(132\) 0 0
\(133\) 10.3627i 0.0779150i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 180.562i 1.31797i 0.752156 + 0.658985i \(0.229014\pi\)
−0.752156 + 0.658985i \(0.770986\pi\)
\(138\) 0 0
\(139\) − 68.0034i − 0.489233i −0.969620 0.244617i \(-0.921338\pi\)
0.969620 0.244617i \(-0.0786621\pi\)
\(140\) 0 0
\(141\) 7.76458 0.0550679
\(142\) 0 0
\(143\) −142.150 −0.994055
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −84.5102 −0.574900
\(148\) 0 0
\(149\) 85.1441 0.571437 0.285719 0.958314i \(-0.407768\pi\)
0.285719 + 0.958314i \(0.407768\pi\)
\(150\) 0 0
\(151\) − 150.599i − 0.997344i −0.866791 0.498672i \(-0.833821\pi\)
0.866791 0.498672i \(-0.166179\pi\)
\(152\) 0 0
\(153\) − 100.939i − 0.659731i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 205.592i 1.30950i 0.755845 + 0.654751i \(0.227227\pi\)
−0.755845 + 0.654751i \(0.772773\pi\)
\(158\) 0 0
\(159\) 73.9186i 0.464897i
\(160\) 0 0
\(161\) 12.3859 0.0769311
\(162\) 0 0
\(163\) 22.0922 0.135535 0.0677675 0.997701i \(-0.478412\pi\)
0.0677675 + 0.997701i \(0.478412\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 263.402 1.57726 0.788629 0.614870i \(-0.210792\pi\)
0.788629 + 0.614870i \(0.210792\pi\)
\(168\) 0 0
\(169\) 42.9738 0.254283
\(170\) 0 0
\(171\) 68.1656i 0.398629i
\(172\) 0 0
\(173\) 136.479i 0.788895i 0.918918 + 0.394448i \(0.129064\pi\)
−0.918918 + 0.394448i \(0.870936\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 116.190i 0.656443i
\(178\) 0 0
\(179\) 64.7130i 0.361525i 0.983527 + 0.180763i \(0.0578565\pi\)
−0.983527 + 0.180763i \(0.942143\pi\)
\(180\) 0 0
\(181\) −184.848 −1.02126 −0.510629 0.859801i \(-0.670587\pi\)
−0.510629 + 0.859801i \(0.670587\pi\)
\(182\) 0 0
\(183\) 19.5038 0.106578
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 426.043 2.27830
\(188\) 0 0
\(189\) 2.36980 0.0125386
\(190\) 0 0
\(191\) 145.803i 0.763364i 0.924294 + 0.381682i \(0.124655\pi\)
−0.924294 + 0.381682i \(0.875345\pi\)
\(192\) 0 0
\(193\) − 282.448i − 1.46346i −0.681594 0.731731i \(-0.738713\pi\)
0.681594 0.731731i \(-0.261287\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 199.521i 1.01280i 0.862300 + 0.506398i \(0.169023\pi\)
−0.862300 + 0.506398i \(0.830977\pi\)
\(198\) 0 0
\(199\) 327.579i 1.64612i 0.567952 + 0.823062i \(0.307736\pi\)
−0.567952 + 0.823062i \(0.692264\pi\)
\(200\) 0 0
\(201\) −40.8820 −0.203393
\(202\) 0 0
\(203\) −0.645977 −0.00318215
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 81.4742 0.393595
\(208\) 0 0
\(209\) −287.713 −1.37662
\(210\) 0 0
\(211\) − 69.7171i − 0.330413i −0.986259 0.165206i \(-0.947171\pi\)
0.986259 0.165206i \(-0.0528290\pi\)
\(212\) 0 0
\(213\) 171.401i 0.804699i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 18.2312i − 0.0840148i
\(218\) 0 0
\(219\) 55.3882i 0.252914i
\(220\) 0 0
\(221\) 377.718 1.70913
\(222\) 0 0
\(223\) 372.487 1.67034 0.835172 0.549989i \(-0.185368\pi\)
0.835172 + 0.549989i \(0.185368\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −85.6029 −0.377105 −0.188553 0.982063i \(-0.560380\pi\)
−0.188553 + 0.982063i \(0.560380\pi\)
\(228\) 0 0
\(229\) −425.900 −1.85983 −0.929913 0.367780i \(-0.880118\pi\)
−0.929913 + 0.367780i \(0.880118\pi\)
\(230\) 0 0
\(231\) 10.0024i 0.0433006i
\(232\) 0 0
\(233\) − 303.947i − 1.30450i −0.758006 0.652248i \(-0.773826\pi\)
0.758006 0.652248i \(-0.226174\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 117.953i 0.497693i
\(238\) 0 0
\(239\) − 277.656i − 1.16174i −0.813997 0.580870i \(-0.802713\pi\)
0.813997 0.580870i \(-0.197287\pi\)
\(240\) 0 0
\(241\) −342.452 −1.42096 −0.710482 0.703715i \(-0.751523\pi\)
−0.710482 + 0.703715i \(0.751523\pi\)
\(242\) 0 0
\(243\) 15.5885 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −255.079 −1.03271
\(248\) 0 0
\(249\) −117.066 −0.470146
\(250\) 0 0
\(251\) 60.0413i 0.239208i 0.992822 + 0.119604i \(0.0381625\pi\)
−0.992822 + 0.119604i \(0.961837\pi\)
\(252\) 0 0
\(253\) 343.887i 1.35924i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 309.309i 1.20354i 0.798671 + 0.601768i \(0.205537\pi\)
−0.798671 + 0.601768i \(0.794463\pi\)
\(258\) 0 0
\(259\) 20.7489i 0.0801115i
\(260\) 0 0
\(261\) −4.24922 −0.0162806
\(262\) 0 0
\(263\) 297.586 1.13150 0.565752 0.824575i \(-0.308586\pi\)
0.565752 + 0.824575i \(0.308586\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −289.392 −1.08387
\(268\) 0 0
\(269\) −118.485 −0.440466 −0.220233 0.975447i \(-0.570682\pi\)
−0.220233 + 0.975447i \(0.570682\pi\)
\(270\) 0 0
\(271\) 50.5786i 0.186637i 0.995636 + 0.0933185i \(0.0297475\pi\)
−0.995636 + 0.0933185i \(0.970253\pi\)
\(272\) 0 0
\(273\) 8.86788i 0.0324831i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 316.313i − 1.14192i −0.820977 0.570961i \(-0.806571\pi\)
0.820977 0.570961i \(-0.193429\pi\)
\(278\) 0 0
\(279\) − 119.924i − 0.429837i
\(280\) 0 0
\(281\) 35.8840 0.127701 0.0638506 0.997959i \(-0.479662\pi\)
0.0638506 + 0.997959i \(0.479662\pi\)
\(282\) 0 0
\(283\) −473.282 −1.67237 −0.836187 0.548445i \(-0.815220\pi\)
−0.836187 + 0.548445i \(0.815220\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 22.1810 0.0772859
\(288\) 0 0
\(289\) −843.072 −2.91720
\(290\) 0 0
\(291\) − 18.3154i − 0.0629394i
\(292\) 0 0
\(293\) 215.927i 0.736951i 0.929637 + 0.368475i \(0.120120\pi\)
−0.929637 + 0.368475i \(0.879880\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 65.7958i 0.221535i
\(298\) 0 0
\(299\) 304.880i 1.01967i
\(300\) 0 0
\(301\) −8.61788 −0.0286308
\(302\) 0 0
\(303\) −17.5105 −0.0577905
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 332.823 1.08411 0.542057 0.840342i \(-0.317646\pi\)
0.542057 + 0.840342i \(0.317646\pi\)
\(308\) 0 0
\(309\) 140.715 0.455388
\(310\) 0 0
\(311\) − 308.920i − 0.993313i −0.867947 0.496657i \(-0.834561\pi\)
0.867947 0.496657i \(-0.165439\pi\)
\(312\) 0 0
\(313\) 132.594i 0.423623i 0.977311 + 0.211811i \(0.0679363\pi\)
−0.977311 + 0.211811i \(0.932064\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 116.149i − 0.366399i −0.983076 0.183200i \(-0.941355\pi\)
0.983076 0.183200i \(-0.0586455\pi\)
\(318\) 0 0
\(319\) − 17.9351i − 0.0562230i
\(320\) 0 0
\(321\) 266.782 0.831098
\(322\) 0 0
\(323\) 764.506 2.36689
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 126.922 0.388140
\(328\) 0 0
\(329\) 2.04450 0.00621427
\(330\) 0 0
\(331\) − 548.146i − 1.65603i −0.560705 0.828016i \(-0.689470\pi\)
0.560705 0.828016i \(-0.310530\pi\)
\(332\) 0 0
\(333\) 136.486i 0.409867i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 488.435i 1.44936i 0.689084 + 0.724682i \(0.258013\pi\)
−0.689084 + 0.724682i \(0.741987\pi\)
\(338\) 0 0
\(339\) 240.729i 0.710115i
\(340\) 0 0
\(341\) 506.177 1.48439
\(342\) 0 0
\(343\) −44.5997 −0.130028
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 254.751 0.734154 0.367077 0.930191i \(-0.380359\pi\)
0.367077 + 0.930191i \(0.380359\pi\)
\(348\) 0 0
\(349\) 637.823 1.82757 0.913787 0.406194i \(-0.133144\pi\)
0.913787 + 0.406194i \(0.133144\pi\)
\(350\) 0 0
\(351\) 58.3327i 0.166190i
\(352\) 0 0
\(353\) − 322.849i − 0.914585i −0.889316 0.457293i \(-0.848819\pi\)
0.889316 0.457293i \(-0.151181\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 26.5783i − 0.0744489i
\(358\) 0 0
\(359\) 504.941i 1.40652i 0.710933 + 0.703260i \(0.248273\pi\)
−0.710933 + 0.703260i \(0.751727\pi\)
\(360\) 0 0
\(361\) −155.283 −0.430147
\(362\) 0 0
\(363\) −68.1329 −0.187694
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 346.691 0.944662 0.472331 0.881421i \(-0.343413\pi\)
0.472331 + 0.881421i \(0.343413\pi\)
\(368\) 0 0
\(369\) 145.906 0.395410
\(370\) 0 0
\(371\) 19.4636i 0.0524624i
\(372\) 0 0
\(373\) 482.244i 1.29288i 0.762966 + 0.646439i \(0.223743\pi\)
−0.762966 + 0.646439i \(0.776257\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 15.9008i − 0.0421772i
\(378\) 0 0
\(379\) − 519.758i − 1.37139i −0.727888 0.685697i \(-0.759498\pi\)
0.727888 0.685697i \(-0.240502\pi\)
\(380\) 0 0
\(381\) 372.240 0.977007
\(382\) 0 0
\(383\) −244.680 −0.638851 −0.319425 0.947611i \(-0.603490\pi\)
−0.319425 + 0.947611i \(0.603490\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −56.6882 −0.146481
\(388\) 0 0
\(389\) 189.155 0.486260 0.243130 0.969994i \(-0.421826\pi\)
0.243130 + 0.969994i \(0.421826\pi\)
\(390\) 0 0
\(391\) − 913.768i − 2.33700i
\(392\) 0 0
\(393\) − 111.339i − 0.283307i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 668.580i − 1.68408i −0.539415 0.842040i \(-0.681354\pi\)
0.539415 0.842040i \(-0.318646\pi\)
\(398\) 0 0
\(399\) 17.9487i 0.0449843i
\(400\) 0 0
\(401\) −440.649 −1.09887 −0.549437 0.835535i \(-0.685158\pi\)
−0.549437 + 0.835535i \(0.685158\pi\)
\(402\) 0 0
\(403\) 448.763 1.11356
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −576.079 −1.41543
\(408\) 0 0
\(409\) −479.570 −1.17254 −0.586271 0.810115i \(-0.699405\pi\)
−0.586271 + 0.810115i \(0.699405\pi\)
\(410\) 0 0
\(411\) 312.742i 0.760930i
\(412\) 0 0
\(413\) 30.5942i 0.0740779i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 117.785i − 0.282459i
\(418\) 0 0
\(419\) 751.523i 1.79361i 0.442424 + 0.896806i \(0.354118\pi\)
−0.442424 + 0.896806i \(0.645882\pi\)
\(420\) 0 0
\(421\) 398.042 0.945469 0.472734 0.881205i \(-0.343267\pi\)
0.472734 + 0.881205i \(0.343267\pi\)
\(422\) 0 0
\(423\) 13.4486 0.0317935
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 5.13556 0.0120271
\(428\) 0 0
\(429\) −246.211 −0.573918
\(430\) 0 0
\(431\) 645.575i 1.49785i 0.662652 + 0.748927i \(0.269431\pi\)
−0.662652 + 0.748927i \(0.730569\pi\)
\(432\) 0 0
\(433\) − 315.231i − 0.728016i −0.931396 0.364008i \(-0.881408\pi\)
0.931396 0.364008i \(-0.118592\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 617.082i 1.41209i
\(438\) 0 0
\(439\) − 213.497i − 0.486326i −0.969985 0.243163i \(-0.921815\pi\)
0.969985 0.243163i \(-0.0781849\pi\)
\(440\) 0 0
\(441\) −146.376 −0.331918
\(442\) 0 0
\(443\) 162.016 0.365725 0.182862 0.983139i \(-0.441464\pi\)
0.182862 + 0.983139i \(0.441464\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 147.474 0.329919
\(448\) 0 0
\(449\) −39.4184 −0.0877916 −0.0438958 0.999036i \(-0.513977\pi\)
−0.0438958 + 0.999036i \(0.513977\pi\)
\(450\) 0 0
\(451\) 615.842i 1.36550i
\(452\) 0 0
\(453\) − 260.845i − 0.575817i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 604.930i − 1.32370i −0.749637 0.661849i \(-0.769772\pi\)
0.749637 0.661849i \(-0.230228\pi\)
\(458\) 0 0
\(459\) − 174.831i − 0.380896i
\(460\) 0 0
\(461\) −832.683 −1.80625 −0.903127 0.429373i \(-0.858735\pi\)
−0.903127 + 0.429373i \(0.858735\pi\)
\(462\) 0 0
\(463\) −88.3867 −0.190900 −0.0954500 0.995434i \(-0.530429\pi\)
−0.0954500 + 0.995434i \(0.530429\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −466.635 −0.999217 −0.499609 0.866251i \(-0.666523\pi\)
−0.499609 + 0.866251i \(0.666523\pi\)
\(468\) 0 0
\(469\) −10.7647 −0.0229524
\(470\) 0 0
\(471\) 356.096i 0.756041i
\(472\) 0 0
\(473\) − 239.270i − 0.505856i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 128.031i 0.268408i
\(478\) 0 0
\(479\) 165.351i 0.345200i 0.984992 + 0.172600i \(0.0552168\pi\)
−0.984992 + 0.172600i \(0.944783\pi\)
\(480\) 0 0
\(481\) −510.736 −1.06182
\(482\) 0 0
\(483\) 21.4530 0.0444162
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 923.214 1.89572 0.947858 0.318693i \(-0.103244\pi\)
0.947858 + 0.318693i \(0.103244\pi\)
\(488\) 0 0
\(489\) 38.2648 0.0782512
\(490\) 0 0
\(491\) − 9.31638i − 0.0189743i −0.999955 0.00948715i \(-0.996980\pi\)
0.999955 0.00948715i \(-0.00301990\pi\)
\(492\) 0 0
\(493\) 47.6568i 0.0966670i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 45.1316i 0.0908081i
\(498\) 0 0
\(499\) − 194.696i − 0.390173i −0.980786 0.195086i \(-0.937501\pi\)
0.980786 0.195086i \(-0.0624987\pi\)
\(500\) 0 0
\(501\) 456.226 0.910630
\(502\) 0 0
\(503\) −635.801 −1.26402 −0.632009 0.774961i \(-0.717769\pi\)
−0.632009 + 0.774961i \(0.717769\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 74.4329 0.146810
\(508\) 0 0
\(509\) 755.390 1.48407 0.742033 0.670363i \(-0.233862\pi\)
0.742033 + 0.670363i \(0.233862\pi\)
\(510\) 0 0
\(511\) 14.5843i 0.0285407i
\(512\) 0 0
\(513\) 118.066i 0.230149i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 56.7641i 0.109795i
\(518\) 0 0
\(519\) 236.388i 0.455469i
\(520\) 0 0
\(521\) −133.729 −0.256677 −0.128339 0.991730i \(-0.540964\pi\)
−0.128339 + 0.991730i \(0.540964\pi\)
\(522\) 0 0
\(523\) −600.534 −1.14825 −0.574124 0.818768i \(-0.694657\pi\)
−0.574124 + 0.818768i \(0.694657\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1345.00 −2.55219
\(528\) 0 0
\(529\) 208.561 0.394255
\(530\) 0 0
\(531\) 201.248i 0.378997i
\(532\) 0 0
\(533\) 545.988i 1.02437i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 112.086i 0.208727i
\(538\) 0 0
\(539\) − 617.824i − 1.14624i
\(540\) 0 0
\(541\) −424.315 −0.784317 −0.392158 0.919898i \(-0.628271\pi\)
−0.392158 + 0.919898i \(0.628271\pi\)
\(542\) 0 0
\(543\) −320.166 −0.589624
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.30220 0.0170059 0.00850293 0.999964i \(-0.497293\pi\)
0.00850293 + 0.999964i \(0.497293\pi\)
\(548\) 0 0
\(549\) 33.7816 0.0615330
\(550\) 0 0
\(551\) − 32.1834i − 0.0584091i
\(552\) 0 0
\(553\) 31.0583i 0.0561633i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 147.599i − 0.264989i −0.991184 0.132495i \(-0.957701\pi\)
0.991184 0.132495i \(-0.0422987\pi\)
\(558\) 0 0
\(559\) − 212.130i − 0.379481i
\(560\) 0 0
\(561\) 737.928 1.31538
\(562\) 0 0
\(563\) −745.746 −1.32459 −0.662297 0.749242i \(-0.730418\pi\)
−0.662297 + 0.749242i \(0.730418\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 4.10461 0.00723916
\(568\) 0 0
\(569\) 371.156 0.652296 0.326148 0.945319i \(-0.394249\pi\)
0.326148 + 0.945319i \(0.394249\pi\)
\(570\) 0 0
\(571\) 56.1196i 0.0982830i 0.998792 + 0.0491415i \(0.0156485\pi\)
−0.998792 + 0.0491415i \(0.984351\pi\)
\(572\) 0 0
\(573\) 252.537i 0.440728i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 204.806i − 0.354950i −0.984125 0.177475i \(-0.943207\pi\)
0.984125 0.177475i \(-0.0567930\pi\)
\(578\) 0 0
\(579\) − 489.214i − 0.844930i
\(580\) 0 0
\(581\) −30.8248 −0.0530548
\(582\) 0 0
\(583\) −540.393 −0.926917
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 564.490 0.961653 0.480826 0.876816i \(-0.340337\pi\)
0.480826 + 0.876816i \(0.340337\pi\)
\(588\) 0 0
\(589\) 908.302 1.54211
\(590\) 0 0
\(591\) 345.580i 0.584738i
\(592\) 0 0
\(593\) − 243.931i − 0.411351i −0.978620 0.205675i \(-0.934061\pi\)
0.978620 0.205675i \(-0.0659391\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 567.383i 0.950390i
\(598\) 0 0
\(599\) − 757.177i − 1.26407i −0.774941 0.632034i \(-0.782220\pi\)
0.774941 0.632034i \(-0.217780\pi\)
\(600\) 0 0
\(601\) −291.181 −0.484495 −0.242247 0.970215i \(-0.577885\pi\)
−0.242247 + 0.970215i \(0.577885\pi\)
\(602\) 0 0
\(603\) −70.8098 −0.117429
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 121.521 0.200199 0.100099 0.994977i \(-0.468084\pi\)
0.100099 + 0.994977i \(0.468084\pi\)
\(608\) 0 0
\(609\) −1.11887 −0.00183722
\(610\) 0 0
\(611\) 50.3255i 0.0823657i
\(612\) 0 0
\(613\) − 129.079i − 0.210569i −0.994442 0.105285i \(-0.966425\pi\)
0.994442 0.105285i \(-0.0335754\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 203.843i 0.330378i 0.986262 + 0.165189i \(0.0528234\pi\)
−0.986262 + 0.165189i \(0.947177\pi\)
\(618\) 0 0
\(619\) − 488.699i − 0.789498i −0.918789 0.394749i \(-0.870832\pi\)
0.918789 0.394749i \(-0.129168\pi\)
\(620\) 0 0
\(621\) 141.117 0.227242
\(622\) 0 0
\(623\) −76.2000 −0.122311
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −498.334 −0.794792
\(628\) 0 0
\(629\) 1530.74 2.43362
\(630\) 0 0
\(631\) − 745.667i − 1.18172i −0.806773 0.590861i \(-0.798788\pi\)
0.806773 0.590861i \(-0.201212\pi\)
\(632\) 0 0
\(633\) − 120.754i − 0.190764i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 547.746i − 0.859883i
\(638\) 0 0
\(639\) 296.875i 0.464593i
\(640\) 0 0
\(641\) 1099.03 1.71456 0.857282 0.514848i \(-0.172152\pi\)
0.857282 + 0.514848i \(0.172152\pi\)
\(642\) 0 0
\(643\) 270.257 0.420307 0.210153 0.977668i \(-0.432604\pi\)
0.210153 + 0.977668i \(0.432604\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −433.409 −0.669875 −0.334937 0.942240i \(-0.608715\pi\)
−0.334937 + 0.942240i \(0.608715\pi\)
\(648\) 0 0
\(649\) −849.426 −1.30882
\(650\) 0 0
\(651\) − 31.5774i − 0.0485060i
\(652\) 0 0
\(653\) − 373.983i − 0.572715i −0.958123 0.286357i \(-0.907556\pi\)
0.958123 0.286357i \(-0.0924444\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 95.9351i 0.146020i
\(658\) 0 0
\(659\) 307.739i 0.466978i 0.972359 + 0.233489i \(0.0750143\pi\)
−0.972359 + 0.233489i \(0.924986\pi\)
\(660\) 0 0
\(661\) −994.768 −1.50494 −0.752472 0.658624i \(-0.771139\pi\)
−0.752472 + 0.658624i \(0.771139\pi\)
\(662\) 0 0
\(663\) 654.226 0.986767
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −38.4669 −0.0576715
\(668\) 0 0
\(669\) 645.166 0.964373
\(670\) 0 0
\(671\) 142.586i 0.212497i
\(672\) 0 0
\(673\) − 2.40845i − 0.00357867i −0.999998 0.00178934i \(-0.999430\pi\)
0.999998 0.00178934i \(-0.000569564\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 257.587i 0.380483i 0.981737 + 0.190242i \(0.0609272\pi\)
−0.981737 + 0.190242i \(0.939073\pi\)
\(678\) 0 0
\(679\) − 4.82263i − 0.00710254i
\(680\) 0 0
\(681\) −148.269 −0.217722
\(682\) 0 0
\(683\) 1101.45 1.61267 0.806334 0.591461i \(-0.201448\pi\)
0.806334 + 0.591461i \(0.201448\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −737.680 −1.07377
\(688\) 0 0
\(689\) −479.097 −0.695352
\(690\) 0 0
\(691\) − 569.738i − 0.824512i −0.911068 0.412256i \(-0.864741\pi\)
0.911068 0.412256i \(-0.135259\pi\)
\(692\) 0 0
\(693\) 17.3247i 0.0249996i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1636.40i − 2.34778i
\(698\) 0 0
\(699\) − 526.452i − 0.753151i
\(700\) 0 0
\(701\) 829.418 1.18319 0.591596 0.806234i \(-0.298498\pi\)
0.591596 + 0.806234i \(0.298498\pi\)
\(702\) 0 0
\(703\) −1033.74 −1.47046
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.61070 −0.00652150
\(708\) 0 0
\(709\) 201.355 0.283998 0.141999 0.989867i \(-0.454647\pi\)
0.141999 + 0.989867i \(0.454647\pi\)
\(710\) 0 0
\(711\) 204.301i 0.287343i
\(712\) 0 0
\(713\) − 1085.64i − 1.52264i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 480.914i − 0.670731i
\(718\) 0 0
\(719\) − 703.851i − 0.978930i −0.872023 0.489465i \(-0.837192\pi\)
0.872023 0.489465i \(-0.162808\pi\)
\(720\) 0 0
\(721\) 37.0517 0.0513893
\(722\) 0 0
\(723\) −593.145 −0.820394
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 510.680 0.702448 0.351224 0.936291i \(-0.385766\pi\)
0.351224 + 0.936291i \(0.385766\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 635.782i 0.869743i
\(732\) 0 0
\(733\) − 784.518i − 1.07028i −0.844762 0.535142i \(-0.820258\pi\)
0.844762 0.535142i \(-0.179742\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 298.874i − 0.405528i
\(738\) 0 0
\(739\) 211.762i 0.286552i 0.989683 + 0.143276i \(0.0457637\pi\)
−0.989683 + 0.143276i \(0.954236\pi\)
\(740\) 0 0
\(741\) −441.809 −0.596234
\(742\) 0 0
\(743\) 538.981 0.725412 0.362706 0.931904i \(-0.381853\pi\)
0.362706 + 0.931904i \(0.381853\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −202.765 −0.271439
\(748\) 0 0
\(749\) 70.2466 0.0937872
\(750\) 0 0
\(751\) 157.900i 0.210253i 0.994459 + 0.105127i \(0.0335248\pi\)
−0.994459 + 0.105127i \(0.966475\pi\)
\(752\) 0 0
\(753\) 103.995i 0.138107i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 1508.92i − 1.99328i −0.0818854 0.996642i \(-0.526094\pi\)
0.0818854 0.996642i \(-0.473906\pi\)
\(758\) 0 0
\(759\) 595.629i 0.784755i
\(760\) 0 0
\(761\) 283.109 0.372022 0.186011 0.982548i \(-0.440444\pi\)
0.186011 + 0.982548i \(0.440444\pi\)
\(762\) 0 0
\(763\) 33.4199 0.0438006
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −753.078 −0.981849
\(768\) 0 0
\(769\) 931.659 1.21152 0.605760 0.795647i \(-0.292869\pi\)
0.605760 + 0.795647i \(0.292869\pi\)
\(770\) 0 0
\(771\) 535.739i 0.694862i
\(772\) 0 0
\(773\) − 604.742i − 0.782331i −0.920320 0.391166i \(-0.872072\pi\)
0.920320 0.391166i \(-0.127928\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 35.9381i 0.0462524i
\(778\) 0 0
\(779\) 1105.09i 1.41860i
\(780\) 0 0
\(781\) −1253.05 −1.60442
\(782\) 0 0
\(783\) −7.35987 −0.00939958
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −1357.83 −1.72533 −0.862663 0.505779i \(-0.831205\pi\)
−0.862663 + 0.505779i \(0.831205\pi\)
\(788\) 0 0
\(789\) 515.433 0.653274
\(790\) 0 0
\(791\) 63.3865i 0.0801346i
\(792\) 0 0
\(793\) 126.412i 0.159410i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 986.238i − 1.23744i −0.785613 0.618719i \(-0.787652\pi\)
0.785613 0.618719i \(-0.212348\pi\)
\(798\) 0 0
\(799\) − 150.832i − 0.188776i
\(800\) 0 0
\(801\) −501.242 −0.625770
\(802\) 0 0
\(803\) −404.923 −0.504263
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −205.223 −0.254303
\(808\) 0 0
\(809\) −36.2371 −0.0447925 −0.0223963 0.999749i \(-0.507130\pi\)
−0.0223963 + 0.999749i \(0.507130\pi\)
\(810\) 0 0
\(811\) − 1174.15i − 1.44778i −0.689915 0.723891i \(-0.742352\pi\)
0.689915 0.723891i \(-0.257648\pi\)
\(812\) 0 0
\(813\) 87.6047i 0.107755i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 429.354i − 0.525525i
\(818\) 0 0
\(819\) 15.3596i 0.0187541i
\(820\) 0 0
\(821\) 429.051 0.522596 0.261298 0.965258i \(-0.415849\pi\)
0.261298 + 0.965258i \(0.415849\pi\)
\(822\) 0 0
\(823\) 639.325 0.776822 0.388411 0.921486i \(-0.373024\pi\)
0.388411 + 0.921486i \(0.373024\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 295.749 0.357616 0.178808 0.983884i \(-0.442776\pi\)
0.178808 + 0.983884i \(0.442776\pi\)
\(828\) 0 0
\(829\) −858.061 −1.03505 −0.517527 0.855667i \(-0.673147\pi\)
−0.517527 + 0.855667i \(0.673147\pi\)
\(830\) 0 0
\(831\) − 547.870i − 0.659289i
\(832\) 0 0
\(833\) 1641.67i 1.97079i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 207.715i − 0.248166i
\(838\) 0 0
\(839\) − 1638.40i − 1.95280i −0.215979 0.976398i \(-0.569294\pi\)
0.215979 0.976398i \(-0.430706\pi\)
\(840\) 0 0
\(841\) −838.994 −0.997614
\(842\) 0 0
\(843\) 62.1529 0.0737283
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −17.9401 −0.0211808
\(848\) 0 0
\(849\) −819.748 −0.965545
\(850\) 0 0
\(851\) 1235.56i 1.45189i
\(852\) 0 0
\(853\) 1109.39i 1.30058i 0.759687 + 0.650289i \(0.225352\pi\)
−0.759687 + 0.650289i \(0.774648\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 482.816i − 0.563380i −0.959506 0.281690i \(-0.909105\pi\)
0.959506 0.281690i \(-0.0908949\pi\)
\(858\) 0 0
\(859\) − 26.3839i − 0.0307147i −0.999882 0.0153573i \(-0.995111\pi\)
0.999882 0.0153573i \(-0.00488859\pi\)
\(860\) 0 0
\(861\) 38.4187 0.0446210
\(862\) 0 0
\(863\) 56.7068 0.0657089 0.0328545 0.999460i \(-0.489540\pi\)
0.0328545 + 0.999460i \(0.489540\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1460.24 −1.68425
\(868\) 0 0
\(869\) −862.314 −0.992306
\(870\) 0 0
\(871\) − 264.973i − 0.304217i
\(872\) 0 0
\(873\) − 31.7231i − 0.0363381i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1000.90i 1.14127i 0.821203 + 0.570636i \(0.193303\pi\)
−0.821203 + 0.570636i \(0.806697\pi\)
\(878\) 0 0
\(879\) 373.996i 0.425479i
\(880\) 0 0
\(881\) 100.129 0.113654 0.0568269 0.998384i \(-0.481902\pi\)
0.0568269 + 0.998384i \(0.481902\pi\)
\(882\) 0 0
\(883\) −832.872 −0.943230 −0.471615 0.881804i \(-0.656329\pi\)
−0.471615 + 0.881804i \(0.656329\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −724.253 −0.816519 −0.408260 0.912866i \(-0.633864\pi\)
−0.408260 + 0.912866i \(0.633864\pi\)
\(888\) 0 0
\(889\) 98.0146 0.110253
\(890\) 0 0
\(891\) 113.962i 0.127903i
\(892\) 0 0
\(893\) 101.859i 0.114064i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 528.068i 0.588705i
\(898\) 0 0
\(899\) 56.6206i 0.0629818i
\(900\) 0 0
\(901\) 1435.92 1.59370
\(902\) 0 0
\(903\) −14.9266 −0.0165300
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1095.96 −1.20833 −0.604165 0.796859i \(-0.706493\pi\)
−0.604165 + 0.796859i \(0.706493\pi\)
\(908\) 0 0
\(909\) −30.3291 −0.0333653
\(910\) 0 0
\(911\) − 617.137i − 0.677428i −0.940889 0.338714i \(-0.890008\pi\)
0.940889 0.338714i \(-0.109992\pi\)
\(912\) 0 0
\(913\) − 855.831i − 0.937383i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 29.3169i − 0.0319704i
\(918\) 0 0
\(919\) − 1740.12i − 1.89349i −0.321981 0.946746i \(-0.604349\pi\)
0.321981 0.946746i \(-0.395651\pi\)
\(920\) 0 0
\(921\) 576.466 0.625913
\(922\) 0 0
\(923\) −1110.92 −1.20360
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 243.725 0.262918
\(928\) 0 0
\(929\) −263.490 −0.283627 −0.141814 0.989893i \(-0.545293\pi\)
−0.141814 + 0.989893i \(0.545293\pi\)
\(930\) 0 0
\(931\) − 1108.65i − 1.19081i
\(932\) 0 0
\(933\) − 535.066i − 0.573490i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 819.385i − 0.874477i −0.899346 0.437239i \(-0.855957\pi\)
0.899346 0.437239i \(-0.144043\pi\)
\(938\) 0 0
\(939\) 229.660i 0.244579i
\(940\) 0 0
\(941\) 1644.48 1.74759 0.873794 0.486296i \(-0.161652\pi\)
0.873794 + 0.486296i \(0.161652\pi\)
\(942\) 0 0
\(943\) 1320.85 1.40068
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1010.06 1.06659 0.533296 0.845929i \(-0.320953\pi\)
0.533296 + 0.845929i \(0.320953\pi\)
\(948\) 0 0
\(949\) −358.994 −0.378286
\(950\) 0 0
\(951\) − 201.175i − 0.211541i
\(952\) 0 0
\(953\) 241.305i 0.253205i 0.991954 + 0.126603i \(0.0404073\pi\)
−0.991954 + 0.126603i \(0.959593\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 31.0646i − 0.0324604i
\(958\) 0 0
\(959\) 82.3483i 0.0858690i
\(960\) 0 0
\(961\) −636.986 −0.662837
\(962\) 0 0
\(963\) 462.081 0.479835
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 754.537 0.780286 0.390143 0.920754i \(-0.372425\pi\)
0.390143 + 0.920754i \(0.372425\pi\)
\(968\) 0 0
\(969\) 1324.16 1.36653
\(970\) 0 0
\(971\) − 1800.78i − 1.85456i −0.374368 0.927280i \(-0.622140\pi\)
0.374368 0.927280i \(-0.377860\pi\)
\(972\) 0 0
\(973\) − 31.0141i − 0.0318748i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 435.605i − 0.445860i −0.974834 0.222930i \(-0.928438\pi\)
0.974834 0.222930i \(-0.0715621\pi\)
\(978\) 0 0
\(979\) − 2115.64i − 2.16102i
\(980\) 0 0
\(981\) 219.835 0.224093
\(982\) 0 0
\(983\) −376.746 −0.383262 −0.191631 0.981467i \(-0.561378\pi\)
−0.191631 + 0.981467i \(0.561378\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3.54117 0.00358781
\(988\) 0 0
\(989\) −513.181 −0.518888
\(990\) 0 0
\(991\) 1119.69i 1.12985i 0.825141 + 0.564927i \(0.191096\pi\)
−0.825141 + 0.564927i \(0.808904\pi\)
\(992\) 0 0
\(993\) − 949.417i − 0.956110i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 549.043i 0.550695i 0.961345 + 0.275347i \(0.0887929\pi\)
−0.961345 + 0.275347i \(0.911207\pi\)
\(998\) 0 0
\(999\) 236.400i 0.236637i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.3.j.d.799.6 8
4.3 odd 2 2400.3.j.j.799.3 8
5.2 odd 4 480.3.e.a.31.1 8
5.3 odd 4 2400.3.e.g.1951.8 8
5.4 even 2 2400.3.j.j.799.4 8
15.2 even 4 1440.3.e.e.991.7 8
20.3 even 4 2400.3.e.g.1951.1 8
20.7 even 4 480.3.e.a.31.6 yes 8
20.19 odd 2 inner 2400.3.j.d.799.5 8
40.27 even 4 960.3.e.d.511.4 8
40.37 odd 4 960.3.e.d.511.7 8
60.47 odd 4 1440.3.e.e.991.6 8
120.77 even 4 2880.3.e.n.2431.3 8
120.107 odd 4 2880.3.e.n.2431.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.3.e.a.31.1 8 5.2 odd 4
480.3.e.a.31.6 yes 8 20.7 even 4
960.3.e.d.511.4 8 40.27 even 4
960.3.e.d.511.7 8 40.37 odd 4
1440.3.e.e.991.6 8 60.47 odd 4
1440.3.e.e.991.7 8 15.2 even 4
2400.3.e.g.1951.1 8 20.3 even 4
2400.3.e.g.1951.8 8 5.3 odd 4
2400.3.j.d.799.5 8 20.19 odd 2 inner
2400.3.j.d.799.6 8 1.1 even 1 trivial
2400.3.j.j.799.3 8 4.3 odd 2
2400.3.j.j.799.4 8 5.4 even 2
2880.3.e.n.2431.2 8 120.107 odd 4
2880.3.e.n.2431.3 8 120.77 even 4