Properties

Label 2400.2.k.e.1201.7
Level $2400$
Weight $2$
Character 2400.1201
Analytic conductor $19.164$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,2,Mod(1201,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.1201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.214798336.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 2x^{5} + 9x^{4} - 4x^{3} - 16x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 600)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1201.7
Root \(-1.08003 + 0.912978i\) of defining polynomial
Character \(\chi\) \(=\) 2400.1201
Dual form 2400.2.k.e.1201.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +1.33411 q^{7} -1.00000 q^{9} -2.94418i q^{11} +2.04184i q^{13} -3.61241 q^{17} -5.35964i q^{19} +1.33411i q^{21} +8.59609 q^{23} -1.00000i q^{27} +5.26432i q^{29} +2.08134 q^{31} +2.94418 q^{33} -6.55659i q^{37} -2.04184 q^{39} +7.02786 q^{41} -8.50078i q^{43} +9.97204 q^{47} -5.22015 q^{49} -3.61241i q^{51} +6.12318i q^{53} +5.35964 q^{57} -4.75190i q^{59} -8.51476i q^{61} -1.33411 q^{63} +10.6961i q^{67} +8.59609i q^{69} +2.62405 q^{71} +15.3875 q^{73} -3.92787i q^{77} -10.4450 q^{79} +1.00000 q^{81} +1.52708i q^{83} -5.26432 q^{87} -12.7193 q^{89} +2.72404i q^{91} +2.08134i q^{93} +13.4450 q^{97} +2.94418i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} - 8 q^{9} + 8 q^{23} - 8 q^{31} - 8 q^{57} - 8 q^{63} + 40 q^{71} + 16 q^{73} + 16 q^{79} + 8 q^{81} + 24 q^{87} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.33411 0.504247 0.252123 0.967695i \(-0.418871\pi\)
0.252123 + 0.967695i \(0.418871\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 2.94418i − 0.887705i −0.896100 0.443853i \(-0.853611\pi\)
0.896100 0.443853i \(-0.146389\pi\)
\(12\) 0 0
\(13\) 2.04184i 0.566304i 0.959075 + 0.283152i \(0.0913800\pi\)
−0.959075 + 0.283152i \(0.908620\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.61241 −0.876138 −0.438069 0.898941i \(-0.644337\pi\)
−0.438069 + 0.898941i \(0.644337\pi\)
\(18\) 0 0
\(19\) − 5.35964i − 1.22958i −0.788689 0.614792i \(-0.789240\pi\)
0.788689 0.614792i \(-0.210760\pi\)
\(20\) 0 0
\(21\) 1.33411i 0.291127i
\(22\) 0 0
\(23\) 8.59609 1.79241 0.896205 0.443641i \(-0.146313\pi\)
0.896205 + 0.443641i \(0.146313\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 5.26432i 0.977559i 0.872407 + 0.488780i \(0.162558\pi\)
−0.872407 + 0.488780i \(0.837442\pi\)
\(30\) 0 0
\(31\) 2.08134 0.373820 0.186910 0.982377i \(-0.440153\pi\)
0.186910 + 0.982377i \(0.440153\pi\)
\(32\) 0 0
\(33\) 2.94418 0.512517
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 6.55659i − 1.07790i −0.842339 0.538949i \(-0.818822\pi\)
0.842339 0.538949i \(-0.181178\pi\)
\(38\) 0 0
\(39\) −2.04184 −0.326956
\(40\) 0 0
\(41\) 7.02786 1.09757 0.548784 0.835964i \(-0.315091\pi\)
0.548784 + 0.835964i \(0.315091\pi\)
\(42\) 0 0
\(43\) − 8.50078i − 1.29636i −0.761489 0.648178i \(-0.775531\pi\)
0.761489 0.648178i \(-0.224469\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.97204 1.45457 0.727286 0.686334i \(-0.240781\pi\)
0.727286 + 0.686334i \(0.240781\pi\)
\(48\) 0 0
\(49\) −5.22015 −0.745735
\(50\) 0 0
\(51\) − 3.61241i − 0.505838i
\(52\) 0 0
\(53\) 6.12318i 0.841083i 0.907273 + 0.420541i \(0.138160\pi\)
−0.907273 + 0.420541i \(0.861840\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.35964 0.709901
\(58\) 0 0
\(59\) − 4.75190i − 0.618644i −0.950957 0.309322i \(-0.899898\pi\)
0.950957 0.309322i \(-0.100102\pi\)
\(60\) 0 0
\(61\) − 8.51476i − 1.09020i −0.838370 0.545101i \(-0.816491\pi\)
0.838370 0.545101i \(-0.183509\pi\)
\(62\) 0 0
\(63\) −1.33411 −0.168082
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.6961i 1.30673i 0.757041 + 0.653367i \(0.226644\pi\)
−0.757041 + 0.653367i \(0.773356\pi\)
\(68\) 0 0
\(69\) 8.59609i 1.03485i
\(70\) 0 0
\(71\) 2.62405 0.311418 0.155709 0.987803i \(-0.450234\pi\)
0.155709 + 0.987803i \(0.450234\pi\)
\(72\) 0 0
\(73\) 15.3875 1.80097 0.900485 0.434887i \(-0.143212\pi\)
0.900485 + 0.434887i \(0.143212\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 3.92787i − 0.447622i
\(78\) 0 0
\(79\) −10.4450 −1.17515 −0.587575 0.809170i \(-0.699917\pi\)
−0.587575 + 0.809170i \(0.699917\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 1.52708i 0.167619i 0.996482 + 0.0838095i \(0.0267087\pi\)
−0.996482 + 0.0838095i \(0.973291\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −5.26432 −0.564394
\(88\) 0 0
\(89\) −12.7193 −1.34824 −0.674120 0.738622i \(-0.735477\pi\)
−0.674120 + 0.738622i \(0.735477\pi\)
\(90\) 0 0
\(91\) 2.72404i 0.285557i
\(92\) 0 0
\(93\) 2.08134i 0.215825i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 13.4450 1.36513 0.682565 0.730825i \(-0.260865\pi\)
0.682565 + 0.730825i \(0.260865\pi\)
\(98\) 0 0
\(99\) 2.94418i 0.295902i
\(100\) 0 0
\(101\) 10.1232i 1.00729i 0.863910 + 0.503647i \(0.168009\pi\)
−0.863910 + 0.503647i \(0.831991\pi\)
\(102\) 0 0
\(103\) 10.7472 1.05896 0.529478 0.848324i \(-0.322388\pi\)
0.529478 + 0.848324i \(0.322388\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 4.86518i − 0.470335i −0.971955 0.235167i \(-0.924436\pi\)
0.971955 0.235167i \(-0.0755638\pi\)
\(108\) 0 0
\(109\) − 15.4573i − 1.48054i −0.672310 0.740270i \(-0.734698\pi\)
0.672310 0.740270i \(-0.265302\pi\)
\(110\) 0 0
\(111\) 6.55659 0.622324
\(112\) 0 0
\(113\) 9.88837 0.930220 0.465110 0.885253i \(-0.346015\pi\)
0.465110 + 0.885253i \(0.346015\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 2.04184i − 0.188768i
\(118\) 0 0
\(119\) −4.81936 −0.441790
\(120\) 0 0
\(121\) 2.33178 0.211980
\(122\) 0 0
\(123\) 7.02786i 0.633681i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.75190 −0.776605 −0.388303 0.921532i \(-0.626938\pi\)
−0.388303 + 0.921532i \(0.626938\pi\)
\(128\) 0 0
\(129\) 8.50078 0.748452
\(130\) 0 0
\(131\) 0.471266i 0.0411747i 0.999788 + 0.0205874i \(0.00655362\pi\)
−0.999788 + 0.0205874i \(0.993446\pi\)
\(132\) 0 0
\(133\) − 7.15035i − 0.620014i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.30382 −0.111393 −0.0556964 0.998448i \(-0.517738\pi\)
−0.0556964 + 0.998448i \(0.517738\pi\)
\(138\) 0 0
\(139\) − 8.74723i − 0.741930i −0.928647 0.370965i \(-0.879027\pi\)
0.928647 0.370965i \(-0.120973\pi\)
\(140\) 0 0
\(141\) 9.97204i 0.839798i
\(142\) 0 0
\(143\) 6.01155 0.502711
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 5.22015i − 0.430550i
\(148\) 0 0
\(149\) 15.1411i 1.24041i 0.784439 + 0.620205i \(0.212951\pi\)
−0.784439 + 0.620205i \(0.787049\pi\)
\(150\) 0 0
\(151\) 23.2782 1.89435 0.947176 0.320713i \(-0.103922\pi\)
0.947176 + 0.320713i \(0.103922\pi\)
\(152\) 0 0
\(153\) 3.61241 0.292046
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 21.8976i 1.74762i 0.486270 + 0.873809i \(0.338357\pi\)
−0.486270 + 0.873809i \(0.661643\pi\)
\(158\) 0 0
\(159\) −6.12318 −0.485599
\(160\) 0 0
\(161\) 11.4682 0.903817
\(162\) 0 0
\(163\) − 11.1643i − 0.874458i −0.899350 0.437229i \(-0.855960\pi\)
0.899350 0.437229i \(-0.144040\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.0952 0.781192 0.390596 0.920562i \(-0.372269\pi\)
0.390596 + 0.920562i \(0.372269\pi\)
\(168\) 0 0
\(169\) 8.83090 0.679300
\(170\) 0 0
\(171\) 5.35964i 0.409862i
\(172\) 0 0
\(173\) − 13.8162i − 1.05043i −0.850970 0.525215i \(-0.823985\pi\)
0.850970 0.525215i \(-0.176015\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.75190 0.357174
\(178\) 0 0
\(179\) 21.9441i 1.64018i 0.572236 + 0.820089i \(0.306076\pi\)
−0.572236 + 0.820089i \(0.693924\pi\)
\(180\) 0 0
\(181\) − 1.93021i − 0.143471i −0.997424 0.0717356i \(-0.977146\pi\)
0.997424 0.0717356i \(-0.0228538\pi\)
\(182\) 0 0
\(183\) 8.51476 0.629429
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 10.6356i 0.777752i
\(188\) 0 0
\(189\) − 1.33411i − 0.0970423i
\(190\) 0 0
\(191\) −12.1232 −0.877202 −0.438601 0.898682i \(-0.644526\pi\)
−0.438601 + 0.898682i \(0.644526\pi\)
\(192\) 0 0
\(193\) 1.27431 0.0917267 0.0458634 0.998948i \(-0.485396\pi\)
0.0458634 + 0.998948i \(0.485396\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.30849i 0.235720i 0.993030 + 0.117860i \(0.0376034\pi\)
−0.993030 + 0.117860i \(0.962397\pi\)
\(198\) 0 0
\(199\) −9.02718 −0.639920 −0.319960 0.947431i \(-0.603669\pi\)
−0.319960 + 0.947431i \(0.603669\pi\)
\(200\) 0 0
\(201\) −10.6961 −0.754443
\(202\) 0 0
\(203\) 7.02319i 0.492931i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −8.59609 −0.597470
\(208\) 0 0
\(209\) −15.7798 −1.09151
\(210\) 0 0
\(211\) − 6.61241i − 0.455217i −0.973753 0.227608i \(-0.926909\pi\)
0.973753 0.227608i \(-0.0730906\pi\)
\(212\) 0 0
\(213\) 2.62405i 0.179797i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.77674 0.188497
\(218\) 0 0
\(219\) 15.3875i 1.03979i
\(220\) 0 0
\(221\) − 7.37595i − 0.496160i
\(222\) 0 0
\(223\) 0.833237 0.0557976 0.0278988 0.999611i \(-0.491118\pi\)
0.0278988 + 0.999611i \(0.491118\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 10.9999i − 0.730089i −0.930990 0.365045i \(-0.881054\pi\)
0.930990 0.365045i \(-0.118946\pi\)
\(228\) 0 0
\(229\) − 15.2061i − 1.00485i −0.864622 0.502423i \(-0.832442\pi\)
0.864622 0.502423i \(-0.167558\pi\)
\(230\) 0 0
\(231\) 3.92787 0.258435
\(232\) 0 0
\(233\) −2.47594 −0.162204 −0.0811020 0.996706i \(-0.525844\pi\)
−0.0811020 + 0.996706i \(0.525844\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 10.4450i − 0.678473i
\(238\) 0 0
\(239\) 21.0737 1.36314 0.681572 0.731751i \(-0.261297\pi\)
0.681572 + 0.731751i \(0.261297\pi\)
\(240\) 0 0
\(241\) −6.10852 −0.393484 −0.196742 0.980455i \(-0.563036\pi\)
−0.196742 + 0.980455i \(0.563036\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.9435 0.696318
\(248\) 0 0
\(249\) −1.52708 −0.0967748
\(250\) 0 0
\(251\) 22.5286i 1.42199i 0.703195 + 0.710997i \(0.251756\pi\)
−0.703195 + 0.710997i \(0.748244\pi\)
\(252\) 0 0
\(253\) − 25.3085i − 1.59113i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.5286 −0.906271 −0.453136 0.891442i \(-0.649695\pi\)
−0.453136 + 0.891442i \(0.649695\pi\)
\(258\) 0 0
\(259\) − 8.74723i − 0.543526i
\(260\) 0 0
\(261\) − 5.26432i − 0.325853i
\(262\) 0 0
\(263\) 5.29694 0.326624 0.163312 0.986575i \(-0.447782\pi\)
0.163312 + 0.986575i \(0.447782\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 12.7193i − 0.778407i
\(268\) 0 0
\(269\) − 27.0737i − 1.65071i −0.564613 0.825356i \(-0.690975\pi\)
0.564613 0.825356i \(-0.309025\pi\)
\(270\) 0 0
\(271\) −15.8604 −0.963451 −0.481726 0.876322i \(-0.659990\pi\)
−0.481726 + 0.876322i \(0.659990\pi\)
\(272\) 0 0
\(273\) −2.72404 −0.164866
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.98592i 0.599996i 0.953940 + 0.299998i \(0.0969860\pi\)
−0.953940 + 0.299998i \(0.903014\pi\)
\(278\) 0 0
\(279\) −2.08134 −0.124607
\(280\) 0 0
\(281\) 13.4218 0.800676 0.400338 0.916368i \(-0.368893\pi\)
0.400338 + 0.916368i \(0.368893\pi\)
\(282\) 0 0
\(283\) 3.83722i 0.228099i 0.993475 + 0.114050i \(0.0363823\pi\)
−0.993475 + 0.114050i \(0.963618\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.37595 0.553445
\(288\) 0 0
\(289\) −3.95051 −0.232383
\(290\) 0 0
\(291\) 13.4450i 0.788158i
\(292\) 0 0
\(293\) 26.4450i 1.54493i 0.635057 + 0.772466i \(0.280977\pi\)
−0.635057 + 0.772466i \(0.719023\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −2.94418 −0.170839
\(298\) 0 0
\(299\) 17.5518i 1.01505i
\(300\) 0 0
\(301\) − 11.3410i − 0.653684i
\(302\) 0 0
\(303\) −10.1232 −0.581561
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.27596i 0.0728230i 0.999337 + 0.0364115i \(0.0115927\pi\)
−0.999337 + 0.0364115i \(0.988407\pi\)
\(308\) 0 0
\(309\) 10.7472i 0.611388i
\(310\) 0 0
\(311\) −2.44496 −0.138641 −0.0693205 0.997594i \(-0.522083\pi\)
−0.0693205 + 0.997594i \(0.522083\pi\)
\(312\) 0 0
\(313\) −22.8325 −1.29057 −0.645283 0.763943i \(-0.723261\pi\)
−0.645283 + 0.763943i \(0.723261\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.11163i 0.118601i 0.998240 + 0.0593005i \(0.0188870\pi\)
−0.998240 + 0.0593005i \(0.981113\pi\)
\(318\) 0 0
\(319\) 15.4991 0.867784
\(320\) 0 0
\(321\) 4.86518 0.271548
\(322\) 0 0
\(323\) 19.3612i 1.07729i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 15.4573 0.854790
\(328\) 0 0
\(329\) 13.3038 0.733463
\(330\) 0 0
\(331\) − 23.2248i − 1.27655i −0.769808 0.638276i \(-0.779648\pi\)
0.769808 0.638276i \(-0.220352\pi\)
\(332\) 0 0
\(333\) 6.55659i 0.359299i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −12.8884 −0.702074 −0.351037 0.936362i \(-0.614171\pi\)
−0.351037 + 0.936362i \(0.614171\pi\)
\(338\) 0 0
\(339\) 9.88837i 0.537063i
\(340\) 0 0
\(341\) − 6.12785i − 0.331841i
\(342\) 0 0
\(343\) −16.3030 −0.880281
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 6.79827i − 0.364951i −0.983210 0.182475i \(-0.941589\pi\)
0.983210 0.182475i \(-0.0584109\pi\)
\(348\) 0 0
\(349\) − 34.6076i − 1.85250i −0.376904 0.926252i \(-0.623011\pi\)
0.376904 0.926252i \(-0.376989\pi\)
\(350\) 0 0
\(351\) 2.04184 0.108985
\(352\) 0 0
\(353\) −12.2433 −0.651647 −0.325823 0.945431i \(-0.605642\pi\)
−0.325823 + 0.945431i \(0.605642\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 4.81936i − 0.255067i
\(358\) 0 0
\(359\) 2.01622 0.106412 0.0532059 0.998584i \(-0.483056\pi\)
0.0532059 + 0.998584i \(0.483056\pi\)
\(360\) 0 0
\(361\) −9.72569 −0.511878
\(362\) 0 0
\(363\) 2.33178i 0.122387i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −13.4131 −0.700159 −0.350079 0.936720i \(-0.613845\pi\)
−0.350079 + 0.936720i \(0.613845\pi\)
\(368\) 0 0
\(369\) −7.02786 −0.365856
\(370\) 0 0
\(371\) 8.16900i 0.424113i
\(372\) 0 0
\(373\) − 10.0976i − 0.522832i −0.965226 0.261416i \(-0.915811\pi\)
0.965226 0.261416i \(-0.0841894\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.7489 −0.553595
\(378\) 0 0
\(379\) − 18.2775i − 0.938853i −0.882972 0.469426i \(-0.844461\pi\)
0.882972 0.469426i \(-0.155539\pi\)
\(380\) 0 0
\(381\) − 8.75190i − 0.448373i
\(382\) 0 0
\(383\) −11.7734 −0.601594 −0.300797 0.953688i \(-0.597253\pi\)
−0.300797 + 0.953688i \(0.597253\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.50078i 0.432119i
\(388\) 0 0
\(389\) 33.4270i 1.69482i 0.530942 + 0.847408i \(0.321838\pi\)
−0.530942 + 0.847408i \(0.678162\pi\)
\(390\) 0 0
\(391\) −31.0526 −1.57040
\(392\) 0 0
\(393\) −0.471266 −0.0237722
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 39.0434i 1.95953i 0.200147 + 0.979766i \(0.435858\pi\)
−0.200147 + 0.979766i \(0.564142\pi\)
\(398\) 0 0
\(399\) 7.15035 0.357965
\(400\) 0 0
\(401\) −24.6140 −1.22916 −0.614581 0.788853i \(-0.710675\pi\)
−0.614581 + 0.788853i \(0.710675\pi\)
\(402\) 0 0
\(403\) 4.24976i 0.211695i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −19.3038 −0.956855
\(408\) 0 0
\(409\) −14.5024 −0.717099 −0.358550 0.933511i \(-0.616729\pi\)
−0.358550 + 0.933511i \(0.616729\pi\)
\(410\) 0 0
\(411\) − 1.30382i − 0.0643127i
\(412\) 0 0
\(413\) − 6.33956i − 0.311949i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8.74723 0.428354
\(418\) 0 0
\(419\) − 12.6419i − 0.617598i −0.951127 0.308799i \(-0.900073\pi\)
0.951127 0.308799i \(-0.0999271\pi\)
\(420\) 0 0
\(421\) 16.8389i 0.820677i 0.911933 + 0.410338i \(0.134589\pi\)
−0.911933 + 0.410338i \(0.865411\pi\)
\(422\) 0 0
\(423\) −9.97204 −0.484857
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 11.3596i − 0.549731i
\(428\) 0 0
\(429\) 6.01155i 0.290240i
\(430\) 0 0
\(431\) −5.98845 −0.288454 −0.144227 0.989545i \(-0.546070\pi\)
−0.144227 + 0.989545i \(0.546070\pi\)
\(432\) 0 0
\(433\) 2.22482 0.106918 0.0534589 0.998570i \(-0.482975\pi\)
0.0534589 + 0.998570i \(0.482975\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 46.0719i − 2.20392i
\(438\) 0 0
\(439\) 2.30460 0.109993 0.0549963 0.998487i \(-0.482485\pi\)
0.0549963 + 0.998487i \(0.482485\pi\)
\(440\) 0 0
\(441\) 5.22015 0.248578
\(442\) 0 0
\(443\) − 22.1347i − 1.05165i −0.850592 0.525826i \(-0.823756\pi\)
0.850592 0.525826i \(-0.176244\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −15.1411 −0.716151
\(448\) 0 0
\(449\) 21.5861 1.01871 0.509356 0.860556i \(-0.329884\pi\)
0.509356 + 0.860556i \(0.329884\pi\)
\(450\) 0 0
\(451\) − 20.6913i − 0.974316i
\(452\) 0 0
\(453\) 23.2782i 1.09371i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.50088 0.116986 0.0584930 0.998288i \(-0.481370\pi\)
0.0584930 + 0.998288i \(0.481370\pi\)
\(458\) 0 0
\(459\) 3.61241i 0.168613i
\(460\) 0 0
\(461\) 2.59609i 0.120912i 0.998171 + 0.0604561i \(0.0192555\pi\)
−0.998171 + 0.0604561i \(0.980744\pi\)
\(462\) 0 0
\(463\) −27.8604 −1.29478 −0.647392 0.762158i \(-0.724140\pi\)
−0.647392 + 0.762158i \(0.724140\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 5.75200i − 0.266171i −0.991105 0.133085i \(-0.957512\pi\)
0.991105 0.133085i \(-0.0424884\pi\)
\(468\) 0 0
\(469\) 14.2698i 0.658917i
\(470\) 0 0
\(471\) −21.8976 −1.00899
\(472\) 0 0
\(473\) −25.0279 −1.15078
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 6.12318i − 0.280361i
\(478\) 0 0
\(479\) 12.5473 0.573299 0.286649 0.958036i \(-0.407459\pi\)
0.286649 + 0.958036i \(0.407459\pi\)
\(480\) 0 0
\(481\) 13.3875 0.610417
\(482\) 0 0
\(483\) 11.4682i 0.521819i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.60530 −0.389944 −0.194972 0.980809i \(-0.562462\pi\)
−0.194972 + 0.980809i \(0.562462\pi\)
\(488\) 0 0
\(489\) 11.1643 0.504868
\(490\) 0 0
\(491\) − 36.8866i − 1.66467i −0.554273 0.832335i \(-0.687004\pi\)
0.554273 0.832335i \(-0.312996\pi\)
\(492\) 0 0
\(493\) − 19.0169i − 0.856477i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3.50078 0.157031
\(498\) 0 0
\(499\) − 36.2496i − 1.62275i −0.584524 0.811377i \(-0.698719\pi\)
0.584524 0.811377i \(-0.301281\pi\)
\(500\) 0 0
\(501\) 10.0952i 0.451021i
\(502\) 0 0
\(503\) −23.3527 −1.04124 −0.520622 0.853787i \(-0.674300\pi\)
−0.520622 + 0.853787i \(0.674300\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 8.83090i 0.392194i
\(508\) 0 0
\(509\) − 3.35506i − 0.148711i −0.997232 0.0743553i \(-0.976310\pi\)
0.997232 0.0743553i \(-0.0236899\pi\)
\(510\) 0 0
\(511\) 20.5286 0.908133
\(512\) 0 0
\(513\) −5.35964 −0.236634
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 29.3595i − 1.29123i
\(518\) 0 0
\(519\) 13.8162 0.606466
\(520\) 0 0
\(521\) −33.6029 −1.47217 −0.736084 0.676890i \(-0.763327\pi\)
−0.736084 + 0.676890i \(0.763327\pi\)
\(522\) 0 0
\(523\) − 0.965721i − 0.0422280i −0.999777 0.0211140i \(-0.993279\pi\)
0.999777 0.0211140i \(-0.00672130\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.51865 −0.327517
\(528\) 0 0
\(529\) 50.8928 2.21273
\(530\) 0 0
\(531\) 4.75190i 0.206215i
\(532\) 0 0
\(533\) 14.3497i 0.621556i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −21.9441 −0.946957
\(538\) 0 0
\(539\) 15.3691i 0.661993i
\(540\) 0 0
\(541\) − 6.34877i − 0.272955i −0.990643 0.136478i \(-0.956422\pi\)
0.990643 0.136478i \(-0.0435781\pi\)
\(542\) 0 0
\(543\) 1.93021 0.0828331
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2.07433i 0.0886921i 0.999016 + 0.0443460i \(0.0141204\pi\)
−0.999016 + 0.0443460i \(0.985880\pi\)
\(548\) 0 0
\(549\) 8.51476i 0.363401i
\(550\) 0 0
\(551\) 28.2148 1.20199
\(552\) 0 0
\(553\) −13.9347 −0.592566
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.6931i 1.17339i 0.809807 + 0.586696i \(0.199572\pi\)
−0.809807 + 0.586696i \(0.800428\pi\)
\(558\) 0 0
\(559\) 17.3572 0.734131
\(560\) 0 0
\(561\) −10.6356 −0.449035
\(562\) 0 0
\(563\) − 3.80771i − 0.160476i −0.996776 0.0802380i \(-0.974432\pi\)
0.996776 0.0802380i \(-0.0255680\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.33411 0.0560274
\(568\) 0 0
\(569\) 38.6371 1.61975 0.809875 0.586603i \(-0.199535\pi\)
0.809875 + 0.586603i \(0.199535\pi\)
\(570\) 0 0
\(571\) 6.24976i 0.261544i 0.991412 + 0.130772i \(0.0417456\pi\)
−0.991412 + 0.130772i \(0.958254\pi\)
\(572\) 0 0
\(573\) − 12.1232i − 0.506453i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.17377 0.0904952 0.0452476 0.998976i \(-0.485592\pi\)
0.0452476 + 0.998976i \(0.485592\pi\)
\(578\) 0 0
\(579\) 1.27431i 0.0529585i
\(580\) 0 0
\(581\) 2.03730i 0.0845213i
\(582\) 0 0
\(583\) 18.0278 0.746634
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 34.1688i 1.41030i 0.709059 + 0.705149i \(0.249120\pi\)
−0.709059 + 0.705149i \(0.750880\pi\)
\(588\) 0 0
\(589\) − 11.1552i − 0.459643i
\(590\) 0 0
\(591\) −3.30849 −0.136093
\(592\) 0 0
\(593\) −12.9952 −0.533650 −0.266825 0.963745i \(-0.585975\pi\)
−0.266825 + 0.963745i \(0.585975\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 9.02718i − 0.369458i
\(598\) 0 0
\(599\) −47.2572 −1.93088 −0.965439 0.260628i \(-0.916071\pi\)
−0.965439 + 0.260628i \(0.916071\pi\)
\(600\) 0 0
\(601\) −23.5007 −0.958613 −0.479306 0.877648i \(-0.659112\pi\)
−0.479306 + 0.877648i \(0.659112\pi\)
\(602\) 0 0
\(603\) − 10.6961i − 0.435578i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −0.218591 −0.00887233 −0.00443617 0.999990i \(-0.501412\pi\)
−0.00443617 + 0.999990i \(0.501412\pi\)
\(608\) 0 0
\(609\) −7.02319 −0.284594
\(610\) 0 0
\(611\) 20.3613i 0.823730i
\(612\) 0 0
\(613\) 35.7488i 1.44388i 0.691956 + 0.721940i \(0.256749\pi\)
−0.691956 + 0.721940i \(0.743251\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 33.0836 1.33189 0.665947 0.745999i \(-0.268028\pi\)
0.665947 + 0.745999i \(0.268028\pi\)
\(618\) 0 0
\(619\) − 25.1084i − 1.00919i −0.863355 0.504596i \(-0.831641\pi\)
0.863355 0.504596i \(-0.168359\pi\)
\(620\) 0 0
\(621\) − 8.59609i − 0.344949i
\(622\) 0 0
\(623\) −16.9689 −0.679846
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 15.7798i − 0.630183i
\(628\) 0 0
\(629\) 23.6851i 0.944386i
\(630\) 0 0
\(631\) −23.2829 −0.926876 −0.463438 0.886129i \(-0.653384\pi\)
−0.463438 + 0.886129i \(0.653384\pi\)
\(632\) 0 0
\(633\) 6.61241 0.262820
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 10.6587i − 0.422313i
\(638\) 0 0
\(639\) −2.62405 −0.103806
\(640\) 0 0
\(641\) −38.3021 −1.51284 −0.756420 0.654086i \(-0.773054\pi\)
−0.756420 + 0.654086i \(0.773054\pi\)
\(642\) 0 0
\(643\) − 45.8045i − 1.80635i −0.429269 0.903177i \(-0.641229\pi\)
0.429269 0.903177i \(-0.358771\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −48.1114 −1.89146 −0.945728 0.324960i \(-0.894649\pi\)
−0.945728 + 0.324960i \(0.894649\pi\)
\(648\) 0 0
\(649\) −13.9905 −0.549174
\(650\) 0 0
\(651\) 2.77674i 0.108829i
\(652\) 0 0
\(653\) 38.3331i 1.50009i 0.661386 + 0.750046i \(0.269969\pi\)
−0.661386 + 0.750046i \(0.730031\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −15.3875 −0.600323
\(658\) 0 0
\(659\) − 5.03253i − 0.196040i −0.995184 0.0980198i \(-0.968749\pi\)
0.995184 0.0980198i \(-0.0312508\pi\)
\(660\) 0 0
\(661\) 17.4665i 0.679368i 0.940540 + 0.339684i \(0.110320\pi\)
−0.940540 + 0.339684i \(0.889680\pi\)
\(662\) 0 0
\(663\) 7.37595 0.286458
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 45.2526i 1.75219i
\(668\) 0 0
\(669\) 0.833237i 0.0322148i
\(670\) 0 0
\(671\) −25.0690 −0.967779
\(672\) 0 0
\(673\) −32.4448 −1.25065 −0.625327 0.780363i \(-0.715034\pi\)
−0.625327 + 0.780363i \(0.715034\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 8.07213i − 0.310237i −0.987896 0.155119i \(-0.950424\pi\)
0.987896 0.155119i \(-0.0495760\pi\)
\(678\) 0 0
\(679\) 17.9371 0.688362
\(680\) 0 0
\(681\) 10.9999 0.421517
\(682\) 0 0
\(683\) 36.3380i 1.39043i 0.718799 + 0.695217i \(0.244692\pi\)
−0.718799 + 0.695217i \(0.755308\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 15.2061 0.580148
\(688\) 0 0
\(689\) −12.5025 −0.476308
\(690\) 0 0
\(691\) 15.0016i 0.570686i 0.958425 + 0.285343i \(0.0921075\pi\)
−0.958425 + 0.285343i \(0.907892\pi\)
\(692\) 0 0
\(693\) 3.92787i 0.149207i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −25.3875 −0.961620
\(698\) 0 0
\(699\) − 2.47594i − 0.0936485i
\(700\) 0 0
\(701\) 13.2874i 0.501859i 0.968005 + 0.250929i \(0.0807362\pi\)
−0.968005 + 0.250929i \(0.919264\pi\)
\(702\) 0 0
\(703\) −35.1409 −1.32537
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.5054i 0.507925i
\(708\) 0 0
\(709\) 37.8976i 1.42327i 0.702548 + 0.711637i \(0.252046\pi\)
−0.702548 + 0.711637i \(0.747954\pi\)
\(710\) 0 0
\(711\) 10.4450 0.391717
\(712\) 0 0
\(713\) 17.8914 0.670038
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 21.0737i 0.787011i
\(718\) 0 0
\(719\) 4.17909 0.155854 0.0779269 0.996959i \(-0.475170\pi\)
0.0779269 + 0.996959i \(0.475170\pi\)
\(720\) 0 0
\(721\) 14.3380 0.533975
\(722\) 0 0
\(723\) − 6.10852i − 0.227178i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 26.7727 0.992943 0.496471 0.868053i \(-0.334629\pi\)
0.496471 + 0.868053i \(0.334629\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 30.7083i 1.13579i
\(732\) 0 0
\(733\) − 21.3364i − 0.788080i −0.919093 0.394040i \(-0.871077\pi\)
0.919093 0.394040i \(-0.128923\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 31.4912 1.15999
\(738\) 0 0
\(739\) 13.1038i 0.482033i 0.970521 + 0.241016i \(0.0774807\pi\)
−0.970521 + 0.241016i \(0.922519\pi\)
\(740\) 0 0
\(741\) 10.9435i 0.402020i
\(742\) 0 0
\(743\) −33.3595 −1.22384 −0.611921 0.790919i \(-0.709603\pi\)
−0.611921 + 0.790919i \(0.709603\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 1.52708i − 0.0558730i
\(748\) 0 0
\(749\) − 6.49069i − 0.237165i
\(750\) 0 0
\(751\) 1.92100 0.0700981 0.0350491 0.999386i \(-0.488841\pi\)
0.0350491 + 0.999386i \(0.488841\pi\)
\(752\) 0 0
\(753\) −22.5286 −0.820989
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 13.9908i − 0.508504i −0.967138 0.254252i \(-0.918171\pi\)
0.967138 0.254252i \(-0.0818292\pi\)
\(758\) 0 0
\(759\) 25.3085 0.918640
\(760\) 0 0
\(761\) 25.6618 0.930240 0.465120 0.885248i \(-0.346011\pi\)
0.465120 + 0.885248i \(0.346011\pi\)
\(762\) 0 0
\(763\) − 20.6217i − 0.746557i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.70260 0.350341
\(768\) 0 0
\(769\) −12.3922 −0.446873 −0.223436 0.974719i \(-0.571728\pi\)
−0.223436 + 0.974719i \(0.571728\pi\)
\(770\) 0 0
\(771\) − 14.5286i − 0.523236i
\(772\) 0 0
\(773\) − 38.4843i − 1.38418i −0.721810 0.692091i \(-0.756689\pi\)
0.721810 0.692091i \(-0.243311\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.74723 0.313805
\(778\) 0 0
\(779\) − 37.6668i − 1.34955i
\(780\) 0 0
\(781\) − 7.72569i − 0.276447i
\(782\) 0 0
\(783\) 5.26432 0.188131
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0.389147i 0.0138716i 0.999976 + 0.00693579i \(0.00220775\pi\)
−0.999976 + 0.00693579i \(0.997792\pi\)
\(788\) 0 0
\(789\) 5.29694i 0.188576i
\(790\) 0 0
\(791\) 13.1922 0.469060
\(792\) 0 0
\(793\) 17.3857 0.617386
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.854188i 0.0302569i 0.999886 + 0.0151284i \(0.00481572\pi\)
−0.999886 + 0.0151284i \(0.995184\pi\)
\(798\) 0 0
\(799\) −36.0231 −1.27441
\(800\) 0 0
\(801\) 12.7193 0.449413
\(802\) 0 0
\(803\) − 45.3036i − 1.59873i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 27.0737 0.953039
\(808\) 0 0
\(809\) −10.4107 −0.366020 −0.183010 0.983111i \(-0.558584\pi\)
−0.183010 + 0.983111i \(0.558584\pi\)
\(810\) 0 0
\(811\) 6.08825i 0.213787i 0.994270 + 0.106894i \(0.0340904\pi\)
−0.994270 + 0.106894i \(0.965910\pi\)
\(812\) 0 0
\(813\) − 15.8604i − 0.556249i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −45.5611 −1.59398
\(818\) 0 0
\(819\) − 2.72404i − 0.0951856i
\(820\) 0 0
\(821\) 35.3908i 1.23515i 0.786513 + 0.617574i \(0.211884\pi\)
−0.786513 + 0.617574i \(0.788116\pi\)
\(822\) 0 0
\(823\) 16.2846 0.567646 0.283823 0.958877i \(-0.408397\pi\)
0.283823 + 0.958877i \(0.408397\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 32.1362i − 1.11748i −0.829341 0.558742i \(-0.811284\pi\)
0.829341 0.558742i \(-0.188716\pi\)
\(828\) 0 0
\(829\) − 22.4682i − 0.780355i −0.920740 0.390177i \(-0.872414\pi\)
0.920740 0.390177i \(-0.127586\pi\)
\(830\) 0 0
\(831\) −9.98592 −0.346408
\(832\) 0 0
\(833\) 18.8573 0.653367
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 2.08134i − 0.0719416i
\(838\) 0 0
\(839\) 16.1358 0.557070 0.278535 0.960426i \(-0.410151\pi\)
0.278535 + 0.960426i \(0.410151\pi\)
\(840\) 0 0
\(841\) 1.28695 0.0443777
\(842\) 0 0
\(843\) 13.4218i 0.462270i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.11085 0.106890
\(848\) 0 0
\(849\) −3.83722 −0.131693
\(850\) 0 0
\(851\) − 56.3611i − 1.93203i
\(852\) 0 0
\(853\) 44.6262i 1.52797i 0.645233 + 0.763986i \(0.276760\pi\)
−0.645233 + 0.763986i \(0.723240\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.52553 −0.154589 −0.0772945 0.997008i \(-0.524628\pi\)
−0.0772945 + 0.997008i \(0.524628\pi\)
\(858\) 0 0
\(859\) 42.7783i 1.45958i 0.683673 + 0.729788i \(0.260381\pi\)
−0.683673 + 0.729788i \(0.739619\pi\)
\(860\) 0 0
\(861\) 9.37595i 0.319531i
\(862\) 0 0
\(863\) 23.7734 0.809257 0.404629 0.914481i \(-0.367401\pi\)
0.404629 + 0.914481i \(0.367401\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 3.95051i − 0.134166i
\(868\) 0 0
\(869\) 30.7519i 1.04319i
\(870\) 0 0
\(871\) −21.8397 −0.740009
\(872\) 0 0
\(873\) −13.4450 −0.455043
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 13.1470i 0.443944i 0.975053 + 0.221972i \(0.0712494\pi\)
−0.975053 + 0.221972i \(0.928751\pi\)
\(878\) 0 0
\(879\) −26.4450 −0.891966
\(880\) 0 0
\(881\) 38.9132 1.31102 0.655510 0.755187i \(-0.272454\pi\)
0.655510 + 0.755187i \(0.272454\pi\)
\(882\) 0 0
\(883\) 44.5843i 1.50038i 0.661223 + 0.750190i \(0.270038\pi\)
−0.661223 + 0.750190i \(0.729962\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −32.3240 −1.08533 −0.542667 0.839948i \(-0.682585\pi\)
−0.542667 + 0.839948i \(0.682585\pi\)
\(888\) 0 0
\(889\) −11.6760 −0.391601
\(890\) 0 0
\(891\) − 2.94418i − 0.0986339i
\(892\) 0 0
\(893\) − 53.4465i − 1.78852i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −17.5518 −0.586038
\(898\) 0 0
\(899\) 10.9568i 0.365431i
\(900\) 0 0
\(901\) − 22.1194i − 0.736904i
\(902\) 0 0
\(903\) 11.3410 0.377404
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 14.8309i − 0.492452i −0.969212 0.246226i \(-0.920809\pi\)
0.969212 0.246226i \(-0.0791905\pi\)
\(908\) 0 0
\(909\) − 10.1232i − 0.335765i
\(910\) 0 0
\(911\) −11.6108 −0.384681 −0.192341 0.981328i \(-0.561608\pi\)
−0.192341 + 0.981328i \(0.561608\pi\)
\(912\) 0 0
\(913\) 4.49601 0.148796
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.628722i 0.0207622i
\(918\) 0 0
\(919\) 58.2518 1.92155 0.960775 0.277330i \(-0.0894495\pi\)
0.960775 + 0.277330i \(0.0894495\pi\)
\(920\) 0 0
\(921\) −1.27596 −0.0420444
\(922\) 0 0
\(923\) 5.35789i 0.176357i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −10.7472 −0.352985
\(928\) 0 0
\(929\) 18.4433 0.605105 0.302553 0.953133i \(-0.402161\pi\)
0.302553 + 0.953133i \(0.402161\pi\)
\(930\) 0 0
\(931\) 27.9781i 0.916944i
\(932\) 0 0
\(933\) − 2.44496i − 0.0800445i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 16.1005 0.525982 0.262991 0.964798i \(-0.415291\pi\)
0.262991 + 0.964798i \(0.415291\pi\)
\(938\) 0 0
\(939\) − 22.8325i − 0.745109i
\(940\) 0 0
\(941\) − 32.0974i − 1.04635i −0.852226 0.523173i \(-0.824748\pi\)
0.852226 0.523173i \(-0.175252\pi\)
\(942\) 0 0
\(943\) 60.4121 1.96729
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.10998i 0.133556i 0.997768 + 0.0667782i \(0.0212720\pi\)
−0.997768 + 0.0667782i \(0.978728\pi\)
\(948\) 0 0
\(949\) 31.4188i 1.01990i
\(950\) 0 0
\(951\) −2.11163 −0.0684743
\(952\) 0 0
\(953\) 31.7208 1.02754 0.513769 0.857928i \(-0.328249\pi\)
0.513769 + 0.857928i \(0.328249\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 15.4991i 0.501016i
\(958\) 0 0
\(959\) −1.73944 −0.0561695
\(960\) 0 0
\(961\) −26.6680 −0.860259
\(962\) 0 0
\(963\) 4.86518i 0.156778i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 26.9936 0.868055 0.434027 0.900900i \(-0.357092\pi\)
0.434027 + 0.900900i \(0.357092\pi\)
\(968\) 0 0
\(969\) −19.3612 −0.621971
\(970\) 0 0
\(971\) − 14.0559i − 0.451076i −0.974234 0.225538i \(-0.927586\pi\)
0.974234 0.225538i \(-0.0724139\pi\)
\(972\) 0 0
\(973\) − 11.6698i − 0.374116i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.14251 0.0365520 0.0182760 0.999833i \(-0.494182\pi\)
0.0182760 + 0.999833i \(0.494182\pi\)
\(978\) 0 0
\(979\) 37.4479i 1.19684i
\(980\) 0 0
\(981\) 15.4573i 0.493513i
\(982\) 0 0
\(983\) −6.41720 −0.204677 −0.102338 0.994750i \(-0.532632\pi\)
−0.102338 + 0.994750i \(0.532632\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 13.3038i 0.423465i
\(988\) 0 0
\(989\) − 73.0735i − 2.32360i
\(990\) 0 0
\(991\) 7.39470 0.234900 0.117450 0.993079i \(-0.462528\pi\)
0.117450 + 0.993079i \(0.462528\pi\)
\(992\) 0 0
\(993\) 23.2248 0.737017
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 31.6649i 1.00284i 0.865205 + 0.501419i \(0.167188\pi\)
−0.865205 + 0.501419i \(0.832812\pi\)
\(998\) 0 0
\(999\) −6.55659 −0.207441
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2400.2.k.e.1201.7 8
3.2 odd 2 7200.2.k.s.3601.6 8
4.3 odd 2 600.2.k.e.301.4 yes 8
5.2 odd 4 2400.2.d.h.49.6 8
5.3 odd 4 2400.2.d.g.49.3 8
5.4 even 2 2400.2.k.d.1201.2 8
8.3 odd 2 600.2.k.e.301.3 yes 8
8.5 even 2 inner 2400.2.k.e.1201.3 8
12.11 even 2 1800.2.k.q.901.5 8
15.2 even 4 7200.2.d.t.2449.6 8
15.8 even 4 7200.2.d.s.2449.3 8
15.14 odd 2 7200.2.k.r.3601.4 8
20.3 even 4 600.2.d.h.349.8 8
20.7 even 4 600.2.d.g.349.1 8
20.19 odd 2 600.2.k.d.301.5 8
24.5 odd 2 7200.2.k.s.3601.5 8
24.11 even 2 1800.2.k.q.901.6 8
40.3 even 4 600.2.d.g.349.2 8
40.13 odd 4 2400.2.d.h.49.3 8
40.19 odd 2 600.2.k.d.301.6 yes 8
40.27 even 4 600.2.d.h.349.7 8
40.29 even 2 2400.2.k.d.1201.6 8
40.37 odd 4 2400.2.d.g.49.6 8
60.23 odd 4 1800.2.d.s.1549.1 8
60.47 odd 4 1800.2.d.t.1549.8 8
60.59 even 2 1800.2.k.t.901.4 8
120.29 odd 2 7200.2.k.r.3601.3 8
120.53 even 4 7200.2.d.t.2449.3 8
120.59 even 2 1800.2.k.t.901.3 8
120.77 even 4 7200.2.d.s.2449.6 8
120.83 odd 4 1800.2.d.t.1549.7 8
120.107 odd 4 1800.2.d.s.1549.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.d.g.349.1 8 20.7 even 4
600.2.d.g.349.2 8 40.3 even 4
600.2.d.h.349.7 8 40.27 even 4
600.2.d.h.349.8 8 20.3 even 4
600.2.k.d.301.5 8 20.19 odd 2
600.2.k.d.301.6 yes 8 40.19 odd 2
600.2.k.e.301.3 yes 8 8.3 odd 2
600.2.k.e.301.4 yes 8 4.3 odd 2
1800.2.d.s.1549.1 8 60.23 odd 4
1800.2.d.s.1549.2 8 120.107 odd 4
1800.2.d.t.1549.7 8 120.83 odd 4
1800.2.d.t.1549.8 8 60.47 odd 4
1800.2.k.q.901.5 8 12.11 even 2
1800.2.k.q.901.6 8 24.11 even 2
1800.2.k.t.901.3 8 120.59 even 2
1800.2.k.t.901.4 8 60.59 even 2
2400.2.d.g.49.3 8 5.3 odd 4
2400.2.d.g.49.6 8 40.37 odd 4
2400.2.d.h.49.3 8 40.13 odd 4
2400.2.d.h.49.6 8 5.2 odd 4
2400.2.k.d.1201.2 8 5.4 even 2
2400.2.k.d.1201.6 8 40.29 even 2
2400.2.k.e.1201.3 8 8.5 even 2 inner
2400.2.k.e.1201.7 8 1.1 even 1 trivial
7200.2.d.s.2449.3 8 15.8 even 4
7200.2.d.s.2449.6 8 120.77 even 4
7200.2.d.t.2449.3 8 120.53 even 4
7200.2.d.t.2449.6 8 15.2 even 4
7200.2.k.r.3601.3 8 120.29 odd 2
7200.2.k.r.3601.4 8 15.14 odd 2
7200.2.k.s.3601.5 8 24.5 odd 2
7200.2.k.s.3601.6 8 3.2 odd 2