Properties

Label 2400.2.k.b
Level $2400$
Weight $2$
Character orbit 2400.k
Analytic conductor $19.164$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2400,2,Mod(1201,2400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2400.1201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2400 = 2^{5} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2400.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1640964851\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{3} + 2 q^{7} - q^{9} + 4 i q^{11} + 6 q^{17} + 4 i q^{19} - 2 i q^{21} - 4 q^{23} + i q^{27} + 6 i q^{29} - 10 q^{31} + 4 q^{33} + 4 i q^{37} + 10 q^{41} + 4 i q^{43} - 4 q^{47} - 3 q^{49} - 6 i q^{51} + \cdots - 4 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{7} - 2 q^{9} + 12 q^{17} - 8 q^{23} - 20 q^{31} + 8 q^{33} + 20 q^{41} - 8 q^{47} - 6 q^{49} + 8 q^{57} - 4 q^{63} + 8 q^{71} - 20 q^{73} + 28 q^{79} + 2 q^{81} + 12 q^{87} + 28 q^{89} + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2400\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(1601\) \(1951\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1201.1
1.00000i
1.00000i
0 1.00000i 0 0 0 2.00000 0 −1.00000 0
1201.2 0 1.00000i 0 0 0 2.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2400.2.k.b 2
3.b odd 2 1 7200.2.k.f 2
4.b odd 2 1 600.2.k.a 2
5.b even 2 1 480.2.k.a 2
5.c odd 4 1 2400.2.d.a 2
5.c odd 4 1 2400.2.d.d 2
8.b even 2 1 inner 2400.2.k.b 2
8.d odd 2 1 600.2.k.a 2
12.b even 2 1 1800.2.k.g 2
15.d odd 2 1 1440.2.k.a 2
15.e even 4 1 7200.2.d.e 2
15.e even 4 1 7200.2.d.f 2
20.d odd 2 1 120.2.k.a 2
20.e even 4 1 600.2.d.a 2
20.e even 4 1 600.2.d.d 2
24.f even 2 1 1800.2.k.g 2
24.h odd 2 1 7200.2.k.f 2
40.e odd 2 1 120.2.k.a 2
40.f even 2 1 480.2.k.a 2
40.i odd 4 1 2400.2.d.a 2
40.i odd 4 1 2400.2.d.d 2
40.k even 4 1 600.2.d.a 2
40.k even 4 1 600.2.d.d 2
60.h even 2 1 360.2.k.b 2
60.l odd 4 1 1800.2.d.c 2
60.l odd 4 1 1800.2.d.h 2
80.k odd 4 1 3840.2.a.d 1
80.k odd 4 1 3840.2.a.w 1
80.q even 4 1 3840.2.a.m 1
80.q even 4 1 3840.2.a.r 1
120.i odd 2 1 1440.2.k.a 2
120.m even 2 1 360.2.k.b 2
120.q odd 4 1 1800.2.d.c 2
120.q odd 4 1 1800.2.d.h 2
120.w even 4 1 7200.2.d.e 2
120.w even 4 1 7200.2.d.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.k.a 2 20.d odd 2 1
120.2.k.a 2 40.e odd 2 1
360.2.k.b 2 60.h even 2 1
360.2.k.b 2 120.m even 2 1
480.2.k.a 2 5.b even 2 1
480.2.k.a 2 40.f even 2 1
600.2.d.a 2 20.e even 4 1
600.2.d.a 2 40.k even 4 1
600.2.d.d 2 20.e even 4 1
600.2.d.d 2 40.k even 4 1
600.2.k.a 2 4.b odd 2 1
600.2.k.a 2 8.d odd 2 1
1440.2.k.a 2 15.d odd 2 1
1440.2.k.a 2 120.i odd 2 1
1800.2.d.c 2 60.l odd 4 1
1800.2.d.c 2 120.q odd 4 1
1800.2.d.h 2 60.l odd 4 1
1800.2.d.h 2 120.q odd 4 1
1800.2.k.g 2 12.b even 2 1
1800.2.k.g 2 24.f even 2 1
2400.2.d.a 2 5.c odd 4 1
2400.2.d.a 2 40.i odd 4 1
2400.2.d.d 2 5.c odd 4 1
2400.2.d.d 2 40.i odd 4 1
2400.2.k.b 2 1.a even 1 1 trivial
2400.2.k.b 2 8.b even 2 1 inner
3840.2.a.d 1 80.k odd 4 1
3840.2.a.m 1 80.q even 4 1
3840.2.a.r 1 80.q even 4 1
3840.2.a.w 1 80.k odd 4 1
7200.2.d.e 2 15.e even 4 1
7200.2.d.e 2 120.w even 4 1
7200.2.d.f 2 15.e even 4 1
7200.2.d.f 2 120.w even 4 1
7200.2.k.f 2 3.b odd 2 1
7200.2.k.f 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} - 2 \) acting on \(S_{2}^{\mathrm{new}}(2400, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 16 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( (T + 10)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T - 10)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( (T + 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 100 \) Copy content Toggle raw display
$59$ \( T^{2} + 64 \) Copy content Toggle raw display
$61$ \( T^{2} + 64 \) Copy content Toggle raw display
$67$ \( T^{2} + 144 \) Copy content Toggle raw display
$71$ \( (T - 4)^{2} \) Copy content Toggle raw display
$73$ \( (T + 10)^{2} \) Copy content Toggle raw display
$79$ \( (T - 14)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T - 14)^{2} \) Copy content Toggle raw display
$97$ \( (T - 10)^{2} \) Copy content Toggle raw display
show more
show less