Defining parameters
Level: | \( N \) | \(=\) | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 240.bj (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 60 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(240, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 216 | 48 | 168 |
Cusp forms | 168 | 48 | 120 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(240, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
240.3.bj.a | $8$ | $6.540$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta_{7}+\beta_{6}+\beta_{4})q^{3}+5\beta_1 q^{5}+\cdots\) |
240.3.bj.b | $16$ | $6.540$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{3}+\beta _{6}q^{5}+\beta _{4}q^{7}+(\beta _{7}-\beta _{9}+\cdots)q^{9}+\cdots\) |
240.3.bj.c | $24$ | $6.540$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(240, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(240, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 3}\)