Properties

Label 240.3
Level 240
Weight 3
Dimension 1162
Nonzero newspaces 14
Newform subspaces 31
Sturm bound 9216
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 14 \)
Newform subspaces: \( 31 \)
Sturm bound: \(9216\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(240))\).

Total New Old
Modular forms 3296 1214 2082
Cusp forms 2848 1162 1686
Eisenstein series 448 52 396

Trace form

\( 1162 q - 4 q^{3} - 32 q^{4} - 12 q^{5} - 24 q^{6} - 32 q^{7} + 24 q^{8} + 18 q^{9} + 64 q^{10} - 64 q^{11} + 104 q^{12} + 88 q^{14} - 18 q^{15} - 64 q^{16} - 8 q^{17} + 88 q^{18} + 188 q^{19} - 80 q^{20}+ \cdots - 456 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(240))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
240.3.c \(\chi_{240}(209, \cdot)\) 240.3.c.a 1 1
240.3.c.b 1
240.3.c.c 4
240.3.c.d 4
240.3.c.e 12
240.3.e \(\chi_{240}(31, \cdot)\) 240.3.e.a 4 1
240.3.e.b 4
240.3.g \(\chi_{240}(151, \cdot)\) None 0 1
240.3.i \(\chi_{240}(89, \cdot)\) None 0 1
240.3.j \(\chi_{240}(79, \cdot)\) 240.3.j.a 4 1
240.3.j.b 4
240.3.j.c 4
240.3.l \(\chi_{240}(161, \cdot)\) 240.3.l.a 2 1
240.3.l.b 2
240.3.l.c 4
240.3.l.d 8
240.3.n \(\chi_{240}(41, \cdot)\) None 0 1
240.3.p \(\chi_{240}(199, \cdot)\) None 0 1
240.3.q \(\chi_{240}(19, \cdot)\) 240.3.q.a 96 2
240.3.r \(\chi_{240}(101, \cdot)\) 240.3.r.a 128 2
240.3.u \(\chi_{240}(23, \cdot)\) None 0 2
240.3.x \(\chi_{240}(73, \cdot)\) None 0 2
240.3.z \(\chi_{240}(83, \cdot)\) 240.3.z.a 184 2
240.3.ba \(\chi_{240}(13, \cdot)\) 240.3.ba.a 96 2
240.3.bd \(\chi_{240}(203, \cdot)\) 240.3.bd.a 184 2
240.3.be \(\chi_{240}(133, \cdot)\) 240.3.be.a 96 2
240.3.bg \(\chi_{240}(97, \cdot)\) 240.3.bg.a 4 2
240.3.bg.b 4
240.3.bg.c 4
240.3.bg.d 4
240.3.bg.e 8
240.3.bj \(\chi_{240}(47, \cdot)\) 240.3.bj.a 8 2
240.3.bj.b 16
240.3.bj.c 24
240.3.bm \(\chi_{240}(29, \cdot)\) 240.3.bm.a 8 2
240.3.bm.b 176
240.3.bn \(\chi_{240}(91, \cdot)\) 240.3.bn.a 64 2

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(240))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(240)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 20}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 2}\)