Properties

Label 240.3.bd
Level $240$
Weight $3$
Character orbit 240.bd
Rep. character $\chi_{240}(203,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $184$
Newform subspaces $1$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 240.bd (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 240 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(240, [\chi])\).

Total New Old
Modular forms 200 200 0
Cusp forms 184 184 0
Eisenstein series 16 16 0

Trace form

\( 184 q + 4 q^{4} - 4 q^{6} - 8 q^{7} + 12 q^{10} + 16 q^{12} - 8 q^{13} - 36 q^{15} + 20 q^{16} + 20 q^{18} - 32 q^{19} - 4 q^{21} - 76 q^{22} - 36 q^{24} + 76 q^{28} + 36 q^{30} - 4 q^{33} + 28 q^{34} - 68 q^{36}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(240, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
240.3.bd.a 240.bd 240.ad $184$ $6.540$ None 240.3.z.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{4}]$