Properties

Label 240.2.f.a
Level 240
Weight 2
Character orbit 240.f
Analytic conductor 1.916
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 240.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.91640964851\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{3} + ( -2 + i ) q^{5} + 2 i q^{7} - q^{9} +O(q^{10})\) \( q + i q^{3} + ( -2 + i ) q^{5} + 2 i q^{7} - q^{9} -2 q^{11} + 6 i q^{13} + ( -1 - 2 i ) q^{15} -2 i q^{17} -2 q^{21} + 4 i q^{23} + ( 3 - 4 i ) q^{25} -i q^{27} + 8 q^{31} -2 i q^{33} + ( -2 - 4 i ) q^{35} -2 i q^{37} -6 q^{39} + 2 q^{41} + 4 i q^{43} + ( 2 - i ) q^{45} -8 i q^{47} + 3 q^{49} + 2 q^{51} + 6 i q^{53} + ( 4 - 2 i ) q^{55} + 10 q^{59} + 2 q^{61} -2 i q^{63} + ( -6 - 12 i ) q^{65} -8 i q^{67} -4 q^{69} -12 q^{71} -4 i q^{73} + ( 4 + 3 i ) q^{75} -4 i q^{77} + q^{81} + 4 i q^{83} + ( 2 + 4 i ) q^{85} + 10 q^{89} -12 q^{91} + 8 i q^{93} + 8 i q^{97} + 2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{5} - 2q^{9} + O(q^{10}) \) \( 2q - 4q^{5} - 2q^{9} - 4q^{11} - 2q^{15} - 4q^{21} + 6q^{25} + 16q^{31} - 4q^{35} - 12q^{39} + 4q^{41} + 4q^{45} + 6q^{49} + 4q^{51} + 8q^{55} + 20q^{59} + 4q^{61} - 12q^{65} - 8q^{69} - 24q^{71} + 8q^{75} + 2q^{81} + 4q^{85} + 20q^{89} - 24q^{91} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
0 1.00000i 0 −2.00000 1.00000i 0 2.00000i 0 −1.00000 0
49.2 0 1.00000i 0 −2.00000 + 1.00000i 0 2.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 240.2.f.a 2
3.b odd 2 1 720.2.f.f 2
4.b odd 2 1 30.2.c.a 2
5.b even 2 1 inner 240.2.f.a 2
5.c odd 4 1 1200.2.a.g 1
5.c odd 4 1 1200.2.a.m 1
8.b even 2 1 960.2.f.i 2
8.d odd 2 1 960.2.f.h 2
12.b even 2 1 90.2.c.a 2
15.d odd 2 1 720.2.f.f 2
15.e even 4 1 3600.2.a.o 1
15.e even 4 1 3600.2.a.bg 1
16.e even 4 1 3840.2.d.j 2
16.e even 4 1 3840.2.d.x 2
16.f odd 4 1 3840.2.d.g 2
16.f odd 4 1 3840.2.d.y 2
20.d odd 2 1 30.2.c.a 2
20.e even 4 1 150.2.a.a 1
20.e even 4 1 150.2.a.c 1
24.f even 2 1 2880.2.f.e 2
24.h odd 2 1 2880.2.f.c 2
28.d even 2 1 1470.2.g.g 2
28.f even 6 2 1470.2.n.a 4
28.g odd 6 2 1470.2.n.h 4
36.f odd 6 2 810.2.i.e 4
36.h even 6 2 810.2.i.b 4
40.e odd 2 1 960.2.f.h 2
40.f even 2 1 960.2.f.i 2
40.i odd 4 1 4800.2.a.m 1
40.i odd 4 1 4800.2.a.cj 1
40.k even 4 1 4800.2.a.l 1
40.k even 4 1 4800.2.a.cg 1
60.h even 2 1 90.2.c.a 2
60.l odd 4 1 450.2.a.b 1
60.l odd 4 1 450.2.a.f 1
80.k odd 4 1 3840.2.d.g 2
80.k odd 4 1 3840.2.d.y 2
80.q even 4 1 3840.2.d.j 2
80.q even 4 1 3840.2.d.x 2
120.i odd 2 1 2880.2.f.c 2
120.m even 2 1 2880.2.f.e 2
140.c even 2 1 1470.2.g.g 2
140.j odd 4 1 7350.2.a.bg 1
140.j odd 4 1 7350.2.a.cc 1
140.p odd 6 2 1470.2.n.h 4
140.s even 6 2 1470.2.n.a 4
180.n even 6 2 810.2.i.b 4
180.p odd 6 2 810.2.i.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.2.c.a 2 4.b odd 2 1
30.2.c.a 2 20.d odd 2 1
90.2.c.a 2 12.b even 2 1
90.2.c.a 2 60.h even 2 1
150.2.a.a 1 20.e even 4 1
150.2.a.c 1 20.e even 4 1
240.2.f.a 2 1.a even 1 1 trivial
240.2.f.a 2 5.b even 2 1 inner
450.2.a.b 1 60.l odd 4 1
450.2.a.f 1 60.l odd 4 1
720.2.f.f 2 3.b odd 2 1
720.2.f.f 2 15.d odd 2 1
810.2.i.b 4 36.h even 6 2
810.2.i.b 4 180.n even 6 2
810.2.i.e 4 36.f odd 6 2
810.2.i.e 4 180.p odd 6 2
960.2.f.h 2 8.d odd 2 1
960.2.f.h 2 40.e odd 2 1
960.2.f.i 2 8.b even 2 1
960.2.f.i 2 40.f even 2 1
1200.2.a.g 1 5.c odd 4 1
1200.2.a.m 1 5.c odd 4 1
1470.2.g.g 2 28.d even 2 1
1470.2.g.g 2 140.c even 2 1
1470.2.n.a 4 28.f even 6 2
1470.2.n.a 4 140.s even 6 2
1470.2.n.h 4 28.g odd 6 2
1470.2.n.h 4 140.p odd 6 2
2880.2.f.c 2 24.h odd 2 1
2880.2.f.c 2 120.i odd 2 1
2880.2.f.e 2 24.f even 2 1
2880.2.f.e 2 120.m even 2 1
3600.2.a.o 1 15.e even 4 1
3600.2.a.bg 1 15.e even 4 1
3840.2.d.g 2 16.f odd 4 1
3840.2.d.g 2 80.k odd 4 1
3840.2.d.j 2 16.e even 4 1
3840.2.d.j 2 80.q even 4 1
3840.2.d.x 2 16.e even 4 1
3840.2.d.x 2 80.q even 4 1
3840.2.d.y 2 16.f odd 4 1
3840.2.d.y 2 80.k odd 4 1
4800.2.a.l 1 40.k even 4 1
4800.2.a.m 1 40.i odd 4 1
4800.2.a.cg 1 40.k even 4 1
4800.2.a.cj 1 40.i odd 4 1
7350.2.a.bg 1 140.j odd 4 1
7350.2.a.cc 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(240, [\chi])\):

\( T_{7}^{2} + 4 \)
\( T_{13}^{2} + 36 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T^{2} \)
$5$ \( 1 + 4 T + 5 T^{2} \)
$7$ \( 1 - 10 T^{2} + 49 T^{4} \)
$11$ \( ( 1 + 2 T + 11 T^{2} )^{2} \)
$13$ \( ( 1 - 4 T + 13 T^{2} )( 1 + 4 T + 13 T^{2} ) \)
$17$ \( ( 1 - 8 T + 17 T^{2} )( 1 + 8 T + 17 T^{2} ) \)
$19$ \( ( 1 + 19 T^{2} )^{2} \)
$23$ \( 1 - 30 T^{2} + 529 T^{4} \)
$29$ \( ( 1 + 29 T^{2} )^{2} \)
$31$ \( ( 1 - 8 T + 31 T^{2} )^{2} \)
$37$ \( ( 1 - 12 T + 37 T^{2} )( 1 + 12 T + 37 T^{2} ) \)
$41$ \( ( 1 - 2 T + 41 T^{2} )^{2} \)
$43$ \( 1 - 70 T^{2} + 1849 T^{4} \)
$47$ \( 1 - 30 T^{2} + 2209 T^{4} \)
$53$ \( 1 - 70 T^{2} + 2809 T^{4} \)
$59$ \( ( 1 - 10 T + 59 T^{2} )^{2} \)
$61$ \( ( 1 - 2 T + 61 T^{2} )^{2} \)
$67$ \( 1 - 70 T^{2} + 4489 T^{4} \)
$71$ \( ( 1 + 12 T + 71 T^{2} )^{2} \)
$73$ \( 1 - 130 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 + 79 T^{2} )^{2} \)
$83$ \( 1 - 150 T^{2} + 6889 T^{4} \)
$89$ \( ( 1 - 10 T + 89 T^{2} )^{2} \)
$97$ \( ( 1 - 18 T + 97 T^{2} )( 1 + 18 T + 97 T^{2} ) \)
show more
show less