Properties

Label 24.9.e.a.17.4
Level $24$
Weight $9$
Character 24.17
Analytic conductor $9.777$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24,9,Mod(17,24)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24.17"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 24.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77708664147\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 78x^{6} + 144x^{5} + 2079x^{4} + 936x^{3} - 658x^{2} + 2884x + 30633 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{42}\cdot 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 17.4
Root \(7.73966 - 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 24.17
Dual form 24.9.e.a.17.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.95410 + 80.8484i) q^{3} +404.296i q^{5} -262.245 q^{7} +(-6511.91 - 801.062i) q^{9} -6268.43i q^{11} -43933.9 q^{13} +(-32686.7 - 2002.92i) q^{15} +91180.4i q^{17} -170581. q^{19} +(1299.19 - 21202.1i) q^{21} -234950. i q^{23} +227170. q^{25} +(97025.2 - 522509. i) q^{27} +1.23399e6i q^{29} +1.50803e6 q^{31} +(506792. + 31054.4i) q^{33} -106025. i q^{35} +295815. q^{37} +(217653. - 3.55198e6i) q^{39} +2.45609e6i q^{41} -3.32545e6 q^{43} +(323866. - 2.63274e6i) q^{45} +5.63483e6i q^{47} -5.69603e6 q^{49} +(-7.37179e6 - 451717. i) q^{51} +4.50039e6i q^{53} +2.53430e6 q^{55} +(845078. - 1.37912e7i) q^{57} +9.47475e6i q^{59} -5.61098e6 q^{61} +(1.70772e6 + 210075. i) q^{63} -1.77623e7i q^{65} +3.14398e7 q^{67} +(1.89953e7 + 1.16397e6i) q^{69} +1.69223e7i q^{71} +5.16633e6 q^{73} +(-1.12542e6 + 1.83663e7i) q^{75} +1.64387e6i q^{77} +5.76774e6 q^{79} +(4.17633e7 + 1.04329e7i) q^{81} -4.72276e7i q^{83} -3.68639e7 q^{85} +(-9.97664e7 - 6.11333e6i) q^{87} -6.72340e7i q^{89} +1.15215e7 q^{91} +(-7.47092e6 + 1.21922e8i) q^{93} -6.89654e7i q^{95} -1.36244e8 q^{97} +(-5.02140e6 + 4.08195e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 56 q^{3} + 1584 q^{7} + 328 q^{9} + 25232 q^{13} + 38336 q^{15} + 157936 q^{19} + 30480 q^{21} - 579704 q^{25} - 276040 q^{27} + 805552 q^{31} + 102848 q^{33} - 3985008 q^{37} - 2297104 q^{39} + 6962672 q^{43}+ \cdots - 369701504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.95410 + 80.8484i −0.0611617 + 0.998128i
\(4\) 0 0
\(5\) 404.296i 0.646873i 0.946250 + 0.323437i \(0.104838\pi\)
−0.946250 + 0.323437i \(0.895162\pi\)
\(6\) 0 0
\(7\) −262.245 −0.109223 −0.0546117 0.998508i \(-0.517392\pi\)
−0.0546117 + 0.998508i \(0.517392\pi\)
\(8\) 0 0
\(9\) −6511.91 801.062i −0.992518 0.122094i
\(10\) 0 0
\(11\) 6268.43i 0.428142i −0.976818 0.214071i \(-0.931328\pi\)
0.976818 0.214071i \(-0.0686724\pi\)
\(12\) 0 0
\(13\) −43933.9 −1.53825 −0.769124 0.639100i \(-0.779307\pi\)
−0.769124 + 0.639100i \(0.779307\pi\)
\(14\) 0 0
\(15\) −32686.7 2002.92i −0.645662 0.0395639i
\(16\) 0 0
\(17\) 91180.4i 1.09171i 0.837881 + 0.545853i \(0.183794\pi\)
−0.837881 + 0.545853i \(0.816206\pi\)
\(18\) 0 0
\(19\) −170581. −1.30893 −0.654467 0.756091i \(-0.727107\pi\)
−0.654467 + 0.756091i \(0.727107\pi\)
\(20\) 0 0
\(21\) 1299.19 21202.1i 0.00668029 0.109019i
\(22\) 0 0
\(23\) 234950.i 0.839584i −0.907620 0.419792i \(-0.862103\pi\)
0.907620 0.419792i \(-0.137897\pi\)
\(24\) 0 0
\(25\) 227170. 0.581555
\(26\) 0 0
\(27\) 97025.2 522509.i 0.182570 0.983193i
\(28\) 0 0
\(29\) 1.23399e6i 1.74470i 0.488880 + 0.872351i \(0.337405\pi\)
−0.488880 + 0.872351i \(0.662595\pi\)
\(30\) 0 0
\(31\) 1.50803e6 1.63291 0.816456 0.577408i \(-0.195936\pi\)
0.816456 + 0.577408i \(0.195936\pi\)
\(32\) 0 0
\(33\) 506792. + 31054.4i 0.427341 + 0.0261859i
\(34\) 0 0
\(35\) 106025.i 0.0706537i
\(36\) 0 0
\(37\) 295815. 0.157838 0.0789192 0.996881i \(-0.474853\pi\)
0.0789192 + 0.996881i \(0.474853\pi\)
\(38\) 0 0
\(39\) 217653. 3.55198e6i 0.0940819 1.53537i
\(40\) 0 0
\(41\) 2.45609e6i 0.869177i 0.900629 + 0.434589i \(0.143106\pi\)
−0.900629 + 0.434589i \(0.856894\pi\)
\(42\) 0 0
\(43\) −3.32545e6 −0.972694 −0.486347 0.873766i \(-0.661671\pi\)
−0.486347 + 0.873766i \(0.661671\pi\)
\(44\) 0 0
\(45\) 323866. 2.63274e6i 0.0789797 0.642034i
\(46\) 0 0
\(47\) 5.63483e6i 1.15475i 0.816478 + 0.577377i \(0.195924\pi\)
−0.816478 + 0.577377i \(0.804076\pi\)
\(48\) 0 0
\(49\) −5.69603e6 −0.988070
\(50\) 0 0
\(51\) −7.37179e6 451717.i −1.08966 0.0667707i
\(52\) 0 0
\(53\) 4.50039e6i 0.570357i 0.958474 + 0.285178i \(0.0920528\pi\)
−0.958474 + 0.285178i \(0.907947\pi\)
\(54\) 0 0
\(55\) 2.53430e6 0.276954
\(56\) 0 0
\(57\) 845078. 1.37912e7i 0.0800566 1.30648i
\(58\) 0 0
\(59\) 9.47475e6i 0.781916i 0.920409 + 0.390958i \(0.127856\pi\)
−0.920409 + 0.390958i \(0.872144\pi\)
\(60\) 0 0
\(61\) −5.61098e6 −0.405247 −0.202623 0.979257i \(-0.564947\pi\)
−0.202623 + 0.979257i \(0.564947\pi\)
\(62\) 0 0
\(63\) 1.70772e6 + 210075.i 0.108406 + 0.0133356i
\(64\) 0 0
\(65\) 1.77623e7i 0.995052i
\(66\) 0 0
\(67\) 3.14398e7 1.56020 0.780101 0.625654i \(-0.215168\pi\)
0.780101 + 0.625654i \(0.215168\pi\)
\(68\) 0 0
\(69\) 1.89953e7 + 1.16397e6i 0.838013 + 0.0513504i
\(70\) 0 0
\(71\) 1.69223e7i 0.665925i 0.942940 + 0.332962i \(0.108048\pi\)
−0.942940 + 0.332962i \(0.891952\pi\)
\(72\) 0 0
\(73\) 5.16633e6 0.181924 0.0909622 0.995854i \(-0.471006\pi\)
0.0909622 + 0.995854i \(0.471006\pi\)
\(74\) 0 0
\(75\) −1.12542e6 + 1.83663e7i −0.0355689 + 0.580466i
\(76\) 0 0
\(77\) 1.64387e6i 0.0467632i
\(78\) 0 0
\(79\) 5.76774e6 0.148080 0.0740401 0.997255i \(-0.476411\pi\)
0.0740401 + 0.997255i \(0.476411\pi\)
\(80\) 0 0
\(81\) 4.17633e7 + 1.04329e7i 0.970186 + 0.242362i
\(82\) 0 0
\(83\) 4.72276e7i 0.995139i −0.867424 0.497570i \(-0.834226\pi\)
0.867424 0.497570i \(-0.165774\pi\)
\(84\) 0 0
\(85\) −3.68639e7 −0.706196
\(86\) 0 0
\(87\) −9.97664e7 6.11333e6i −1.74144 0.106709i
\(88\) 0 0
\(89\) 6.72340e7i 1.07159i −0.844348 0.535795i \(-0.820012\pi\)
0.844348 0.535795i \(-0.179988\pi\)
\(90\) 0 0
\(91\) 1.15215e7 0.168013
\(92\) 0 0
\(93\) −7.47092e6 + 1.21922e8i −0.0998717 + 1.62985i
\(94\) 0 0
\(95\) 6.89654e7i 0.846714i
\(96\) 0 0
\(97\) −1.36244e8 −1.53897 −0.769484 0.638666i \(-0.779486\pi\)
−0.769484 + 0.638666i \(0.779486\pi\)
\(98\) 0 0
\(99\) −5.02140e6 + 4.08195e7i −0.0522738 + 0.424939i
\(100\) 0 0
\(101\) 1.62745e8i 1.56395i 0.623310 + 0.781975i \(0.285788\pi\)
−0.623310 + 0.781975i \(0.714212\pi\)
\(102\) 0 0
\(103\) 4.49972e7 0.399794 0.199897 0.979817i \(-0.435939\pi\)
0.199897 + 0.979817i \(0.435939\pi\)
\(104\) 0 0
\(105\) 8.57192e6 + 525257.i 0.0705214 + 0.00432130i
\(106\) 0 0
\(107\) 1.57223e8i 1.19944i −0.800208 0.599722i \(-0.795278\pi\)
0.800208 0.599722i \(-0.204722\pi\)
\(108\) 0 0
\(109\) −2.51315e7 −0.178038 −0.0890189 0.996030i \(-0.528373\pi\)
−0.0890189 + 0.996030i \(0.528373\pi\)
\(110\) 0 0
\(111\) −1.46550e6 + 2.39161e7i −0.00965367 + 0.157543i
\(112\) 0 0
\(113\) 1.93202e8i 1.18495i −0.805591 0.592473i \(-0.798152\pi\)
0.805591 0.592473i \(-0.201848\pi\)
\(114\) 0 0
\(115\) 9.49894e7 0.543105
\(116\) 0 0
\(117\) 2.86094e8 + 3.51938e7i 1.52674 + 0.187812i
\(118\) 0 0
\(119\) 2.39116e7i 0.119240i
\(120\) 0 0
\(121\) 1.75066e8 0.816694
\(122\) 0 0
\(123\) −1.98571e8 1.21677e7i −0.867550 0.0531604i
\(124\) 0 0
\(125\) 2.49772e8i 1.02307i
\(126\) 0 0
\(127\) 2.48708e8 0.956037 0.478019 0.878350i \(-0.341355\pi\)
0.478019 + 0.878350i \(0.341355\pi\)
\(128\) 0 0
\(129\) 1.64746e7 2.68857e8i 0.0594917 0.970873i
\(130\) 0 0
\(131\) 4.72372e8i 1.60398i 0.597337 + 0.801990i \(0.296225\pi\)
−0.597337 + 0.801990i \(0.703775\pi\)
\(132\) 0 0
\(133\) 4.47342e7 0.142966
\(134\) 0 0
\(135\) 2.11248e8 + 3.92269e7i 0.636001 + 0.118100i
\(136\) 0 0
\(137\) 4.20841e8i 1.19464i −0.802005 0.597318i \(-0.796233\pi\)
0.802005 0.597318i \(-0.203767\pi\)
\(138\) 0 0
\(139\) −2.44286e8 −0.654394 −0.327197 0.944956i \(-0.606104\pi\)
−0.327197 + 0.944956i \(0.606104\pi\)
\(140\) 0 0
\(141\) −4.55567e8 2.79155e7i −1.15259 0.0706267i
\(142\) 0 0
\(143\) 2.75397e8i 0.658589i
\(144\) 0 0
\(145\) −4.98899e8 −1.12860
\(146\) 0 0
\(147\) 2.82187e7 4.60515e8i 0.0604321 0.986220i
\(148\) 0 0
\(149\) 2.23041e8i 0.452522i 0.974067 + 0.226261i \(0.0726502\pi\)
−0.974067 + 0.226261i \(0.927350\pi\)
\(150\) 0 0
\(151\) −1.82742e8 −0.351505 −0.175752 0.984434i \(-0.556236\pi\)
−0.175752 + 0.984434i \(0.556236\pi\)
\(152\) 0 0
\(153\) 7.30411e7 5.93759e8i 0.133291 1.08354i
\(154\) 0 0
\(155\) 6.09690e8i 1.05629i
\(156\) 0 0
\(157\) −2.78972e8 −0.459158 −0.229579 0.973290i \(-0.573735\pi\)
−0.229579 + 0.973290i \(0.573735\pi\)
\(158\) 0 0
\(159\) −3.63849e8 2.22954e7i −0.569289 0.0348840i
\(160\) 0 0
\(161\) 6.16146e7i 0.0917023i
\(162\) 0 0
\(163\) −6.21653e8 −0.880638 −0.440319 0.897841i \(-0.645135\pi\)
−0.440319 + 0.897841i \(0.645135\pi\)
\(164\) 0 0
\(165\) −1.25552e7 + 2.04894e8i −0.0169390 + 0.276435i
\(166\) 0 0
\(167\) 1.14731e7i 0.0147508i 0.999973 + 0.00737539i \(0.00234768\pi\)
−0.999973 + 0.00737539i \(0.997652\pi\)
\(168\) 0 0
\(169\) 1.11446e9 1.36621
\(170\) 0 0
\(171\) 1.11081e9 + 1.36646e8i 1.29914 + 0.159813i
\(172\) 0 0
\(173\) 9.13885e8i 1.02025i 0.860100 + 0.510125i \(0.170401\pi\)
−0.860100 + 0.510125i \(0.829599\pi\)
\(174\) 0 0
\(175\) −5.95742e7 −0.0635194
\(176\) 0 0
\(177\) −7.66018e8 4.69389e7i −0.780452 0.0478233i
\(178\) 0 0
\(179\) 1.46335e9i 1.42540i −0.701468 0.712701i \(-0.747472\pi\)
0.701468 0.712701i \(-0.252528\pi\)
\(180\) 0 0
\(181\) 1.75899e9 1.63889 0.819445 0.573158i \(-0.194282\pi\)
0.819445 + 0.573158i \(0.194282\pi\)
\(182\) 0 0
\(183\) 2.77974e7 4.53639e8i 0.0247856 0.404488i
\(184\) 0 0
\(185\) 1.19597e8i 0.102102i
\(186\) 0 0
\(187\) 5.71558e8 0.467406
\(188\) 0 0
\(189\) −2.54444e7 + 1.37026e8i −0.0199409 + 0.107388i
\(190\) 0 0
\(191\) 9.59184e8i 0.720723i −0.932813 0.360361i \(-0.882653\pi\)
0.932813 0.360361i \(-0.117347\pi\)
\(192\) 0 0
\(193\) −4.76277e6 −0.00343266 −0.00171633 0.999999i \(-0.500546\pi\)
−0.00171633 + 0.999999i \(0.500546\pi\)
\(194\) 0 0
\(195\) 1.43605e9 + 8.79962e7i 0.993189 + 0.0608591i
\(196\) 0 0
\(197\) 5.50726e8i 0.365654i −0.983145 0.182827i \(-0.941475\pi\)
0.983145 0.182827i \(-0.0585248\pi\)
\(198\) 0 0
\(199\) −4.82710e8 −0.307804 −0.153902 0.988086i \(-0.549184\pi\)
−0.153902 + 0.988086i \(0.549184\pi\)
\(200\) 0 0
\(201\) −1.55756e8 + 2.54186e9i −0.0954246 + 1.55728i
\(202\) 0 0
\(203\) 3.23609e8i 0.190562i
\(204\) 0 0
\(205\) −9.92986e8 −0.562248
\(206\) 0 0
\(207\) −1.88210e8 + 1.52998e9i −0.102509 + 0.833303i
\(208\) 0 0
\(209\) 1.06928e9i 0.560410i
\(210\) 0 0
\(211\) −1.68845e9 −0.851843 −0.425921 0.904760i \(-0.640050\pi\)
−0.425921 + 0.904760i \(0.640050\pi\)
\(212\) 0 0
\(213\) −1.36814e9 8.38346e7i −0.664678 0.0407291i
\(214\) 0 0
\(215\) 1.34446e9i 0.629210i
\(216\) 0 0
\(217\) −3.95473e8 −0.178352
\(218\) 0 0
\(219\) −2.55945e7 + 4.17690e8i −0.0111268 + 0.181584i
\(220\) 0 0
\(221\) 4.00591e9i 1.67932i
\(222\) 0 0
\(223\) −2.06196e9 −0.833797 −0.416899 0.908953i \(-0.636883\pi\)
−0.416899 + 0.908953i \(0.636883\pi\)
\(224\) 0 0
\(225\) −1.47931e9 1.81977e8i −0.577204 0.0710046i
\(226\) 0 0
\(227\) 5.26909e8i 0.198441i 0.995065 + 0.0992206i \(0.0316350\pi\)
−0.995065 + 0.0992206i \(0.968365\pi\)
\(228\) 0 0
\(229\) 7.93492e8 0.288536 0.144268 0.989539i \(-0.453917\pi\)
0.144268 + 0.989539i \(0.453917\pi\)
\(230\) 0 0
\(231\) −1.32904e8 8.14388e6i −0.0466756 0.00286012i
\(232\) 0 0
\(233\) 1.80359e9i 0.611947i −0.952040 0.305974i \(-0.901018\pi\)
0.952040 0.305974i \(-0.0989819\pi\)
\(234\) 0 0
\(235\) −2.27814e9 −0.746979
\(236\) 0 0
\(237\) −2.85739e7 + 4.66312e8i −0.00905684 + 0.147803i
\(238\) 0 0
\(239\) 4.41034e9i 1.35170i 0.737039 + 0.675851i \(0.236224\pi\)
−0.737039 + 0.675851i \(0.763776\pi\)
\(240\) 0 0
\(241\) 2.25090e9 0.667248 0.333624 0.942706i \(-0.391728\pi\)
0.333624 + 0.942706i \(0.391728\pi\)
\(242\) 0 0
\(243\) −1.05038e9 + 3.32481e9i −0.301247 + 0.953546i
\(244\) 0 0
\(245\) 2.30288e9i 0.639156i
\(246\) 0 0
\(247\) 7.49431e9 2.01346
\(248\) 0 0
\(249\) 3.81828e9 + 2.33970e8i 0.993276 + 0.0608644i
\(250\) 0 0
\(251\) 2.04067e8i 0.0514135i −0.999670 0.0257068i \(-0.991816\pi\)
0.999670 0.0257068i \(-0.00818362\pi\)
\(252\) 0 0
\(253\) −1.47277e9 −0.359462
\(254\) 0 0
\(255\) 1.82627e8 2.98038e9i 0.0431922 0.704874i
\(256\) 0 0
\(257\) 6.51675e9i 1.49382i 0.664925 + 0.746910i \(0.268464\pi\)
−0.664925 + 0.746910i \(0.731536\pi\)
\(258\) 0 0
\(259\) −7.75760e7 −0.0172397
\(260\) 0 0
\(261\) 9.88506e8 8.03566e9i 0.213018 1.73165i
\(262\) 0 0
\(263\) 1.32086e9i 0.276079i 0.990427 + 0.138039i \(0.0440800\pi\)
−0.990427 + 0.138039i \(0.955920\pi\)
\(264\) 0 0
\(265\) −1.81949e9 −0.368948
\(266\) 0 0
\(267\) 5.43576e9 + 3.33084e8i 1.06958 + 0.0655404i
\(268\) 0 0
\(269\) 5.62436e9i 1.07415i −0.843535 0.537073i \(-0.819530\pi\)
0.843535 0.537073i \(-0.180470\pi\)
\(270\) 0 0
\(271\) 9.52211e9 1.76545 0.882726 0.469888i \(-0.155706\pi\)
0.882726 + 0.469888i \(0.155706\pi\)
\(272\) 0 0
\(273\) −5.70785e7 + 9.31491e8i −0.0102759 + 0.167698i
\(274\) 0 0
\(275\) 1.42400e9i 0.248988i
\(276\) 0 0
\(277\) −2.92789e9 −0.497320 −0.248660 0.968591i \(-0.579990\pi\)
−0.248660 + 0.968591i \(0.579990\pi\)
\(278\) 0 0
\(279\) −9.82015e9 1.20802e9i −1.62070 0.199369i
\(280\) 0 0
\(281\) 1.04540e10i 1.67671i 0.545125 + 0.838355i \(0.316482\pi\)
−0.545125 + 0.838355i \(0.683518\pi\)
\(282\) 0 0
\(283\) −8.32937e9 −1.29857 −0.649287 0.760544i \(-0.724933\pi\)
−0.649287 + 0.760544i \(0.724933\pi\)
\(284\) 0 0
\(285\) 5.57574e9 + 3.41661e8i 0.845129 + 0.0517865i
\(286\) 0 0
\(287\) 6.44097e8i 0.0949345i
\(288\) 0 0
\(289\) −1.33811e9 −0.191823
\(290\) 0 0
\(291\) 6.74965e8 1.10151e10i 0.0941259 1.53609i
\(292\) 0 0
\(293\) 8.11907e9i 1.10163i 0.834627 + 0.550815i \(0.185683\pi\)
−0.834627 + 0.550815i \(0.814317\pi\)
\(294\) 0 0
\(295\) −3.83060e9 −0.505800
\(296\) 0 0
\(297\) −3.27531e9 6.08196e8i −0.420946 0.0781660i
\(298\) 0 0
\(299\) 1.03223e10i 1.29149i
\(300\) 0 0
\(301\) 8.72083e8 0.106241
\(302\) 0 0
\(303\) −1.31577e10 8.06256e8i −1.56102 0.0956539i
\(304\) 0 0
\(305\) 2.26850e9i 0.262143i
\(306\) 0 0
\(307\) 1.37771e9 0.155097 0.0775485 0.996989i \(-0.475291\pi\)
0.0775485 + 0.996989i \(0.475291\pi\)
\(308\) 0 0
\(309\) −2.22921e8 + 3.63795e9i −0.0244521 + 0.399046i
\(310\) 0 0
\(311\) 9.39351e9i 1.00412i −0.864832 0.502061i \(-0.832575\pi\)
0.864832 0.502061i \(-0.167425\pi\)
\(312\) 0 0
\(313\) −1.17651e10 −1.22580 −0.612901 0.790160i \(-0.709997\pi\)
−0.612901 + 0.790160i \(0.709997\pi\)
\(314\) 0 0
\(315\) −8.49323e7 + 6.90424e8i −0.00862642 + 0.0701251i
\(316\) 0 0
\(317\) 3.52509e9i 0.349086i 0.984650 + 0.174543i \(0.0558449\pi\)
−0.984650 + 0.174543i \(0.944155\pi\)
\(318\) 0 0
\(319\) 7.73521e9 0.746981
\(320\) 0 0
\(321\) 1.27112e10 + 7.78897e8i 1.19720 + 0.0733601i
\(322\) 0 0
\(323\) 1.55537e10i 1.42897i
\(324\) 0 0
\(325\) −9.98046e9 −0.894575
\(326\) 0 0
\(327\) 1.24504e8 2.03184e9i 0.0108891 0.177704i
\(328\) 0 0
\(329\) 1.47771e9i 0.126126i
\(330\) 0 0
\(331\) 1.23925e10 1.03240 0.516198 0.856469i \(-0.327347\pi\)
0.516198 + 0.856469i \(0.327347\pi\)
\(332\) 0 0
\(333\) −1.92632e9 2.36966e8i −0.156658 0.0192712i
\(334\) 0 0
\(335\) 1.27110e10i 1.00925i
\(336\) 0 0
\(337\) 5.59022e9 0.433420 0.216710 0.976236i \(-0.430467\pi\)
0.216710 + 0.976236i \(0.430467\pi\)
\(338\) 0 0
\(339\) 1.56201e10 + 9.57143e8i 1.18273 + 0.0724733i
\(340\) 0 0
\(341\) 9.45297e9i 0.699119i
\(342\) 0 0
\(343\) 3.00555e9 0.217144
\(344\) 0 0
\(345\) −4.70587e8 + 7.67974e9i −0.0332172 + 0.542088i
\(346\) 0 0
\(347\) 1.14727e10i 0.791314i 0.918398 + 0.395657i \(0.129483\pi\)
−0.918398 + 0.395657i \(0.870517\pi\)
\(348\) 0 0
\(349\) 2.10078e10 1.41605 0.708027 0.706185i \(-0.249585\pi\)
0.708027 + 0.706185i \(0.249585\pi\)
\(350\) 0 0
\(351\) −4.26269e9 + 2.29559e10i −0.280838 + 1.51239i
\(352\) 0 0
\(353\) 1.15235e10i 0.742141i −0.928605 0.371071i \(-0.878991\pi\)
0.928605 0.371071i \(-0.121009\pi\)
\(354\) 0 0
\(355\) −6.84160e9 −0.430769
\(356\) 0 0
\(357\) 1.93322e9 + 1.18461e8i 0.119017 + 0.00729292i
\(358\) 0 0
\(359\) 2.50612e10i 1.50878i −0.656429 0.754388i \(-0.727934\pi\)
0.656429 0.754388i \(-0.272066\pi\)
\(360\) 0 0
\(361\) 1.21145e10 0.713306
\(362\) 0 0
\(363\) −8.67293e8 + 1.41538e10i −0.0499504 + 0.815165i
\(364\) 0 0
\(365\) 2.08873e9i 0.117682i
\(366\) 0 0
\(367\) 1.05056e10 0.579103 0.289552 0.957162i \(-0.406494\pi\)
0.289552 + 0.957162i \(0.406494\pi\)
\(368\) 0 0
\(369\) 1.96748e9 1.59938e10i 0.106122 0.862674i
\(370\) 0 0
\(371\) 1.18021e9i 0.0622963i
\(372\) 0 0
\(373\) −2.38053e10 −1.22981 −0.614905 0.788601i \(-0.710806\pi\)
−0.614905 + 0.788601i \(0.710806\pi\)
\(374\) 0 0
\(375\) −2.01936e10 1.23739e9i −1.02115 0.0625725i
\(376\) 0 0
\(377\) 5.42142e10i 2.68378i
\(378\) 0 0
\(379\) −3.46936e10 −1.68148 −0.840740 0.541438i \(-0.817880\pi\)
−0.840740 + 0.541438i \(0.817880\pi\)
\(380\) 0 0
\(381\) −1.23212e9 + 2.01076e10i −0.0584729 + 0.954247i
\(382\) 0 0
\(383\) 2.09822e10i 0.975116i 0.873091 + 0.487558i \(0.162112\pi\)
−0.873091 + 0.487558i \(0.837888\pi\)
\(384\) 0 0
\(385\) −6.64609e8 −0.0302498
\(386\) 0 0
\(387\) 2.16550e10 + 2.66389e9i 0.965417 + 0.118761i
\(388\) 0 0
\(389\) 2.63670e10i 1.15149i 0.817628 + 0.575747i \(0.195289\pi\)
−0.817628 + 0.575747i \(0.804711\pi\)
\(390\) 0 0
\(391\) 2.14229e10 0.916580
\(392\) 0 0
\(393\) −3.81905e10 2.34018e9i −1.60098 0.0981022i
\(394\) 0 0
\(395\) 2.33187e9i 0.0957892i
\(396\) 0 0
\(397\) 3.66748e9 0.147641 0.0738204 0.997272i \(-0.476481\pi\)
0.0738204 + 0.997272i \(0.476481\pi\)
\(398\) 0 0
\(399\) −2.21618e8 + 3.61669e9i −0.00874405 + 0.142698i
\(400\) 0 0
\(401\) 1.06928e10i 0.413536i 0.978390 + 0.206768i \(0.0662945\pi\)
−0.978390 + 0.206768i \(0.933706\pi\)
\(402\) 0 0
\(403\) −6.62536e10 −2.51182
\(404\) 0 0
\(405\) −4.21797e9 + 1.68847e10i −0.156778 + 0.627587i
\(406\) 0 0
\(407\) 1.85429e9i 0.0675773i
\(408\) 0 0
\(409\) −1.60158e10 −0.572343 −0.286172 0.958178i \(-0.592383\pi\)
−0.286172 + 0.958178i \(0.592383\pi\)
\(410\) 0 0
\(411\) 3.40243e10 + 2.08489e9i 1.19240 + 0.0730660i
\(412\) 0 0
\(413\) 2.48471e9i 0.0854035i
\(414\) 0 0
\(415\) 1.90939e10 0.643729
\(416\) 0 0
\(417\) 1.21022e9 1.97501e10i 0.0400239 0.653169i
\(418\) 0 0
\(419\) 2.09916e10i 0.681067i −0.940232 0.340534i \(-0.889392\pi\)
0.940232 0.340534i \(-0.110608\pi\)
\(420\) 0 0
\(421\) 4.25670e10 1.35502 0.677508 0.735516i \(-0.263060\pi\)
0.677508 + 0.735516i \(0.263060\pi\)
\(422\) 0 0
\(423\) 4.51384e9 3.66935e10i 0.140989 1.14611i
\(424\) 0 0
\(425\) 2.07134e10i 0.634887i
\(426\) 0 0
\(427\) 1.47145e9 0.0442624
\(428\) 0 0
\(429\) −2.22654e10 1.36434e9i −0.657356 0.0402804i
\(430\) 0 0
\(431\) 1.65345e10i 0.479160i −0.970877 0.239580i \(-0.922990\pi\)
0.970877 0.239580i \(-0.0770098\pi\)
\(432\) 0 0
\(433\) 1.02436e10 0.291408 0.145704 0.989328i \(-0.453455\pi\)
0.145704 + 0.989328i \(0.453455\pi\)
\(434\) 0 0
\(435\) 2.47159e9 4.03351e10i 0.0690272 1.12649i
\(436\) 0 0
\(437\) 4.00781e10i 1.09896i
\(438\) 0 0
\(439\) 2.29220e10 0.617156 0.308578 0.951199i \(-0.400147\pi\)
0.308578 + 0.951199i \(0.400147\pi\)
\(440\) 0 0
\(441\) 3.70920e10 + 4.56287e9i 0.980678 + 0.120638i
\(442\) 0 0
\(443\) 4.45008e10i 1.15546i 0.816230 + 0.577728i \(0.196060\pi\)
−0.816230 + 0.577728i \(0.803940\pi\)
\(444\) 0 0
\(445\) 2.71824e10 0.693184
\(446\) 0 0
\(447\) −1.80325e10 1.10497e9i −0.451674 0.0276770i
\(448\) 0 0
\(449\) 1.30866e10i 0.321989i −0.986955 0.160994i \(-0.948530\pi\)
0.986955 0.160994i \(-0.0514701\pi\)
\(450\) 0 0
\(451\) 1.53958e10 0.372132
\(452\) 0 0
\(453\) 9.05323e8 1.47744e10i 0.0214986 0.350846i
\(454\) 0 0
\(455\) 4.65808e9i 0.108683i
\(456\) 0 0
\(457\) 5.79860e10 1.32941 0.664705 0.747106i \(-0.268557\pi\)
0.664705 + 0.747106i \(0.268557\pi\)
\(458\) 0 0
\(459\) 4.76426e10 + 8.84680e9i 1.07336 + 0.199313i
\(460\) 0 0
\(461\) 7.76440e10i 1.71911i 0.511042 + 0.859556i \(0.329260\pi\)
−0.511042 + 0.859556i \(0.670740\pi\)
\(462\) 0 0
\(463\) −4.16807e10 −0.907008 −0.453504 0.891254i \(-0.649826\pi\)
−0.453504 + 0.891254i \(0.649826\pi\)
\(464\) 0 0
\(465\) −4.92924e10 3.02046e9i −1.05431 0.0646043i
\(466\) 0 0
\(467\) 7.38367e10i 1.55240i −0.630484 0.776202i \(-0.717144\pi\)
0.630484 0.776202i \(-0.282856\pi\)
\(468\) 0 0
\(469\) −8.24494e9 −0.170410
\(470\) 0 0
\(471\) 1.38205e9 2.25544e10i 0.0280829 0.458298i
\(472\) 0 0
\(473\) 2.08453e10i 0.416452i
\(474\) 0 0
\(475\) −3.87510e10 −0.761216
\(476\) 0 0
\(477\) 3.60509e9 2.93061e10i 0.0696374 0.566089i
\(478\) 0 0
\(479\) 8.49464e10i 1.61363i 0.590807 + 0.806813i \(0.298810\pi\)
−0.590807 + 0.806813i \(0.701190\pi\)
\(480\) 0 0
\(481\) −1.29963e10 −0.242795
\(482\) 0 0
\(483\) −4.98144e9 3.05245e8i −0.0915306 0.00560867i
\(484\) 0 0
\(485\) 5.50828e10i 0.995517i
\(486\) 0 0
\(487\) −2.37054e10 −0.421435 −0.210718 0.977547i \(-0.567580\pi\)
−0.210718 + 0.977547i \(0.567580\pi\)
\(488\) 0 0
\(489\) 3.07973e9 5.02596e10i 0.0538613 0.878989i
\(490\) 0 0
\(491\) 3.67026e10i 0.631497i 0.948843 + 0.315748i \(0.102256\pi\)
−0.948843 + 0.315748i \(0.897744\pi\)
\(492\) 0 0
\(493\) −1.12516e11 −1.90470
\(494\) 0 0
\(495\) −1.65032e10 2.03013e9i −0.274882 0.0338145i
\(496\) 0 0
\(497\) 4.43779e9i 0.0727346i
\(498\) 0 0
\(499\) 4.12874e10 0.665910 0.332955 0.942943i \(-0.391954\pi\)
0.332955 + 0.942943i \(0.391954\pi\)
\(500\) 0 0
\(501\) −9.27581e8 5.68389e7i −0.0147232 0.000902183i
\(502\) 0 0
\(503\) 6.97550e10i 1.08969i −0.838537 0.544845i \(-0.816588\pi\)
0.838537 0.544845i \(-0.183412\pi\)
\(504\) 0 0
\(505\) −6.57972e10 −1.01168
\(506\) 0 0
\(507\) −5.52113e9 + 9.01020e10i −0.0835596 + 1.36365i
\(508\) 0 0
\(509\) 7.34702e10i 1.09456i −0.836949 0.547281i \(-0.815663\pi\)
0.836949 0.547281i \(-0.184337\pi\)
\(510\) 0 0
\(511\) −1.35485e9 −0.0198704
\(512\) 0 0
\(513\) −1.65507e10 + 8.91304e10i −0.238972 + 1.28693i
\(514\) 0 0
\(515\) 1.81922e10i 0.258616i
\(516\) 0 0
\(517\) 3.53215e10 0.494399
\(518\) 0 0
\(519\) −7.38861e10 4.52748e9i −1.01834 0.0624003i
\(520\) 0 0
\(521\) 2.70948e9i 0.0367736i −0.999831 0.0183868i \(-0.994147\pi\)
0.999831 0.0183868i \(-0.00585302\pi\)
\(522\) 0 0
\(523\) 4.70244e10 0.628516 0.314258 0.949338i \(-0.398244\pi\)
0.314258 + 0.949338i \(0.398244\pi\)
\(524\) 0 0
\(525\) 2.95137e8 4.81648e9i 0.00388496 0.0634005i
\(526\) 0 0
\(527\) 1.37503e11i 1.78266i
\(528\) 0 0
\(529\) 2.31094e10 0.295098
\(530\) 0 0
\(531\) 7.58986e9 6.16988e10i 0.0954676 0.776066i
\(532\) 0 0
\(533\) 1.07905e11i 1.33701i
\(534\) 0 0
\(535\) 6.35645e10 0.775889
\(536\) 0 0
\(537\) 1.18310e11 + 7.24960e9i 1.42273 + 0.0871800i
\(538\) 0 0
\(539\) 3.57052e10i 0.423035i
\(540\) 0 0
\(541\) 5.39641e10 0.629965 0.314982 0.949098i \(-0.398001\pi\)
0.314982 + 0.949098i \(0.398001\pi\)
\(542\) 0 0
\(543\) −8.71423e9 + 1.42212e11i −0.100237 + 1.63582i
\(544\) 0 0
\(545\) 1.01606e10i 0.115168i
\(546\) 0 0
\(547\) −8.48341e10 −0.947592 −0.473796 0.880635i \(-0.657117\pi\)
−0.473796 + 0.880635i \(0.657117\pi\)
\(548\) 0 0
\(549\) 3.65382e10 + 4.49474e9i 0.402215 + 0.0494784i
\(550\) 0 0
\(551\) 2.10497e11i 2.28370i
\(552\) 0 0
\(553\) −1.51256e9 −0.0161738
\(554\) 0 0
\(555\) −9.66919e9 5.92494e8i −0.101910 0.00624470i
\(556\) 0 0
\(557\) 1.22606e11i 1.27377i −0.770958 0.636886i \(-0.780222\pi\)
0.770958 0.636886i \(-0.219778\pi\)
\(558\) 0 0
\(559\) 1.46100e11 1.49624
\(560\) 0 0
\(561\) −2.83156e9 + 4.62095e10i −0.0285873 + 0.466531i
\(562\) 0 0
\(563\) 9.59755e10i 0.955271i −0.878558 0.477636i \(-0.841494\pi\)
0.878558 0.477636i \(-0.158506\pi\)
\(564\) 0 0
\(565\) 7.81109e10 0.766510
\(566\) 0 0
\(567\) −1.09522e10 2.73598e9i −0.105967 0.0264716i
\(568\) 0 0
\(569\) 1.49524e11i 1.42647i 0.700927 + 0.713233i \(0.252770\pi\)
−0.700927 + 0.713233i \(0.747230\pi\)
\(570\) 0 0
\(571\) 4.89683e10 0.460650 0.230325 0.973114i \(-0.426021\pi\)
0.230325 + 0.973114i \(0.426021\pi\)
\(572\) 0 0
\(573\) 7.75484e10 + 4.75189e9i 0.719374 + 0.0440807i
\(574\) 0 0
\(575\) 5.33736e10i 0.488264i
\(576\) 0 0
\(577\) −1.19225e11 −1.07563 −0.537815 0.843063i \(-0.680750\pi\)
−0.537815 + 0.843063i \(0.680750\pi\)
\(578\) 0 0
\(579\) 2.35953e7 3.85062e8i 0.000209947 0.00342623i
\(580\) 0 0
\(581\) 1.23852e10i 0.108692i
\(582\) 0 0
\(583\) 2.82104e10 0.244194
\(584\) 0 0
\(585\) −1.42287e10 + 1.15667e11i −0.121490 + 0.987607i
\(586\) 0 0
\(587\) 1.31496e11i 1.10754i 0.832668 + 0.553772i \(0.186812\pi\)
−0.832668 + 0.553772i \(0.813188\pi\)
\(588\) 0 0
\(589\) −2.57242e11 −2.13737
\(590\) 0 0
\(591\) 4.45253e10 + 2.72835e9i 0.364969 + 0.0223640i
\(592\) 0 0
\(593\) 9.66587e10i 0.781668i 0.920461 + 0.390834i \(0.127813\pi\)
−0.920461 + 0.390834i \(0.872187\pi\)
\(594\) 0 0
\(595\) 9.66738e9 0.0771331
\(596\) 0 0
\(597\) 2.39140e9 3.90263e10i 0.0188258 0.307228i
\(598\) 0 0
\(599\) 3.95546e10i 0.307248i −0.988129 0.153624i \(-0.950905\pi\)
0.988129 0.153624i \(-0.0490945\pi\)
\(600\) 0 0
\(601\) 5.19533e10 0.398213 0.199106 0.979978i \(-0.436196\pi\)
0.199106 + 0.979978i \(0.436196\pi\)
\(602\) 0 0
\(603\) −2.04733e11 2.51852e10i −1.54853 0.190492i
\(604\) 0 0
\(605\) 7.07783e10i 0.528298i
\(606\) 0 0
\(607\) 2.94897e10 0.217228 0.108614 0.994084i \(-0.465359\pi\)
0.108614 + 0.994084i \(0.465359\pi\)
\(608\) 0 0
\(609\) 2.61633e10 + 1.60319e9i 0.190205 + 0.0116551i
\(610\) 0 0
\(611\) 2.47560e11i 1.77630i
\(612\) 0 0
\(613\) −8.56628e10 −0.606667 −0.303333 0.952884i \(-0.598100\pi\)
−0.303333 + 0.952884i \(0.598100\pi\)
\(614\) 0 0
\(615\) 4.91935e9 8.02813e10i 0.0343880 0.561195i
\(616\) 0 0
\(617\) 1.79832e10i 0.124087i 0.998073 + 0.0620435i \(0.0197617\pi\)
−0.998073 + 0.0620435i \(0.980238\pi\)
\(618\) 0 0
\(619\) −1.14708e11 −0.781325 −0.390663 0.920534i \(-0.627754\pi\)
−0.390663 + 0.920534i \(0.627754\pi\)
\(620\) 0 0
\(621\) −1.22764e11 2.27961e10i −0.825473 0.153283i
\(622\) 0 0
\(623\) 1.76318e10i 0.117043i
\(624\) 0 0
\(625\) −1.22435e10 −0.0802392
\(626\) 0 0
\(627\) −8.64494e10 5.29731e9i −0.559361 0.0342756i
\(628\) 0 0
\(629\) 2.69725e10i 0.172313i
\(630\) 0 0
\(631\) −2.70187e11 −1.70431 −0.852153 0.523293i \(-0.824703\pi\)
−0.852153 + 0.523293i \(0.824703\pi\)
\(632\) 0 0
\(633\) 8.36477e9 1.36509e11i 0.0521002 0.850248i
\(634\) 0 0
\(635\) 1.00552e11i 0.618435i
\(636\) 0 0
\(637\) 2.50249e11 1.51990
\(638\) 0 0
\(639\) 1.35558e10 1.10196e11i 0.0813057 0.660943i
\(640\) 0 0
\(641\) 6.37085e10i 0.377368i 0.982038 + 0.188684i \(0.0604222\pi\)
−0.982038 + 0.188684i \(0.939578\pi\)
\(642\) 0 0
\(643\) 2.43207e11 1.42276 0.711380 0.702808i \(-0.248071\pi\)
0.711380 + 0.702808i \(0.248071\pi\)
\(644\) 0 0
\(645\) 1.08698e11 + 6.66061e9i 0.628032 + 0.0384836i
\(646\) 0 0
\(647\) 2.32556e11i 1.32712i 0.748122 + 0.663562i \(0.230956\pi\)
−0.748122 + 0.663562i \(0.769044\pi\)
\(648\) 0 0
\(649\) 5.93919e10 0.334771
\(650\) 0 0
\(651\) 1.95921e9 3.19734e10i 0.0109083 0.178018i
\(652\) 0 0
\(653\) 4.88765e10i 0.268811i 0.990926 + 0.134406i \(0.0429125\pi\)
−0.990926 + 0.134406i \(0.957087\pi\)
\(654\) 0 0
\(655\) −1.90978e11 −1.03757
\(656\) 0 0
\(657\) −3.36427e10 4.13855e9i −0.180563 0.0222120i
\(658\) 0 0
\(659\) 2.07990e11i 1.10281i 0.834238 + 0.551404i \(0.185908\pi\)
−0.834238 + 0.551404i \(0.814092\pi\)
\(660\) 0 0
\(661\) −2.17392e11 −1.13877 −0.569387 0.822069i \(-0.692820\pi\)
−0.569387 + 0.822069i \(0.692820\pi\)
\(662\) 0 0
\(663\) 3.23871e11 + 1.98457e10i 1.67617 + 0.102710i
\(664\) 0 0
\(665\) 1.80859e10i 0.0924810i
\(666\) 0 0
\(667\) 2.89927e11 1.46482
\(668\) 0 0
\(669\) 1.02151e10 1.66706e11i 0.0509965 0.832236i
\(670\) 0 0
\(671\) 3.51720e10i 0.173503i
\(672\) 0 0
\(673\) 2.28012e11 1.11147 0.555735 0.831359i \(-0.312437\pi\)
0.555735 + 0.831359i \(0.312437\pi\)
\(674\) 0 0
\(675\) 2.20412e10 1.18698e11i 0.106174 0.571781i
\(676\) 0 0
\(677\) 2.16200e11i 1.02920i −0.857429 0.514602i \(-0.827940\pi\)
0.857429 0.514602i \(-0.172060\pi\)
\(678\) 0 0
\(679\) 3.57293e10 0.168091
\(680\) 0 0
\(681\) −4.25997e10 2.61036e9i −0.198070 0.0121370i
\(682\) 0 0
\(683\) 1.43240e11i 0.658236i 0.944289 + 0.329118i \(0.106751\pi\)
−0.944289 + 0.329118i \(0.893249\pi\)
\(684\) 0 0
\(685\) 1.70144e11 0.772778
\(686\) 0 0
\(687\) −3.93104e9 + 6.41525e10i −0.0176474 + 0.287996i
\(688\) 0 0
\(689\) 1.97720e11i 0.877350i
\(690\) 0 0
\(691\) 6.27484e10 0.275226 0.137613 0.990486i \(-0.456057\pi\)
0.137613 + 0.990486i \(0.456057\pi\)
\(692\) 0 0
\(693\) 1.31684e9 1.07047e10i 0.00570952 0.0464133i
\(694\) 0 0
\(695\) 9.87638e10i 0.423310i
\(696\) 0 0
\(697\) −2.23947e11 −0.948886
\(698\) 0 0
\(699\) 1.45817e11 + 8.93516e9i 0.610802 + 0.0374277i
\(700\) 0 0
\(701\) 2.88764e11i 1.19583i 0.801558 + 0.597917i \(0.204005\pi\)
−0.801558 + 0.597917i \(0.795995\pi\)
\(702\) 0 0
\(703\) −5.04605e10 −0.206600
\(704\) 0 0
\(705\) 1.12861e10 1.84184e11i 0.0456865 0.745581i
\(706\) 0 0
\(707\) 4.26792e10i 0.170820i
\(708\) 0 0
\(709\) 2.10091e11 0.831425 0.415712 0.909496i \(-0.363532\pi\)
0.415712 + 0.909496i \(0.363532\pi\)
\(710\) 0 0
\(711\) −3.75590e10 4.62031e9i −0.146972 0.0180798i
\(712\) 0 0
\(713\) 3.54311e11i 1.37097i
\(714\) 0 0
\(715\) −1.11342e11 −0.426024
\(716\) 0 0
\(717\) −3.56569e11 2.18493e10i −1.34917 0.0826724i
\(718\) 0 0
\(719\) 4.62917e11i 1.73216i 0.499905 + 0.866080i \(0.333368\pi\)
−0.499905 + 0.866080i \(0.666632\pi\)
\(720\) 0 0
\(721\) −1.18003e10 −0.0436669
\(722\) 0 0
\(723\) −1.11512e10 + 1.81981e11i −0.0408101 + 0.665999i
\(724\) 0 0
\(725\) 2.80326e11i 1.01464i
\(726\) 0 0
\(727\) −4.83930e11 −1.73239 −0.866193 0.499710i \(-0.833440\pi\)
−0.866193 + 0.499710i \(0.833440\pi\)
\(728\) 0 0
\(729\) −2.63602e11 1.01393e11i −0.933336 0.359003i
\(730\) 0 0
\(731\) 3.03216e11i 1.06190i
\(732\) 0 0
\(733\) 4.31584e11 1.49503 0.747515 0.664245i \(-0.231247\pi\)
0.747515 + 0.664245i \(0.231247\pi\)
\(734\) 0 0
\(735\) 1.86184e11 + 1.14087e10i 0.637960 + 0.0390919i
\(736\) 0 0
\(737\) 1.97078e11i 0.667988i
\(738\) 0 0
\(739\) −2.00585e11 −0.672545 −0.336273 0.941765i \(-0.609166\pi\)
−0.336273 + 0.941765i \(0.609166\pi\)
\(740\) 0 0
\(741\) −3.71276e10 + 6.05903e11i −0.123147 + 2.00969i
\(742\) 0 0
\(743\) 2.97739e11i 0.976967i −0.872573 0.488483i \(-0.837550\pi\)
0.872573 0.488483i \(-0.162450\pi\)
\(744\) 0 0
\(745\) −9.01745e10 −0.292724
\(746\) 0 0
\(747\) −3.78322e10 + 3.07542e11i −0.121501 + 0.987694i
\(748\) 0 0
\(749\) 4.12309e10i 0.131007i
\(750\) 0 0
\(751\) −2.84301e11 −0.893756 −0.446878 0.894595i \(-0.647464\pi\)
−0.446878 + 0.894595i \(0.647464\pi\)
\(752\) 0 0
\(753\) 1.64985e10 + 1.01097e9i 0.0513173 + 0.00314454i
\(754\) 0 0
\(755\) 7.38819e10i 0.227379i
\(756\) 0 0
\(757\) −6.47181e11 −1.97080 −0.985399 0.170259i \(-0.945540\pi\)
−0.985399 + 0.170259i \(0.945540\pi\)
\(758\) 0 0
\(759\) 7.29625e9 1.19071e11i 0.0219853 0.358789i
\(760\) 0 0
\(761\) 7.43573e10i 0.221710i 0.993837 + 0.110855i \(0.0353589\pi\)
−0.993837 + 0.110855i \(0.964641\pi\)
\(762\) 0 0
\(763\) 6.59061e9 0.0194459
\(764\) 0 0
\(765\) 2.40054e11 + 2.95302e10i 0.700912 + 0.0862226i
\(766\) 0 0
\(767\) 4.16263e11i 1.20278i
\(768\) 0 0
\(769\) 2.37455e11 0.679011 0.339505 0.940604i \(-0.389740\pi\)
0.339505 + 0.940604i \(0.389740\pi\)
\(770\) 0 0
\(771\) −5.26868e11 3.22846e10i −1.49102 0.0913646i
\(772\) 0 0
\(773\) 1.17994e11i 0.330478i 0.986254 + 0.165239i \(0.0528396\pi\)
−0.986254 + 0.165239i \(0.947160\pi\)
\(774\) 0 0
\(775\) 3.42579e11 0.949628
\(776\) 0 0
\(777\) 3.84319e8 6.27189e9i 0.00105441 0.0172074i
\(778\) 0 0
\(779\) 4.18963e11i 1.13769i
\(780\) 0 0
\(781\) 1.06076e11 0.285111
\(782\) 0 0
\(783\) 6.44773e11 + 1.19729e11i 1.71538 + 0.318530i
\(784\) 0 0
\(785\) 1.12787e11i 0.297017i
\(786\) 0 0
\(787\) 2.65668e11 0.692533 0.346267 0.938136i \(-0.387449\pi\)
0.346267 + 0.938136i \(0.387449\pi\)
\(788\) 0 0
\(789\) −1.06789e11 6.54366e9i −0.275562 0.0168854i
\(790\) 0 0
\(791\) 5.06664e10i 0.129424i
\(792\) 0 0
\(793\) 2.46512e11 0.623370
\(794\) 0 0
\(795\) 9.01393e9 1.47103e11i 0.0225655 0.368258i
\(796\) 0 0
\(797\) 2.08533e11i 0.516822i −0.966035 0.258411i \(-0.916801\pi\)
0.966035 0.258411i \(-0.0831988\pi\)
\(798\) 0 0
\(799\) −5.13786e11 −1.26065
\(800\) 0 0
\(801\) −5.38586e10 + 4.37822e11i −0.130835 + 1.06357i
\(802\) 0 0
\(803\) 3.23848e10i 0.0778896i
\(804\) 0 0
\(805\) −2.49105e10 −0.0593197
\(806\) 0 0
\(807\) 4.54720e11 + 2.78636e10i 1.07214 + 0.0656967i
\(808\) 0 0
\(809\) 1.23180e11i 0.287571i 0.989609 + 0.143785i \(0.0459275\pi\)
−0.989609 + 0.143785i \(0.954073\pi\)
\(810\) 0 0
\(811\) 3.65240e11 0.844296 0.422148 0.906527i \(-0.361276\pi\)
0.422148 + 0.906527i \(0.361276\pi\)
\(812\) 0 0
\(813\) −4.71735e10 + 7.69847e11i −0.107978 + 1.76215i
\(814\) 0 0
\(815\) 2.51332e11i 0.569661i
\(816\) 0 0
\(817\) 5.67260e11 1.27319
\(818\) 0 0
\(819\) −7.50268e10 9.22940e9i −0.166756 0.0205134i
\(820\) 0 0
\(821\) 3.33541e11i 0.734137i 0.930194 + 0.367068i \(0.119639\pi\)
−0.930194 + 0.367068i \(0.880361\pi\)
\(822\) 0 0
\(823\) 6.81722e11 1.48596 0.742982 0.669312i \(-0.233411\pi\)
0.742982 + 0.669312i \(0.233411\pi\)
\(824\) 0 0
\(825\) 1.15128e11 + 7.05463e9i 0.248522 + 0.0152286i
\(826\) 0 0
\(827\) 5.04791e11i 1.07917i 0.841931 + 0.539585i \(0.181419\pi\)
−0.841931 + 0.539585i \(0.818581\pi\)
\(828\) 0 0
\(829\) 2.16100e11 0.457548 0.228774 0.973480i \(-0.426528\pi\)
0.228774 + 0.973480i \(0.426528\pi\)
\(830\) 0 0
\(831\) 1.45051e10 2.36715e11i 0.0304169 0.496388i
\(832\) 0 0
\(833\) 5.19366e11i 1.07868i
\(834\) 0 0
\(835\) −4.63852e9 −0.00954188
\(836\) 0 0
\(837\) 1.46317e11 7.87958e11i 0.298121 1.60547i
\(838\) 0 0
\(839\) 2.04905e11i 0.413529i 0.978391 + 0.206764i \(0.0662933\pi\)
−0.978391 + 0.206764i \(0.933707\pi\)
\(840\) 0 0
\(841\) −1.02250e12 −2.04398
\(842\) 0 0
\(843\) −8.45190e11 5.17902e10i −1.67357 0.102550i
\(844\) 0 0
\(845\) 4.50570e11i 0.883763i
\(846\) 0 0
\(847\) −4.59101e10 −0.0892021
\(848\) 0 0
\(849\) 4.12646e10 6.73416e11i 0.0794230 1.29614i
\(850\) 0 0
\(851\) 6.95017e10i 0.132519i
\(852\) 0 0
\(853\) 4.13139e11 0.780368 0.390184 0.920737i \(-0.372411\pi\)
0.390184 + 0.920737i \(0.372411\pi\)
\(854\) 0 0
\(855\) −5.52455e10 + 4.49097e11i −0.103379 + 0.840379i
\(856\) 0 0
\(857\) 6.67723e11i 1.23787i −0.785444 0.618933i \(-0.787565\pi\)
0.785444 0.618933i \(-0.212435\pi\)
\(858\) 0 0
\(859\) 2.74330e11 0.503850 0.251925 0.967747i \(-0.418936\pi\)
0.251925 + 0.967747i \(0.418936\pi\)
\(860\) 0 0
\(861\) 5.20742e10 + 3.19092e9i 0.0947567 + 0.00580636i
\(862\) 0 0
\(863\) 1.22070e11i 0.220072i −0.993928 0.110036i \(-0.964903\pi\)
0.993928 0.110036i \(-0.0350967\pi\)
\(864\) 0 0
\(865\) −3.69480e11 −0.659973
\(866\) 0 0
\(867\) 6.62913e9 1.08184e11i 0.0117322 0.191464i
\(868\) 0 0
\(869\) 3.61547e10i 0.0633994i
\(870\) 0 0
\(871\) −1.38127e12 −2.39998
\(872\) 0 0
\(873\) 8.87207e11 + 1.09140e11i 1.52745 + 0.187899i
\(874\) 0 0
\(875\) 6.55015e10i 0.111743i
\(876\) 0 0
\(877\) −8.27364e11 −1.39862 −0.699308 0.714820i \(-0.746508\pi\)
−0.699308 + 0.714820i \(0.746508\pi\)
\(878\) 0 0
\(879\) −6.56414e11 4.02227e10i −1.09957 0.0673776i
\(880\) 0 0
\(881\) 1.05827e12i 1.75669i 0.478031 + 0.878343i \(0.341351\pi\)
−0.478031 + 0.878343i \(0.658649\pi\)
\(882\) 0 0
\(883\) 1.68354e11 0.276937 0.138469 0.990367i \(-0.455782\pi\)
0.138469 + 0.990367i \(0.455782\pi\)
\(884\) 0 0
\(885\) 1.89772e10 3.09698e11i 0.0309356 0.504854i
\(886\) 0 0
\(887\) 1.20459e12i 1.94600i 0.230796 + 0.973002i \(0.425867\pi\)
−0.230796 + 0.973002i \(0.574133\pi\)
\(888\) 0 0
\(889\) −6.52225e10 −0.104422
\(890\) 0 0
\(891\) 6.53979e10 2.61791e11i 0.103765 0.415378i
\(892\) 0 0
\(893\) 9.61197e11i 1.51149i
\(894\) 0 0
\(895\) 5.91628e11 0.922054
\(896\) 0 0
\(897\) −8.34539e11 5.11376e10i −1.28907 0.0789897i
\(898\) 0 0
\(899\) 1.86090e12i 2.84894i
\(900\) 0 0
\(901\) −4.10347e11 −0.622662
\(902\) 0 0
\(903\) −4.32039e9 + 7.05065e10i −0.00649788 + 0.106042i
\(904\) 0 0
\(905\) 7.11154e11i 1.06015i
\(906\) 0 0
\(907\) 7.52950e10 0.111259 0.0556297 0.998451i \(-0.482283\pi\)
0.0556297 + 0.998451i \(0.482283\pi\)
\(908\) 0 0
\(909\) 1.30369e11 1.05978e12i 0.190950 1.55225i
\(910\) 0 0
\(911\) 9.36161e11i 1.35918i −0.733592 0.679590i \(-0.762158\pi\)
0.733592 0.679590i \(-0.237842\pi\)
\(912\) 0 0
\(913\) −2.96043e11 −0.426061
\(914\) 0 0
\(915\) 1.83404e11 + 1.12384e10i 0.261652 + 0.0160331i
\(916\) 0 0
\(917\) 1.23877e11i 0.175192i
\(918\) 0 0
\(919\) 2.46228e11 0.345204 0.172602 0.984992i \(-0.444783\pi\)
0.172602 + 0.984992i \(0.444783\pi\)
\(920\) 0 0
\(921\) −6.82530e9 + 1.11385e11i −0.00948601 + 0.154807i
\(922\) 0 0
\(923\) 7.43461e11i 1.02436i
\(924\) 0 0
\(925\) 6.72002e10 0.0917917
\(926\) 0 0
\(927\) −2.93018e11 3.60455e10i −0.396803 0.0488127i
\(928\) 0 0
\(929\) 3.89557e11i 0.523007i 0.965202 + 0.261504i \(0.0842184\pi\)
−0.965202 + 0.261504i \(0.915782\pi\)
\(930\) 0 0
\(931\) 9.71637e11 1.29332
\(932\) 0 0
\(933\) 7.59450e11 + 4.65364e10i 1.00224 + 0.0614138i
\(934\) 0 0
\(935\) 2.31079e11i 0.302352i
\(936\) 0 0
\(937\) −6.84516e9 −0.00888026 −0.00444013 0.999990i \(-0.501413\pi\)
−0.00444013 + 0.999990i \(0.501413\pi\)
\(938\) 0 0
\(939\) 5.82857e10 9.51193e11i 0.0749721 1.22351i
\(940\) 0 0
\(941\) 7.50450e11i 0.957113i −0.878057 0.478557i \(-0.841160\pi\)
0.878057 0.478557i \(-0.158840\pi\)
\(942\) 0 0
\(943\) 5.77058e11 0.729748
\(944\) 0 0
\(945\) −5.53989e10 1.02871e10i −0.0694662 0.0128992i
\(946\) 0 0
\(947\) 6.00249e10i 0.0746331i 0.999303 + 0.0373165i \(0.0118810\pi\)
−0.999303 + 0.0373165i \(0.988119\pi\)
\(948\) 0 0
\(949\) −2.26977e11 −0.279845
\(950\) 0 0
\(951\) −2.84998e11 1.74636e10i −0.348433 0.0213507i
\(952\) 0 0
\(953\) 5.03889e11i 0.610890i 0.952210 + 0.305445i \(0.0988052\pi\)
−0.952210 + 0.305445i \(0.901195\pi\)
\(954\) 0 0
\(955\) 3.87794e11 0.466216
\(956\) 0 0
\(957\) −3.83210e10 + 6.25379e11i −0.0456866 + 0.745582i
\(958\) 0 0
\(959\) 1.10363e11i 0.130482i
\(960\) 0 0
\(961\) 1.42126e12 1.66640
\(962\) 0 0
\(963\) −1.25945e11 + 1.02382e12i −0.146446 + 1.19047i
\(964\) 0 0
\(965\) 1.92557e9i 0.00222050i
\(966\) 0 0
\(967\) −1.04596e11 −0.119622 −0.0598110 0.998210i \(-0.519050\pi\)
−0.0598110 + 0.998210i \(0.519050\pi\)
\(968\) 0 0
\(969\) 1.25749e12 + 7.70545e10i 1.42630 + 0.0873983i
\(970\) 0 0
\(971\) 1.18109e12i 1.32864i −0.747449 0.664319i \(-0.768722\pi\)
0.747449 0.664319i \(-0.231278\pi\)
\(972\) 0 0
\(973\) 6.40629e10 0.0714751
\(974\) 0 0
\(975\) 4.94442e10 8.06904e11i 0.0547138 0.892901i
\(976\) 0 0
\(977\) 3.68979e11i 0.404971i 0.979285 + 0.202486i \(0.0649019\pi\)
−0.979285 + 0.202486i \(0.935098\pi\)
\(978\) 0 0
\(979\) −4.21452e11 −0.458793
\(980\) 0 0
\(981\) 1.63654e11 + 2.01319e10i 0.176706 + 0.0217374i
\(982\) 0 0
\(983\) 4.42608e11i 0.474030i 0.971506 + 0.237015i \(0.0761690\pi\)
−0.971506 + 0.237015i \(0.923831\pi\)
\(984\) 0 0
\(985\) 2.22656e11 0.236532
\(986\) 0 0
\(987\) 1.19470e11 + 7.32071e9i 0.125890 + 0.00771409i
\(988\) 0 0
\(989\) 7.81314e11i 0.816659i
\(990\) 0 0
\(991\) −4.61329e11 −0.478317 −0.239159 0.970981i \(-0.576872\pi\)
−0.239159 + 0.970981i \(0.576872\pi\)
\(992\) 0 0
\(993\) −6.13936e10 + 1.00191e12i −0.0631431 + 1.03046i
\(994\) 0 0
\(995\) 1.95158e11i 0.199110i
\(996\) 0 0
\(997\) 4.87409e11 0.493302 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(998\) 0 0
\(999\) 2.87015e10 1.54566e11i 0.0288166 0.155186i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 24.9.e.a.17.4 yes 8
3.2 odd 2 inner 24.9.e.a.17.3 8
4.3 odd 2 48.9.e.e.17.5 8
8.3 odd 2 192.9.e.j.65.4 8
8.5 even 2 192.9.e.i.65.5 8
12.11 even 2 48.9.e.e.17.6 8
24.5 odd 2 192.9.e.i.65.6 8
24.11 even 2 192.9.e.j.65.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.9.e.a.17.3 8 3.2 odd 2 inner
24.9.e.a.17.4 yes 8 1.1 even 1 trivial
48.9.e.e.17.5 8 4.3 odd 2
48.9.e.e.17.6 8 12.11 even 2
192.9.e.i.65.5 8 8.5 even 2
192.9.e.i.65.6 8 24.5 odd 2
192.9.e.j.65.3 8 24.11 even 2
192.9.e.j.65.4 8 8.3 odd 2