Properties

Label 24.9.e.a.17.2
Level $24$
Weight $9$
Character 24.17
Analytic conductor $9.777$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24,9,Mod(17,24)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24.17"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 24.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.77708664147\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 78x^{6} + 144x^{5} + 2079x^{4} + 936x^{3} - 658x^{2} + 2884x + 30633 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{42}\cdot 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 17.2
Root \(1.26427 + 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 24.17
Dual form 24.9.e.a.17.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-76.4245 + 26.8384i) q^{3} +295.589i q^{5} -843.136 q^{7} +(5120.40 - 4102.23i) q^{9} -26059.3i q^{11} +22818.6 q^{13} +(-7933.16 - 22590.3i) q^{15} -84406.1i q^{17} -6534.32 q^{19} +(64436.3 - 22628.5i) q^{21} -227233. i q^{23} +303252. q^{25} +(-281226. + 450934. i) q^{27} +678039. i q^{29} -1.71504e6 q^{31} +(699391. + 1.99157e6i) q^{33} -249222. i q^{35} +1.40444e6 q^{37} +(-1.74390e6 + 612415. i) q^{39} -3.78445e6i q^{41} +2.61805e6 q^{43} +(1.21257e6 + 1.51354e6i) q^{45} -7.44156e6i q^{47} -5.05392e6 q^{49} +(2.26533e6 + 6.45069e6i) q^{51} -9.84213e6i q^{53} +7.70286e6 q^{55} +(499382. - 175371. i) q^{57} -6.41059e6i q^{59} -7.03941e6 q^{61} +(-4.31719e6 + 3.45874e6i) q^{63} +6.74493e6i q^{65} +1.35782e7 q^{67} +(6.09857e6 + 1.73661e7i) q^{69} +3.94753e7i q^{71} -5.36079e7 q^{73} +(-2.31759e7 + 8.13881e6i) q^{75} +2.19716e7i q^{77} +4.45020e7 q^{79} +(9.39020e6 - 4.20101e7i) q^{81} -7.91003e6i q^{83} +2.49496e7 q^{85} +(-1.81975e7 - 5.18188e7i) q^{87} -2.17407e7i q^{89} -1.92392e7 q^{91} +(1.31071e8 - 4.60290e7i) q^{93} -1.93148e6i q^{95} -2.69154e7 q^{97} +(-1.06901e8 - 1.33434e8i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 56 q^{3} + 1584 q^{7} + 328 q^{9} + 25232 q^{13} + 38336 q^{15} + 157936 q^{19} + 30480 q^{21} - 579704 q^{25} - 276040 q^{27} + 805552 q^{31} + 102848 q^{33} - 3985008 q^{37} - 2297104 q^{39} + 6962672 q^{43}+ \cdots - 369701504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −76.4245 + 26.8384i −0.943512 + 0.331339i
\(4\) 0 0
\(5\) 295.589i 0.472943i 0.971638 + 0.236472i \(0.0759910\pi\)
−0.971638 + 0.236472i \(0.924009\pi\)
\(6\) 0 0
\(7\) −843.136 −0.351161 −0.175580 0.984465i \(-0.556180\pi\)
−0.175580 + 0.984465i \(0.556180\pi\)
\(8\) 0 0
\(9\) 5120.40 4102.23i 0.780429 0.625244i
\(10\) 0 0
\(11\) 26059.3i 1.77989i −0.456072 0.889943i \(-0.650744\pi\)
0.456072 0.889943i \(-0.349256\pi\)
\(12\) 0 0
\(13\) 22818.6 0.798942 0.399471 0.916746i \(-0.369194\pi\)
0.399471 + 0.916746i \(0.369194\pi\)
\(14\) 0 0
\(15\) −7933.16 22590.3i −0.156704 0.446227i
\(16\) 0 0
\(17\) 84406.1i 1.01060i −0.862944 0.505299i \(-0.831382\pi\)
0.862944 0.505299i \(-0.168618\pi\)
\(18\) 0 0
\(19\) −6534.32 −0.0501402 −0.0250701 0.999686i \(-0.507981\pi\)
−0.0250701 + 0.999686i \(0.507981\pi\)
\(20\) 0 0
\(21\) 64436.3 22628.5i 0.331324 0.116353i
\(22\) 0 0
\(23\) 227233.i 0.812007i −0.913872 0.406003i \(-0.866922\pi\)
0.913872 0.406003i \(-0.133078\pi\)
\(24\) 0 0
\(25\) 303252. 0.776325
\(26\) 0 0
\(27\) −281226. + 450934.i −0.529177 + 0.848512i
\(28\) 0 0
\(29\) 678039.i 0.958656i 0.877636 + 0.479328i \(0.159120\pi\)
−0.877636 + 0.479328i \(0.840880\pi\)
\(30\) 0 0
\(31\) −1.71504e6 −1.85707 −0.928534 0.371248i \(-0.878930\pi\)
−0.928534 + 0.371248i \(0.878930\pi\)
\(32\) 0 0
\(33\) 699391. + 1.99157e6i 0.589745 + 1.67934i
\(34\) 0 0
\(35\) 249222.i 0.166079i
\(36\) 0 0
\(37\) 1.40444e6 0.749372 0.374686 0.927152i \(-0.377750\pi\)
0.374686 + 0.927152i \(0.377750\pi\)
\(38\) 0 0
\(39\) −1.74390e6 + 612415.i −0.753811 + 0.264720i
\(40\) 0 0
\(41\) 3.78445e6i 1.33927i −0.742691 0.669635i \(-0.766451\pi\)
0.742691 0.669635i \(-0.233549\pi\)
\(42\) 0 0
\(43\) 2.61805e6 0.765781 0.382890 0.923794i \(-0.374929\pi\)
0.382890 + 0.923794i \(0.374929\pi\)
\(44\) 0 0
\(45\) 1.21257e6 + 1.51354e6i 0.295705 + 0.369099i
\(46\) 0 0
\(47\) 7.44156e6i 1.52501i −0.646982 0.762505i \(-0.723969\pi\)
0.646982 0.762505i \(-0.276031\pi\)
\(48\) 0 0
\(49\) −5.05392e6 −0.876686
\(50\) 0 0
\(51\) 2.26533e6 + 6.45069e6i 0.334850 + 0.953511i
\(52\) 0 0
\(53\) 9.84213e6i 1.24734i −0.781687 0.623671i \(-0.785640\pi\)
0.781687 0.623671i \(-0.214360\pi\)
\(54\) 0 0
\(55\) 7.70286e6 0.841785
\(56\) 0 0
\(57\) 499382. 175371.i 0.0473079 0.0166134i
\(58\) 0 0
\(59\) 6.41059e6i 0.529042i −0.964380 0.264521i \(-0.914786\pi\)
0.964380 0.264521i \(-0.0852138\pi\)
\(60\) 0 0
\(61\) −7.03941e6 −0.508413 −0.254207 0.967150i \(-0.581814\pi\)
−0.254207 + 0.967150i \(0.581814\pi\)
\(62\) 0 0
\(63\) −4.31719e6 + 3.45874e6i −0.274056 + 0.219561i
\(64\) 0 0
\(65\) 6.74493e6i 0.377854i
\(66\) 0 0
\(67\) 1.35782e7 0.673817 0.336908 0.941537i \(-0.390619\pi\)
0.336908 + 0.941537i \(0.390619\pi\)
\(68\) 0 0
\(69\) 6.09857e6 + 1.73661e7i 0.269049 + 0.766138i
\(70\) 0 0
\(71\) 3.94753e7i 1.55343i 0.629850 + 0.776716i \(0.283116\pi\)
−0.629850 + 0.776716i \(0.716884\pi\)
\(72\) 0 0
\(73\) −5.36079e7 −1.88772 −0.943859 0.330348i \(-0.892834\pi\)
−0.943859 + 0.330348i \(0.892834\pi\)
\(74\) 0 0
\(75\) −2.31759e7 + 8.13881e6i −0.732472 + 0.257226i
\(76\) 0 0
\(77\) 2.19716e7i 0.625026i
\(78\) 0 0
\(79\) 4.45020e7 1.14254 0.571270 0.820763i \(-0.306451\pi\)
0.571270 + 0.820763i \(0.306451\pi\)
\(80\) 0 0
\(81\) 9.39020e6 4.20101e7i 0.218140 0.975918i
\(82\) 0 0
\(83\) 7.91003e6i 0.166673i −0.996521 0.0833366i \(-0.973442\pi\)
0.996521 0.0833366i \(-0.0265577\pi\)
\(84\) 0 0
\(85\) 2.49496e7 0.477955
\(86\) 0 0
\(87\) −1.81975e7 5.18188e7i −0.317640 0.904503i
\(88\) 0 0
\(89\) 2.17407e7i 0.346508i −0.984877 0.173254i \(-0.944572\pi\)
0.984877 0.173254i \(-0.0554281\pi\)
\(90\) 0 0
\(91\) −1.92392e7 −0.280557
\(92\) 0 0
\(93\) 1.31071e8 4.60290e7i 1.75217 0.615318i
\(94\) 0 0
\(95\) 1.93148e6i 0.0237135i
\(96\) 0 0
\(97\) −2.69154e7 −0.304028 −0.152014 0.988378i \(-0.548576\pi\)
−0.152014 + 0.988378i \(0.548576\pi\)
\(98\) 0 0
\(99\) −1.06901e8 1.33434e8i −1.11286 1.38908i
\(100\) 0 0
\(101\) 1.04904e8i 1.00810i 0.863674 + 0.504051i \(0.168158\pi\)
−0.863674 + 0.504051i \(0.831842\pi\)
\(102\) 0 0
\(103\) −1.36257e7 −0.121063 −0.0605313 0.998166i \(-0.519279\pi\)
−0.0605313 + 0.998166i \(0.519279\pi\)
\(104\) 0 0
\(105\) 6.68874e6 + 1.90467e7i 0.0550284 + 0.156697i
\(106\) 0 0
\(107\) 7.80372e6i 0.0595342i 0.999557 + 0.0297671i \(0.00947656\pi\)
−0.999557 + 0.0297671i \(0.990523\pi\)
\(108\) 0 0
\(109\) 1.58365e8 1.12190 0.560950 0.827850i \(-0.310436\pi\)
0.560950 + 0.827850i \(0.310436\pi\)
\(110\) 0 0
\(111\) −1.07334e8 + 3.76931e7i −0.707042 + 0.248296i
\(112\) 0 0
\(113\) 3.68590e7i 0.226063i 0.993591 + 0.113032i \(0.0360561\pi\)
−0.993591 + 0.113032i \(0.963944\pi\)
\(114\) 0 0
\(115\) 6.71676e7 0.384033
\(116\) 0 0
\(117\) 1.16840e8 9.36070e7i 0.623518 0.499534i
\(118\) 0 0
\(119\) 7.11659e7i 0.354882i
\(120\) 0 0
\(121\) −4.64729e8 −2.16799
\(122\) 0 0
\(123\) 1.01569e8 + 2.89225e8i 0.443752 + 1.26362i
\(124\) 0 0
\(125\) 2.05103e8i 0.840101i
\(126\) 0 0
\(127\) 9.88841e7 0.380112 0.190056 0.981773i \(-0.439133\pi\)
0.190056 + 0.981773i \(0.439133\pi\)
\(128\) 0 0
\(129\) −2.00083e8 + 7.02644e7i −0.722523 + 0.253733i
\(130\) 0 0
\(131\) 2.29100e8i 0.777930i 0.921253 + 0.388965i \(0.127167\pi\)
−0.921253 + 0.388965i \(0.872833\pi\)
\(132\) 0 0
\(133\) 5.50932e6 0.0176073
\(134\) 0 0
\(135\) −1.33291e8 8.31275e7i −0.401298 0.250270i
\(136\) 0 0
\(137\) 5.36141e8i 1.52194i −0.648788 0.760969i \(-0.724724\pi\)
0.648788 0.760969i \(-0.275276\pi\)
\(138\) 0 0
\(139\) 2.91861e8 0.781838 0.390919 0.920425i \(-0.372157\pi\)
0.390919 + 0.920425i \(0.372157\pi\)
\(140\) 0 0
\(141\) 1.99720e8 + 5.68717e8i 0.505295 + 1.43887i
\(142\) 0 0
\(143\) 5.94637e8i 1.42203i
\(144\) 0 0
\(145\) −2.00421e8 −0.453390
\(146\) 0 0
\(147\) 3.86243e8 1.35639e8i 0.827164 0.290480i
\(148\) 0 0
\(149\) 7.97219e8i 1.61746i −0.588182 0.808728i \(-0.700156\pi\)
0.588182 0.808728i \(-0.299844\pi\)
\(150\) 0 0
\(151\) 4.74739e7 0.0913160 0.0456580 0.998957i \(-0.485462\pi\)
0.0456580 + 0.998957i \(0.485462\pi\)
\(152\) 0 0
\(153\) −3.46253e8 4.32193e8i −0.631870 0.788700i
\(154\) 0 0
\(155\) 5.06948e8i 0.878287i
\(156\) 0 0
\(157\) 7.82849e8 1.28848 0.644242 0.764822i \(-0.277173\pi\)
0.644242 + 0.764822i \(0.277173\pi\)
\(158\) 0 0
\(159\) 2.64147e8 + 7.52180e8i 0.413293 + 1.17688i
\(160\) 0 0
\(161\) 1.91588e8i 0.285145i
\(162\) 0 0
\(163\) −4.30721e8 −0.610162 −0.305081 0.952326i \(-0.598684\pi\)
−0.305081 + 0.952326i \(0.598684\pi\)
\(164\) 0 0
\(165\) −5.88687e8 + 2.06733e8i −0.794234 + 0.278916i
\(166\) 0 0
\(167\) 1.06559e8i 0.137001i 0.997651 + 0.0685004i \(0.0218214\pi\)
−0.997651 + 0.0685004i \(0.978179\pi\)
\(168\) 0 0
\(169\) −2.95043e8 −0.361692
\(170\) 0 0
\(171\) −3.34583e7 + 2.68053e7i −0.0391309 + 0.0313499i
\(172\) 0 0
\(173\) 4.00012e8i 0.446569i 0.974753 + 0.223285i \(0.0716779\pi\)
−0.974753 + 0.223285i \(0.928322\pi\)
\(174\) 0 0
\(175\) −2.55683e8 −0.272615
\(176\) 0 0
\(177\) 1.72050e8 + 4.89926e8i 0.175292 + 0.499157i
\(178\) 0 0
\(179\) 5.23159e8i 0.509591i 0.966995 + 0.254796i \(0.0820082\pi\)
−0.966995 + 0.254796i \(0.917992\pi\)
\(180\) 0 0
\(181\) 5.28083e8 0.492026 0.246013 0.969267i \(-0.420879\pi\)
0.246013 + 0.969267i \(0.420879\pi\)
\(182\) 0 0
\(183\) 5.37983e8 1.88927e8i 0.479694 0.168457i
\(184\) 0 0
\(185\) 4.15139e8i 0.354410i
\(186\) 0 0
\(187\) −2.19957e9 −1.79875
\(188\) 0 0
\(189\) 2.37112e8 3.80199e8i 0.185826 0.297964i
\(190\) 0 0
\(191\) 7.37738e8i 0.554330i 0.960822 + 0.277165i \(0.0893949\pi\)
−0.960822 + 0.277165i \(0.910605\pi\)
\(192\) 0 0
\(193\) 1.92399e9 1.38667 0.693337 0.720613i \(-0.256140\pi\)
0.693337 + 0.720613i \(0.256140\pi\)
\(194\) 0 0
\(195\) −1.81023e8 5.15478e8i −0.125198 0.356510i
\(196\) 0 0
\(197\) 2.02664e9i 1.34559i 0.739831 + 0.672793i \(0.234906\pi\)
−0.739831 + 0.672793i \(0.765094\pi\)
\(198\) 0 0
\(199\) −5.91241e8 −0.377010 −0.188505 0.982072i \(-0.560364\pi\)
−0.188505 + 0.982072i \(0.560364\pi\)
\(200\) 0 0
\(201\) −1.03770e9 + 3.64417e8i −0.635754 + 0.223262i
\(202\) 0 0
\(203\) 5.71679e8i 0.336642i
\(204\) 0 0
\(205\) 1.11864e9 0.633398
\(206\) 0 0
\(207\) −9.32160e8 1.16352e9i −0.507702 0.633714i
\(208\) 0 0
\(209\) 1.70280e8i 0.0892438i
\(210\) 0 0
\(211\) −1.43041e9 −0.721656 −0.360828 0.932632i \(-0.617506\pi\)
−0.360828 + 0.932632i \(0.617506\pi\)
\(212\) 0 0
\(213\) −1.05946e9 3.01688e9i −0.514713 1.46568i
\(214\) 0 0
\(215\) 7.73869e8i 0.362171i
\(216\) 0 0
\(217\) 1.44601e9 0.652129
\(218\) 0 0
\(219\) 4.09695e9 1.43875e9i 1.78108 0.625474i
\(220\) 0 0
\(221\) 1.92603e9i 0.807409i
\(222\) 0 0
\(223\) 2.90210e9 1.17353 0.586764 0.809758i \(-0.300402\pi\)
0.586764 + 0.809758i \(0.300402\pi\)
\(224\) 0 0
\(225\) 1.55277e9 1.24401e9i 0.605867 0.485393i
\(226\) 0 0
\(227\) 7.54053e8i 0.283987i −0.989868 0.141993i \(-0.954649\pi\)
0.989868 0.141993i \(-0.0453512\pi\)
\(228\) 0 0
\(229\) −4.65000e9 −1.69087 −0.845436 0.534076i \(-0.820659\pi\)
−0.845436 + 0.534076i \(0.820659\pi\)
\(230\) 0 0
\(231\) −5.89682e8 1.67916e9i −0.207095 0.589719i
\(232\) 0 0
\(233\) 4.92943e8i 0.167253i −0.996497 0.0836264i \(-0.973350\pi\)
0.996497 0.0836264i \(-0.0266502\pi\)
\(234\) 0 0
\(235\) 2.19965e9 0.721243
\(236\) 0 0
\(237\) −3.40104e9 + 1.19436e9i −1.07800 + 0.378567i
\(238\) 0 0
\(239\) 2.01507e9i 0.617587i 0.951129 + 0.308794i \(0.0999253\pi\)
−0.951129 + 0.308794i \(0.900075\pi\)
\(240\) 0 0
\(241\) 1.02858e9 0.304908 0.152454 0.988311i \(-0.451282\pi\)
0.152454 + 0.988311i \(0.451282\pi\)
\(242\) 0 0
\(243\) 4.09843e8 + 3.46261e9i 0.117542 + 0.993068i
\(244\) 0 0
\(245\) 1.49389e9i 0.414623i
\(246\) 0 0
\(247\) −1.49104e8 −0.0400591
\(248\) 0 0
\(249\) 2.12293e8 + 6.04520e8i 0.0552253 + 0.157258i
\(250\) 0 0
\(251\) 6.55871e9i 1.65243i 0.563353 + 0.826216i \(0.309511\pi\)
−0.563353 + 0.826216i \(0.690489\pi\)
\(252\) 0 0
\(253\) −5.92153e9 −1.44528
\(254\) 0 0
\(255\) −1.90676e9 + 6.69607e8i −0.450956 + 0.158365i
\(256\) 0 0
\(257\) 5.48219e9i 1.25667i 0.777943 + 0.628335i \(0.216263\pi\)
−0.777943 + 0.628335i \(0.783737\pi\)
\(258\) 0 0
\(259\) −1.18414e9 −0.263150
\(260\) 0 0
\(261\) 2.78147e9 + 3.47183e9i 0.599394 + 0.748163i
\(262\) 0 0
\(263\) 7.06484e9i 1.47666i −0.674442 0.738328i \(-0.735616\pi\)
0.674442 0.738328i \(-0.264384\pi\)
\(264\) 0 0
\(265\) 2.90923e9 0.589922
\(266\) 0 0
\(267\) 5.83485e8 + 1.66152e9i 0.114811 + 0.326934i
\(268\) 0 0
\(269\) 2.54565e8i 0.0486172i 0.999705 + 0.0243086i \(0.00773843\pi\)
−0.999705 + 0.0243086i \(0.992262\pi\)
\(270\) 0 0
\(271\) 3.98030e9 0.737969 0.368985 0.929435i \(-0.379705\pi\)
0.368985 + 0.929435i \(0.379705\pi\)
\(272\) 0 0
\(273\) 1.47034e9 5.16350e8i 0.264709 0.0929594i
\(274\) 0 0
\(275\) 7.90254e9i 1.38177i
\(276\) 0 0
\(277\) −1.65715e9 −0.281478 −0.140739 0.990047i \(-0.544948\pi\)
−0.140739 + 0.990047i \(0.544948\pi\)
\(278\) 0 0
\(279\) −8.78169e9 + 7.03549e9i −1.44931 + 1.16112i
\(280\) 0 0
\(281\) 3.69038e9i 0.591896i −0.955204 0.295948i \(-0.904364\pi\)
0.955204 0.295948i \(-0.0956355\pi\)
\(282\) 0 0
\(283\) 1.37735e9 0.214733 0.107367 0.994220i \(-0.465758\pi\)
0.107367 + 0.994220i \(0.465758\pi\)
\(284\) 0 0
\(285\) 5.18378e7 + 1.47612e8i 0.00785719 + 0.0223739i
\(286\) 0 0
\(287\) 3.19081e9i 0.470299i
\(288\) 0 0
\(289\) −1.48639e8 −0.0213079
\(290\) 0 0
\(291\) 2.05699e9 7.22367e8i 0.286854 0.100736i
\(292\) 0 0
\(293\) 1.13174e10i 1.53559i −0.640698 0.767793i \(-0.721355\pi\)
0.640698 0.767793i \(-0.278645\pi\)
\(294\) 0 0
\(295\) 1.89490e9 0.250207
\(296\) 0 0
\(297\) 1.17510e10 + 7.32856e9i 1.51025 + 0.941874i
\(298\) 0 0
\(299\) 5.18513e9i 0.648746i
\(300\) 0 0
\(301\) −2.20738e9 −0.268912
\(302\) 0 0
\(303\) −2.81545e9 8.01720e9i −0.334024 0.951157i
\(304\) 0 0
\(305\) 2.08077e9i 0.240450i
\(306\) 0 0
\(307\) −1.20343e10 −1.35478 −0.677390 0.735624i \(-0.736889\pi\)
−0.677390 + 0.735624i \(0.736889\pi\)
\(308\) 0 0
\(309\) 1.04134e9 3.65692e8i 0.114224 0.0401127i
\(310\) 0 0
\(311\) 4.90375e9i 0.524188i −0.965042 0.262094i \(-0.915587\pi\)
0.965042 0.262094i \(-0.0844130\pi\)
\(312\) 0 0
\(313\) 5.18630e9 0.540357 0.270178 0.962810i \(-0.412917\pi\)
0.270178 + 0.962810i \(0.412917\pi\)
\(314\) 0 0
\(315\) −1.02237e9 1.27612e9i −0.103840 0.129613i
\(316\) 0 0
\(317\) 3.07294e9i 0.304311i −0.988357 0.152155i \(-0.951379\pi\)
0.988357 0.152155i \(-0.0486214\pi\)
\(318\) 0 0
\(319\) 1.76692e10 1.70630
\(320\) 0 0
\(321\) −2.09440e8 5.96395e8i −0.0197260 0.0561712i
\(322\) 0 0
\(323\) 5.51537e8i 0.0506716i
\(324\) 0 0
\(325\) 6.91978e9 0.620239
\(326\) 0 0
\(327\) −1.21030e10 + 4.25028e9i −1.05853 + 0.371729i
\(328\) 0 0
\(329\) 6.27425e9i 0.535523i
\(330\) 0 0
\(331\) −9.73266e9 −0.810811 −0.405405 0.914137i \(-0.632870\pi\)
−0.405405 + 0.914137i \(0.632870\pi\)
\(332\) 0 0
\(333\) 7.19131e9 5.76135e9i 0.584832 0.468541i
\(334\) 0 0
\(335\) 4.01356e9i 0.318677i
\(336\) 0 0
\(337\) −1.52628e10 −1.18336 −0.591678 0.806174i \(-0.701534\pi\)
−0.591678 + 0.806174i \(0.701534\pi\)
\(338\) 0 0
\(339\) −9.89238e8 2.81693e9i −0.0749035 0.213293i
\(340\) 0 0
\(341\) 4.46928e10i 3.30537i
\(342\) 0 0
\(343\) 9.12166e9 0.659018
\(344\) 0 0
\(345\) −5.13325e9 + 1.80267e9i −0.362340 + 0.127245i
\(346\) 0 0
\(347\) 1.25598e10i 0.866296i 0.901323 + 0.433148i \(0.142597\pi\)
−0.901323 + 0.433148i \(0.857403\pi\)
\(348\) 0 0
\(349\) −7.95406e9 −0.536151 −0.268075 0.963398i \(-0.586388\pi\)
−0.268075 + 0.963398i \(0.586388\pi\)
\(350\) 0 0
\(351\) −6.41718e9 + 1.02897e10i −0.422782 + 0.677912i
\(352\) 0 0
\(353\) 1.95049e10i 1.25616i −0.778148 0.628082i \(-0.783840\pi\)
0.778148 0.628082i \(-0.216160\pi\)
\(354\) 0 0
\(355\) −1.16685e10 −0.734685
\(356\) 0 0
\(357\) −1.90998e9 5.43882e9i −0.117586 0.334835i
\(358\) 0 0
\(359\) 2.51611e10i 1.51479i 0.652957 + 0.757395i \(0.273528\pi\)
−0.652957 + 0.757395i \(0.726472\pi\)
\(360\) 0 0
\(361\) −1.69409e10 −0.997486
\(362\) 0 0
\(363\) 3.55167e10 1.24726e10i 2.04553 0.718341i
\(364\) 0 0
\(365\) 1.58459e10i 0.892783i
\(366\) 0 0
\(367\) 2.38106e10 1.31252 0.656259 0.754536i \(-0.272138\pi\)
0.656259 + 0.754536i \(0.272138\pi\)
\(368\) 0 0
\(369\) −1.55247e10 1.93779e10i −0.837370 1.04520i
\(370\) 0 0
\(371\) 8.29826e9i 0.438017i
\(372\) 0 0
\(373\) 1.41525e10 0.731134 0.365567 0.930785i \(-0.380875\pi\)
0.365567 + 0.930785i \(0.380875\pi\)
\(374\) 0 0
\(375\) −5.50464e9 1.56749e10i −0.278358 0.792645i
\(376\) 0 0
\(377\) 1.54719e10i 0.765910i
\(378\) 0 0
\(379\) 1.84700e10 0.895180 0.447590 0.894239i \(-0.352282\pi\)
0.447590 + 0.894239i \(0.352282\pi\)
\(380\) 0 0
\(381\) −7.55716e9 + 2.65389e9i −0.358640 + 0.125946i
\(382\) 0 0
\(383\) 2.52881e10i 1.17523i −0.809142 0.587613i \(-0.800068\pi\)
0.809142 0.587613i \(-0.199932\pi\)
\(384\) 0 0
\(385\) −6.49456e9 −0.295602
\(386\) 0 0
\(387\) 1.34055e10 1.07398e10i 0.597638 0.478800i
\(388\) 0 0
\(389\) 1.87703e10i 0.819733i −0.912146 0.409866i \(-0.865575\pi\)
0.912146 0.409866i \(-0.134425\pi\)
\(390\) 0 0
\(391\) −1.91798e10 −0.820612
\(392\) 0 0
\(393\) −6.14869e9 1.75089e10i −0.257758 0.733986i
\(394\) 0 0
\(395\) 1.31543e10i 0.540356i
\(396\) 0 0
\(397\) 2.42988e10 0.978187 0.489094 0.872231i \(-0.337328\pi\)
0.489094 + 0.872231i \(0.337328\pi\)
\(398\) 0 0
\(399\) −4.21047e8 + 1.47862e8i −0.0166127 + 0.00583397i
\(400\) 0 0
\(401\) 1.27648e10i 0.493669i 0.969058 + 0.246835i \(0.0793904\pi\)
−0.969058 + 0.246835i \(0.920610\pi\)
\(402\) 0 0
\(403\) −3.91348e10 −1.48369
\(404\) 0 0
\(405\) 1.24177e10 + 2.77564e9i 0.461553 + 0.103168i
\(406\) 0 0
\(407\) 3.65988e10i 1.33380i
\(408\) 0 0
\(409\) 4.95148e9 0.176947 0.0884733 0.996079i \(-0.471801\pi\)
0.0884733 + 0.996079i \(0.471801\pi\)
\(410\) 0 0
\(411\) 1.43892e10 + 4.09743e10i 0.504277 + 1.43597i
\(412\) 0 0
\(413\) 5.40500e9i 0.185779i
\(414\) 0 0
\(415\) 2.33812e9 0.0788269
\(416\) 0 0
\(417\) −2.23053e10 + 7.83309e9i −0.737673 + 0.259053i
\(418\) 0 0
\(419\) 2.05827e10i 0.667799i −0.942609 0.333900i \(-0.891635\pi\)
0.942609 0.333900i \(-0.108365\pi\)
\(420\) 0 0
\(421\) 4.70625e10 1.49812 0.749060 0.662502i \(-0.230505\pi\)
0.749060 + 0.662502i \(0.230505\pi\)
\(422\) 0 0
\(423\) −3.05270e10 3.81038e10i −0.953503 1.19016i
\(424\) 0 0
\(425\) 2.55963e10i 0.784552i
\(426\) 0 0
\(427\) 5.93518e9 0.178535
\(428\) 0 0
\(429\) 1.59591e10 + 4.54448e10i 0.471172 + 1.34170i
\(430\) 0 0
\(431\) 6.30963e10i 1.82850i 0.405150 + 0.914250i \(0.367219\pi\)
−0.405150 + 0.914250i \(0.632781\pi\)
\(432\) 0 0
\(433\) 5.98569e9 0.170280 0.0851398 0.996369i \(-0.472866\pi\)
0.0851398 + 0.996369i \(0.472866\pi\)
\(434\) 0 0
\(435\) 1.53171e10 5.37899e9i 0.427778 0.150226i
\(436\) 0 0
\(437\) 1.48481e9i 0.0407142i
\(438\) 0 0
\(439\) −4.69975e10 −1.26537 −0.632683 0.774411i \(-0.718046\pi\)
−0.632683 + 0.774411i \(0.718046\pi\)
\(440\) 0 0
\(441\) −2.58781e10 + 2.07323e10i −0.684192 + 0.548143i
\(442\) 0 0
\(443\) 3.33997e10i 0.867218i −0.901101 0.433609i \(-0.857240\pi\)
0.901101 0.433609i \(-0.142760\pi\)
\(444\) 0 0
\(445\) 6.42631e9 0.163878
\(446\) 0 0
\(447\) 2.13961e10 + 6.09270e10i 0.535926 + 1.52609i
\(448\) 0 0
\(449\) 1.25339e10i 0.308391i 0.988040 + 0.154195i \(0.0492786\pi\)
−0.988040 + 0.154195i \(0.950721\pi\)
\(450\) 0 0
\(451\) −9.86203e10 −2.38375
\(452\) 0 0
\(453\) −3.62816e9 + 1.27412e9i −0.0861577 + 0.0302565i
\(454\) 0 0
\(455\) 5.68690e9i 0.132687i
\(456\) 0 0
\(457\) −5.49070e9 −0.125882 −0.0629409 0.998017i \(-0.520048\pi\)
−0.0629409 + 0.998017i \(0.520048\pi\)
\(458\) 0 0
\(459\) 3.80616e10 + 2.37372e10i 0.857504 + 0.534785i
\(460\) 0 0
\(461\) 3.42257e10i 0.757790i 0.925440 + 0.378895i \(0.123696\pi\)
−0.925440 + 0.378895i \(0.876304\pi\)
\(462\) 0 0
\(463\) 7.56677e10 1.64659 0.823297 0.567611i \(-0.192132\pi\)
0.823297 + 0.567611i \(0.192132\pi\)
\(464\) 0 0
\(465\) 1.36057e10 + 3.87432e10i 0.291011 + 0.828674i
\(466\) 0 0
\(467\) 1.38885e10i 0.292003i 0.989284 + 0.146002i \(0.0466405\pi\)
−0.989284 + 0.146002i \(0.953359\pi\)
\(468\) 0 0
\(469\) −1.14482e10 −0.236618
\(470\) 0 0
\(471\) −5.98288e10 + 2.10104e10i −1.21570 + 0.426925i
\(472\) 0 0
\(473\) 6.82246e10i 1.36300i
\(474\) 0 0
\(475\) −1.98154e9 −0.0389251
\(476\) 0 0
\(477\) −4.03747e10 5.03956e10i −0.779893 0.973463i
\(478\) 0 0
\(479\) 7.89474e10i 1.49967i −0.661625 0.749835i \(-0.730133\pi\)
0.661625 0.749835i \(-0.269867\pi\)
\(480\) 0 0
\(481\) 3.20474e10 0.598705
\(482\) 0 0
\(483\) −5.14193e9 1.46420e10i −0.0944795 0.269037i
\(484\) 0 0
\(485\) 7.95590e9i 0.143788i
\(486\) 0 0
\(487\) 4.98983e10 0.887095 0.443548 0.896251i \(-0.353720\pi\)
0.443548 + 0.896251i \(0.353720\pi\)
\(488\) 0 0
\(489\) 3.29176e10 1.15599e10i 0.575695 0.202170i
\(490\) 0 0
\(491\) 5.37198e10i 0.924290i −0.886804 0.462145i \(-0.847080\pi\)
0.886804 0.462145i \(-0.152920\pi\)
\(492\) 0 0
\(493\) 5.72306e10 0.968815
\(494\) 0 0
\(495\) 3.94417e10 3.15989e10i 0.656954 0.526321i
\(496\) 0 0
\(497\) 3.32831e10i 0.545504i
\(498\) 0 0
\(499\) −3.84919e10 −0.620822 −0.310411 0.950602i \(-0.600467\pi\)
−0.310411 + 0.950602i \(0.600467\pi\)
\(500\) 0 0
\(501\) −2.85987e9 8.14369e9i −0.0453937 0.129262i
\(502\) 0 0
\(503\) 2.52386e10i 0.394270i 0.980376 + 0.197135i \(0.0631637\pi\)
−0.980376 + 0.197135i \(0.936836\pi\)
\(504\) 0 0
\(505\) −3.10084e10 −0.476775
\(506\) 0 0
\(507\) 2.25485e10 7.91849e9i 0.341260 0.119842i
\(508\) 0 0
\(509\) 2.21872e10i 0.330546i −0.986248 0.165273i \(-0.947149\pi\)
0.986248 0.165273i \(-0.0528505\pi\)
\(510\) 0 0
\(511\) 4.51988e10 0.662892
\(512\) 0 0
\(513\) 1.83762e9 2.94655e9i 0.0265330 0.0425445i
\(514\) 0 0
\(515\) 4.02761e9i 0.0572557i
\(516\) 0 0
\(517\) −1.93922e11 −2.71434
\(518\) 0 0
\(519\) −1.07357e10 3.05707e10i −0.147966 0.421343i
\(520\) 0 0
\(521\) 9.85762e10i 1.33789i 0.743311 + 0.668946i \(0.233254\pi\)
−0.743311 + 0.668946i \(0.766746\pi\)
\(522\) 0 0
\(523\) 1.15879e11 1.54881 0.774406 0.632689i \(-0.218049\pi\)
0.774406 + 0.632689i \(0.218049\pi\)
\(524\) 0 0
\(525\) 1.95404e10 6.86213e9i 0.257215 0.0903278i
\(526\) 0 0
\(527\) 1.44760e11i 1.87675i
\(528\) 0 0
\(529\) 2.66763e10 0.340645
\(530\) 0 0
\(531\) −2.62977e10 3.28248e10i −0.330780 0.412880i
\(532\) 0 0
\(533\) 8.63559e10i 1.07000i
\(534\) 0 0
\(535\) −2.30670e9 −0.0281563
\(536\) 0 0
\(537\) −1.40408e10 3.99822e10i −0.168847 0.480805i
\(538\) 0 0
\(539\) 1.31702e11i 1.56040i
\(540\) 0 0
\(541\) −6.56153e10 −0.765978 −0.382989 0.923753i \(-0.625105\pi\)
−0.382989 + 0.923753i \(0.625105\pi\)
\(542\) 0 0
\(543\) −4.03585e10 + 1.41729e10i −0.464232 + 0.163027i
\(544\) 0 0
\(545\) 4.68111e10i 0.530595i
\(546\) 0 0
\(547\) 1.02875e10 0.114911 0.0574556 0.998348i \(-0.481701\pi\)
0.0574556 + 0.998348i \(0.481701\pi\)
\(548\) 0 0
\(549\) −3.60445e10 + 2.88772e10i −0.396780 + 0.317882i
\(550\) 0 0
\(551\) 4.43052e9i 0.0480672i
\(552\) 0 0
\(553\) −3.75213e10 −0.401215
\(554\) 0 0
\(555\) −1.11417e10 3.17268e10i −0.117430 0.334390i
\(556\) 0 0
\(557\) 1.04225e11i 1.08280i 0.840764 + 0.541402i \(0.182106\pi\)
−0.840764 + 0.541402i \(0.817894\pi\)
\(558\) 0 0
\(559\) 5.97402e10 0.611814
\(560\) 0 0
\(561\) 1.68101e11 5.90329e10i 1.69714 0.595995i
\(562\) 0 0
\(563\) 5.86461e9i 0.0583721i −0.999574 0.0291860i \(-0.990708\pi\)
0.999574 0.0291860i \(-0.00929153\pi\)
\(564\) 0 0
\(565\) −1.08951e10 −0.106915
\(566\) 0 0
\(567\) −7.91722e9 + 3.54202e10i −0.0766021 + 0.342704i
\(568\) 0 0
\(569\) 1.06465e11i 1.01568i 0.861450 + 0.507842i \(0.169557\pi\)
−0.861450 + 0.507842i \(0.830443\pi\)
\(570\) 0 0
\(571\) 5.77376e10 0.543143 0.271572 0.962418i \(-0.412457\pi\)
0.271572 + 0.962418i \(0.412457\pi\)
\(572\) 0 0
\(573\) −1.97997e10 5.63812e10i −0.183671 0.523017i
\(574\) 0 0
\(575\) 6.89088e10i 0.630381i
\(576\) 0 0
\(577\) 4.53645e10 0.409273 0.204636 0.978838i \(-0.434399\pi\)
0.204636 + 0.978838i \(0.434399\pi\)
\(578\) 0 0
\(579\) −1.47040e11 + 5.16370e10i −1.30834 + 0.459459i
\(580\) 0 0
\(581\) 6.66924e9i 0.0585291i
\(582\) 0 0
\(583\) −2.56479e11 −2.22013
\(584\) 0 0
\(585\) 2.76692e10 + 3.45367e10i 0.236251 + 0.294888i
\(586\) 0 0
\(587\) 1.19249e11i 1.00439i 0.864753 + 0.502197i \(0.167475\pi\)
−0.864753 + 0.502197i \(0.832525\pi\)
\(588\) 0 0
\(589\) 1.12066e10 0.0931137
\(590\) 0 0
\(591\) −5.43918e10 1.54885e11i −0.445845 1.26958i
\(592\) 0 0
\(593\) 1.51133e11i 1.22219i 0.791556 + 0.611097i \(0.209271\pi\)
−0.791556 + 0.611097i \(0.790729\pi\)
\(594\) 0 0
\(595\) −2.10359e10 −0.167839
\(596\) 0 0
\(597\) 4.51853e10 1.58680e10i 0.355713 0.124918i
\(598\) 0 0
\(599\) 1.78703e11i 1.38811i −0.719922 0.694055i \(-0.755823\pi\)
0.719922 0.694055i \(-0.244177\pi\)
\(600\) 0 0
\(601\) 2.28123e11 1.74852 0.874262 0.485455i \(-0.161346\pi\)
0.874262 + 0.485455i \(0.161346\pi\)
\(602\) 0 0
\(603\) 6.95256e10 5.57007e10i 0.525866 0.421300i
\(604\) 0 0
\(605\) 1.37369e11i 1.02534i
\(606\) 0 0
\(607\) 1.41216e11 1.04023 0.520113 0.854097i \(-0.325890\pi\)
0.520113 + 0.854097i \(0.325890\pi\)
\(608\) 0 0
\(609\) 1.53430e10 + 4.36903e10i 0.111543 + 0.317626i
\(610\) 0 0
\(611\) 1.69806e11i 1.21839i
\(612\) 0 0
\(613\) −1.11995e11 −0.793150 −0.396575 0.918002i \(-0.629801\pi\)
−0.396575 + 0.918002i \(0.629801\pi\)
\(614\) 0 0
\(615\) −8.54918e10 + 3.00227e10i −0.597619 + 0.209869i
\(616\) 0 0
\(617\) 2.66321e11i 1.83766i −0.394658 0.918828i \(-0.629137\pi\)
0.394658 0.918828i \(-0.370863\pi\)
\(618\) 0 0
\(619\) 4.11190e10 0.280078 0.140039 0.990146i \(-0.455277\pi\)
0.140039 + 0.990146i \(0.455277\pi\)
\(620\) 0 0
\(621\) 1.02467e11 + 6.39038e10i 0.688997 + 0.429695i
\(622\) 0 0
\(623\) 1.83303e10i 0.121680i
\(624\) 0 0
\(625\) 5.78316e10 0.379005
\(626\) 0 0
\(627\) −4.57005e9 1.30135e10i −0.0295699 0.0842026i
\(628\) 0 0
\(629\) 1.18544e11i 0.757314i
\(630\) 0 0
\(631\) −8.58535e10 −0.541553 −0.270776 0.962642i \(-0.587280\pi\)
−0.270776 + 0.962642i \(0.587280\pi\)
\(632\) 0 0
\(633\) 1.09318e11 3.83900e10i 0.680891 0.239113i
\(634\) 0 0
\(635\) 2.92291e10i 0.179771i
\(636\) 0 0
\(637\) −1.15323e11 −0.700422
\(638\) 0 0
\(639\) 1.61937e11 + 2.02129e11i 0.971275 + 1.21234i
\(640\) 0 0
\(641\) 1.12986e11i 0.669256i −0.942350 0.334628i \(-0.891389\pi\)
0.942350 0.334628i \(-0.108611\pi\)
\(642\) 0 0
\(643\) 8.53586e10 0.499348 0.249674 0.968330i \(-0.419677\pi\)
0.249674 + 0.968330i \(0.419677\pi\)
\(644\) 0 0
\(645\) −2.07694e10 5.91425e10i −0.120001 0.341712i
\(646\) 0 0
\(647\) 5.35767e10i 0.305745i −0.988246 0.152872i \(-0.951148\pi\)
0.988246 0.152872i \(-0.0488523\pi\)
\(648\) 0 0
\(649\) −1.67056e11 −0.941634
\(650\) 0 0
\(651\) −1.10511e11 + 3.88087e10i −0.615291 + 0.216076i
\(652\) 0 0
\(653\) 3.03189e11i 1.66748i 0.552156 + 0.833741i \(0.313805\pi\)
−0.552156 + 0.833741i \(0.686195\pi\)
\(654\) 0 0
\(655\) −6.77196e10 −0.367916
\(656\) 0 0
\(657\) −2.74494e11 + 2.19912e11i −1.47323 + 1.18028i
\(658\) 0 0
\(659\) 1.05655e11i 0.560206i −0.959970 0.280103i \(-0.909631\pi\)
0.959970 0.280103i \(-0.0903687\pi\)
\(660\) 0 0
\(661\) 9.52659e10 0.499036 0.249518 0.968370i \(-0.419728\pi\)
0.249518 + 0.968370i \(0.419728\pi\)
\(662\) 0 0
\(663\) 5.16916e10 + 1.47196e11i 0.267526 + 0.761800i
\(664\) 0 0
\(665\) 1.62850e9i 0.00832723i
\(666\) 0 0
\(667\) 1.54073e11 0.778435
\(668\) 0 0
\(669\) −2.21792e11 + 7.78879e10i −1.10724 + 0.388835i
\(670\) 0 0
\(671\) 1.83442e11i 0.904917i
\(672\) 0 0
\(673\) 1.22063e10 0.0595008 0.0297504 0.999557i \(-0.490529\pi\)
0.0297504 + 0.999557i \(0.490529\pi\)
\(674\) 0 0
\(675\) −8.52824e10 + 1.36747e11i −0.410813 + 0.658721i
\(676\) 0 0
\(677\) 9.96131e10i 0.474200i 0.971485 + 0.237100i \(0.0761969\pi\)
−0.971485 + 0.237100i \(0.923803\pi\)
\(678\) 0 0
\(679\) 2.26933e10 0.106763
\(680\) 0 0
\(681\) 2.02376e10 + 5.76281e10i 0.0940959 + 0.267945i
\(682\) 0 0
\(683\) 6.00211e10i 0.275817i 0.990445 + 0.137909i \(0.0440380\pi\)
−0.990445 + 0.137909i \(0.955962\pi\)
\(684\) 0 0
\(685\) 1.58478e11 0.719790
\(686\) 0 0
\(687\) 3.55374e11 1.24799e11i 1.59536 0.560252i
\(688\) 0 0
\(689\) 2.24584e11i 0.996554i
\(690\) 0 0
\(691\) −3.50694e11 −1.53821 −0.769107 0.639120i \(-0.779299\pi\)
−0.769107 + 0.639120i \(0.779299\pi\)
\(692\) 0 0
\(693\) 9.01323e10 + 1.12503e11i 0.390794 + 0.487788i
\(694\) 0 0
\(695\) 8.62710e10i 0.369765i
\(696\) 0 0
\(697\) −3.19431e11 −1.35346
\(698\) 0 0
\(699\) 1.32298e10 + 3.76729e10i 0.0554173 + 0.157805i
\(700\) 0 0
\(701\) 4.54851e11i 1.88364i −0.336123 0.941818i \(-0.609116\pi\)
0.336123 0.941818i \(-0.390884\pi\)
\(702\) 0 0
\(703\) −9.17709e9 −0.0375737
\(704\) 0 0
\(705\) −1.68107e11 + 5.90351e10i −0.680501 + 0.238976i
\(706\) 0 0
\(707\) 8.84480e10i 0.354006i
\(708\) 0 0
\(709\) 2.96653e11 1.17399 0.586995 0.809591i \(-0.300311\pi\)
0.586995 + 0.809591i \(0.300311\pi\)
\(710\) 0 0
\(711\) 2.27868e11 1.82557e11i 0.891671 0.714366i
\(712\) 0 0
\(713\) 3.89713e11i 1.50795i
\(714\) 0 0
\(715\) 1.75768e11 0.672537
\(716\) 0 0
\(717\) −5.40813e10 1.54001e11i −0.204631 0.582701i
\(718\) 0 0
\(719\) 3.07407e10i 0.115027i 0.998345 + 0.0575134i \(0.0183172\pi\)
−0.998345 + 0.0575134i \(0.981683\pi\)
\(720\) 0 0
\(721\) 1.14883e10 0.0425124
\(722\) 0 0
\(723\) −7.86085e10 + 2.76054e10i −0.287685 + 0.101028i
\(724\) 0 0
\(725\) 2.05617e11i 0.744228i
\(726\) 0 0
\(727\) −1.46690e11 −0.525124 −0.262562 0.964915i \(-0.584567\pi\)
−0.262562 + 0.964915i \(0.584567\pi\)
\(728\) 0 0
\(729\) −1.24253e11 2.53629e11i −0.439944 0.898025i
\(730\) 0 0
\(731\) 2.20980e11i 0.773896i
\(732\) 0 0
\(733\) −1.69832e11 −0.588308 −0.294154 0.955758i \(-0.595038\pi\)
−0.294154 + 0.955758i \(0.595038\pi\)
\(734\) 0 0
\(735\) 4.00936e10 + 1.14169e11i 0.137381 + 0.391201i
\(736\) 0 0
\(737\) 3.53837e11i 1.19932i
\(738\) 0 0
\(739\) 3.52927e11 1.18333 0.591667 0.806182i \(-0.298470\pi\)
0.591667 + 0.806182i \(0.298470\pi\)
\(740\) 0 0
\(741\) 1.13952e10 4.00172e9i 0.0377962 0.0132731i
\(742\) 0 0
\(743\) 9.72332e10i 0.319050i 0.987194 + 0.159525i \(0.0509963\pi\)
−0.987194 + 0.159525i \(0.949004\pi\)
\(744\) 0 0
\(745\) 2.35650e11 0.764965
\(746\) 0 0
\(747\) −3.24487e10 4.05025e10i −0.104211 0.130077i
\(748\) 0 0
\(749\) 6.57960e9i 0.0209061i
\(750\) 0 0
\(751\) −3.61629e11 −1.13685 −0.568425 0.822735i \(-0.692447\pi\)
−0.568425 + 0.822735i \(0.692447\pi\)
\(752\) 0 0
\(753\) −1.76026e11 5.01246e11i −0.547515 1.55909i
\(754\) 0 0
\(755\) 1.40328e10i 0.0431873i
\(756\) 0 0
\(757\) 3.48181e11 1.06028 0.530141 0.847909i \(-0.322139\pi\)
0.530141 + 0.847909i \(0.322139\pi\)
\(758\) 0 0
\(759\) 4.52550e11 1.58925e11i 1.36364 0.478877i
\(760\) 0 0
\(761\) 3.78907e11i 1.12978i 0.825166 + 0.564890i \(0.191081\pi\)
−0.825166 + 0.564890i \(0.808919\pi\)
\(762\) 0 0
\(763\) −1.33524e11 −0.393967
\(764\) 0 0
\(765\) 1.27752e11 1.02349e11i 0.373010 0.298839i
\(766\) 0 0
\(767\) 1.46281e11i 0.422674i
\(768\) 0 0
\(769\) −3.07319e11 −0.878788 −0.439394 0.898294i \(-0.644807\pi\)
−0.439394 + 0.898294i \(0.644807\pi\)
\(770\) 0 0
\(771\) −1.47133e11 4.18973e11i −0.416384 1.18568i
\(772\) 0 0
\(773\) 9.66999e10i 0.270837i 0.990788 + 0.135418i \(0.0432379\pi\)
−0.990788 + 0.135418i \(0.956762\pi\)
\(774\) 0 0
\(775\) −5.20089e11 −1.44169
\(776\) 0 0
\(777\) 9.04971e10 3.17804e10i 0.248285 0.0871918i
\(778\) 0 0
\(779\) 2.47288e10i 0.0671512i
\(780\) 0 0
\(781\) 1.02870e12 2.76493
\(782\) 0 0
\(783\) −3.05751e11 1.90682e11i −0.813430 0.507298i
\(784\) 0 0
\(785\) 2.31402e11i 0.609380i
\(786\) 0 0
\(787\) 4.67767e11 1.21936 0.609679 0.792649i \(-0.291299\pi\)
0.609679 + 0.792649i \(0.291299\pi\)
\(788\) 0 0
\(789\) 1.89609e11 + 5.39926e11i 0.489273 + 1.39324i
\(790\) 0 0
\(791\) 3.10772e10i 0.0793845i
\(792\) 0 0
\(793\) −1.60629e11 −0.406193
\(794\) 0 0
\(795\) −2.22336e11 + 7.80792e10i −0.556598 + 0.195464i
\(796\) 0 0
\(797\) 3.49248e11i 0.865566i 0.901498 + 0.432783i \(0.142468\pi\)
−0.901498 + 0.432783i \(0.857532\pi\)
\(798\) 0 0
\(799\) −6.28114e11 −1.54117
\(800\) 0 0
\(801\) −8.91851e10 1.11321e11i −0.216652 0.270425i
\(802\) 0 0
\(803\) 1.39698e12i 3.35992i
\(804\) 0 0
\(805\) −5.66314e10 −0.134857
\(806\) 0 0
\(807\) −6.83214e9 1.94550e10i −0.0161088 0.0458709i
\(808\) 0 0
\(809\) 4.82005e11i 1.12527i −0.826705 0.562636i \(-0.809787\pi\)
0.826705 0.562636i \(-0.190213\pi\)
\(810\) 0 0
\(811\) −3.66723e11 −0.847726 −0.423863 0.905726i \(-0.639326\pi\)
−0.423863 + 0.905726i \(0.639326\pi\)
\(812\) 0 0
\(813\) −3.04192e11 + 1.06825e11i −0.696283 + 0.244518i
\(814\) 0 0
\(815\) 1.27317e11i 0.288572i
\(816\) 0 0
\(817\) −1.71072e10 −0.0383964
\(818\) 0 0
\(819\) −9.85122e10 + 7.89235e10i −0.218955 + 0.175417i
\(820\) 0 0
\(821\) 6.21129e11i 1.36713i 0.729891 + 0.683563i \(0.239571\pi\)
−0.729891 + 0.683563i \(0.760429\pi\)
\(822\) 0 0
\(823\) 2.26082e11 0.492795 0.246397 0.969169i \(-0.420753\pi\)
0.246397 + 0.969169i \(0.420753\pi\)
\(824\) 0 0
\(825\) 2.12092e11 + 6.03947e11i 0.457834 + 1.30372i
\(826\) 0 0
\(827\) 6.30674e11i 1.34829i −0.738600 0.674144i \(-0.764513\pi\)
0.738600 0.674144i \(-0.235487\pi\)
\(828\) 0 0
\(829\) −5.87179e11 −1.24323 −0.621617 0.783322i \(-0.713524\pi\)
−0.621617 + 0.783322i \(0.713524\pi\)
\(830\) 0 0
\(831\) 1.26647e11 4.44754e10i 0.265577 0.0932644i
\(832\) 0 0
\(833\) 4.26582e11i 0.885977i
\(834\) 0 0
\(835\) −3.14976e10 −0.0647936
\(836\) 0 0
\(837\) 4.82314e11 7.73370e11i 0.982717 1.57574i
\(838\) 0 0
\(839\) 2.32236e11i 0.468685i 0.972154 + 0.234343i \(0.0752938\pi\)
−0.972154 + 0.234343i \(0.924706\pi\)
\(840\) 0 0
\(841\) 4.05096e10 0.0809793
\(842\) 0 0
\(843\) 9.90439e10 + 2.82035e11i 0.196118 + 0.558461i
\(844\) 0 0
\(845\) 8.72116e10i 0.171060i
\(846\) 0 0
\(847\) 3.91830e11 0.761314
\(848\) 0 0
\(849\) −1.05263e11 + 3.69660e10i −0.202603 + 0.0711494i
\(850\) 0 0
\(851\) 3.19136e11i 0.608495i
\(852\) 0 0
\(853\) −2.90901e11 −0.549476 −0.274738 0.961519i \(-0.588591\pi\)
−0.274738 + 0.961519i \(0.588591\pi\)
\(854\) 0 0
\(855\) −7.92335e9 9.88992e9i −0.0148267 0.0185067i
\(856\) 0 0
\(857\) 7.52371e11i 1.39479i −0.716687 0.697395i \(-0.754343\pi\)
0.716687 0.697395i \(-0.245657\pi\)
\(858\) 0 0
\(859\) 8.20314e11 1.50663 0.753316 0.657658i \(-0.228453\pi\)
0.753316 + 0.657658i \(0.228453\pi\)
\(860\) 0 0
\(861\) −8.56364e10 2.43856e11i −0.155828 0.443732i
\(862\) 0 0
\(863\) 3.62283e11i 0.653138i −0.945173 0.326569i \(-0.894108\pi\)
0.945173 0.326569i \(-0.105892\pi\)
\(864\) 0 0
\(865\) −1.18239e11 −0.211202
\(866\) 0 0
\(867\) 1.13597e10 3.98924e9i 0.0201043 0.00706015i
\(868\) 0 0
\(869\) 1.15969e12i 2.03359i
\(870\) 0 0
\(871\) 3.09834e11 0.538340
\(872\) 0 0
\(873\) −1.37817e11 + 1.10413e11i −0.237272 + 0.190092i
\(874\) 0 0
\(875\) 1.72930e11i 0.295010i
\(876\) 0 0
\(877\) −3.24793e11 −0.549046 −0.274523 0.961581i \(-0.588520\pi\)
−0.274523 + 0.961581i \(0.588520\pi\)
\(878\) 0 0
\(879\) 3.03740e11 + 8.64923e11i 0.508799 + 1.44884i
\(880\) 0 0
\(881\) 3.90012e11i 0.647402i −0.946159 0.323701i \(-0.895073\pi\)
0.946159 0.323701i \(-0.104927\pi\)
\(882\) 0 0
\(883\) 1.04920e12 1.72591 0.862953 0.505283i \(-0.168612\pi\)
0.862953 + 0.505283i \(0.168612\pi\)
\(884\) 0 0
\(885\) −1.44817e11 + 5.08562e10i −0.236073 + 0.0829032i
\(886\) 0 0
\(887\) 4.31684e11i 0.697383i 0.937238 + 0.348691i \(0.113374\pi\)
−0.937238 + 0.348691i \(0.886626\pi\)
\(888\) 0 0
\(889\) −8.33728e10 −0.133480
\(890\) 0 0
\(891\) −1.09475e12 2.44702e11i −1.73702 0.388264i
\(892\) 0 0
\(893\) 4.86255e10i 0.0764643i
\(894\) 0 0
\(895\) −1.54640e11 −0.241008
\(896\) 0 0
\(897\) 1.39161e11 + 3.96271e11i 0.214955 + 0.612100i
\(898\) 0 0
\(899\) 1.16286e12i 1.78029i
\(900\) 0 0
\(901\) −8.30736e11 −1.26056
\(902\) 0 0
\(903\) 1.68697e11 5.92425e10i 0.253722 0.0891010i
\(904\) 0 0
\(905\) 1.56096e11i 0.232700i
\(906\) 0 0
\(907\) −5.00137e11 −0.739027 −0.369513 0.929225i \(-0.620476\pi\)
−0.369513 + 0.929225i \(0.620476\pi\)
\(908\) 0 0
\(909\) 4.30338e11 + 5.37148e11i 0.630310 + 0.786753i
\(910\) 0 0
\(911\) 5.09319e11i 0.739463i −0.929139 0.369732i \(-0.879450\pi\)
0.929139 0.369732i \(-0.120550\pi\)
\(912\) 0 0
\(913\) −2.06130e11 −0.296659
\(914\) 0 0
\(915\) 5.58447e10 + 1.59022e11i 0.0796705 + 0.226868i
\(916\) 0 0
\(917\) 1.93163e11i 0.273178i
\(918\) 0 0
\(919\) 9.61924e11 1.34859 0.674293 0.738464i \(-0.264448\pi\)
0.674293 + 0.738464i \(0.264448\pi\)
\(920\) 0 0
\(921\) 9.19718e11 3.22983e11i 1.27825 0.448891i
\(922\) 0 0
\(923\) 9.00771e11i 1.24110i
\(924\) 0 0
\(925\) 4.25900e11 0.581756
\(926\) 0 0
\(927\) −6.97690e10 + 5.58957e10i −0.0944808 + 0.0756936i
\(928\) 0 0
\(929\) 2.64711e11i 0.355393i 0.984085 + 0.177697i \(0.0568646\pi\)
−0.984085 + 0.177697i \(0.943135\pi\)
\(930\) 0 0
\(931\) 3.30239e10 0.0439572
\(932\) 0 0
\(933\) 1.31609e11 + 3.74767e11i 0.173684 + 0.494577i
\(934\) 0 0
\(935\) 6.50168e11i 0.850706i
\(936\) 0 0
\(937\) −2.30761e11 −0.299367 −0.149683 0.988734i \(-0.547825\pi\)
−0.149683 + 0.988734i \(0.547825\pi\)
\(938\) 0 0
\(939\) −3.96360e11 + 1.39192e11i −0.509833 + 0.179041i
\(940\) 0 0
\(941\) 3.62828e11i 0.462746i −0.972865 0.231373i \(-0.925678\pi\)
0.972865 0.231373i \(-0.0743217\pi\)
\(942\) 0 0
\(943\) −8.59952e11 −1.08750
\(944\) 0 0
\(945\) 1.12383e11 + 7.00878e10i 0.140920 + 0.0878851i
\(946\) 0 0
\(947\) 5.79208e11i 0.720169i 0.932920 + 0.360085i \(0.117252\pi\)
−0.932920 + 0.360085i \(0.882748\pi\)
\(948\) 0 0
\(949\) −1.22326e12 −1.50818
\(950\) 0 0
\(951\) 8.24729e10 + 2.34848e11i 0.100830 + 0.287121i
\(952\) 0 0
\(953\) 3.01850e11i 0.365949i 0.983118 + 0.182974i \(0.0585725\pi\)
−0.983118 + 0.182974i \(0.941427\pi\)
\(954\) 0 0
\(955\) −2.18067e11 −0.262167
\(956\) 0 0
\(957\) −1.35036e12 + 4.74214e11i −1.60991 + 0.565363i
\(958\) 0 0
\(959\) 4.52040e11i 0.534445i
\(960\) 0 0
\(961\) 2.08847e12 2.44870
\(962\) 0 0
\(963\) 3.20126e10 + 3.99581e10i 0.0372234 + 0.0464622i
\(964\) 0 0
\(965\) 5.68713e11i 0.655818i
\(966\) 0 0
\(967\) 7.16225e11 0.819112 0.409556 0.912285i \(-0.365684\pi\)
0.409556 + 0.912285i \(0.365684\pi\)
\(968\) 0 0
\(969\) −1.48024e10 4.21509e10i −0.0167895 0.0478092i
\(970\) 0 0
\(971\) 4.93024e10i 0.0554615i −0.999615 0.0277307i \(-0.991172\pi\)
0.999615 0.0277307i \(-0.00882810\pi\)
\(972\) 0 0
\(973\) −2.46078e11 −0.274551
\(974\) 0 0
\(975\) −5.28840e11 + 1.85716e11i −0.585202 + 0.205509i
\(976\) 0 0
\(977\) 1.33140e12i 1.46127i 0.682769 + 0.730634i \(0.260775\pi\)
−0.682769 + 0.730634i \(0.739225\pi\)
\(978\) 0 0
\(979\) −5.66547e11 −0.616744
\(980\) 0 0
\(981\) 8.10893e11 6.49651e11i 0.875564 0.701461i
\(982\) 0 0
\(983\) 1.09952e12i 1.17758i 0.808287 + 0.588789i \(0.200395\pi\)
−0.808287 + 0.588789i \(0.799605\pi\)
\(984\) 0 0
\(985\) −5.99053e11 −0.636386
\(986\) 0 0
\(987\) −1.68391e11 4.79506e11i −0.177440 0.505273i
\(988\) 0 0
\(989\) 5.94907e11i 0.621819i
\(990\) 0 0
\(991\) −8.46177e11 −0.877337 −0.438669 0.898649i \(-0.644550\pi\)
−0.438669 + 0.898649i \(0.644550\pi\)
\(992\) 0 0
\(993\) 7.43813e11 2.61209e11i 0.765009 0.268653i
\(994\) 0 0
\(995\) 1.74765e11i 0.178304i
\(996\) 0 0
\(997\) −8.25610e11 −0.835592 −0.417796 0.908541i \(-0.637197\pi\)
−0.417796 + 0.908541i \(0.637197\pi\)
\(998\) 0 0
\(999\) −3.94966e11 + 6.33311e11i −0.396550 + 0.635851i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 24.9.e.a.17.2 yes 8
3.2 odd 2 inner 24.9.e.a.17.1 8
4.3 odd 2 48.9.e.e.17.7 8
8.3 odd 2 192.9.e.j.65.2 8
8.5 even 2 192.9.e.i.65.7 8
12.11 even 2 48.9.e.e.17.8 8
24.5 odd 2 192.9.e.i.65.8 8
24.11 even 2 192.9.e.j.65.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.9.e.a.17.1 8 3.2 odd 2 inner
24.9.e.a.17.2 yes 8 1.1 even 1 trivial
48.9.e.e.17.7 8 4.3 odd 2
48.9.e.e.17.8 8 12.11 even 2
192.9.e.i.65.7 8 8.5 even 2
192.9.e.i.65.8 8 24.5 odd 2
192.9.e.j.65.1 8 24.11 even 2
192.9.e.j.65.2 8 8.3 odd 2