Properties

Label 24.7.e.a.17.6
Level $24$
Weight $7$
Character 24.17
Analytic conductor $5.521$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24,7,Mod(17,24)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24.17"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 7, names="a")
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 24.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.52129800688\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1173604352.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 14x^{4} - 12x^{3} + 112x^{2} + 192x + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 17.6
Root \(-0.624336 + 1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 24.17
Dual form 24.7.e.a.17.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(23.4408 + 13.3988i) q^{3} +100.147i q^{5} +56.7723 q^{7} +(369.944 + 628.158i) q^{9} +1563.26i q^{11} +2799.15 q^{13} +(-1341.85 + 2347.52i) q^{15} -7754.84i q^{17} -10548.4 q^{19} +(1330.79 + 760.681i) q^{21} -18460.5i q^{23} +5595.62 q^{25} +(255.212 + 19681.3i) q^{27} -20877.9i q^{29} -3285.23 q^{31} +(-20945.8 + 36644.1i) q^{33} +5685.57i q^{35} +39303.2 q^{37} +(65614.4 + 37505.3i) q^{39} +44619.0i q^{41} +23655.3 q^{43} +(-62908.0 + 37048.7i) q^{45} -65090.8i q^{47} -114426. q^{49} +(103906. - 181780. i) q^{51} -65760.4i q^{53} -156555. q^{55} +(-247262. - 141335. i) q^{57} +36299.9i q^{59} +412439. q^{61} +(21002.6 + 35662.0i) q^{63} +280326. i q^{65} -265379. q^{67} +(247348. - 432728. i) q^{69} +552756. i q^{71} +124949. q^{73} +(131166. + 74974.6i) q^{75} +88749.8i q^{77} -281411. q^{79} +(-257724. + 464766. i) q^{81} +249255. i q^{83} +776622. q^{85} +(279739. - 489394. i) q^{87} -30731.5i q^{89} +158914. q^{91} +(-77008.6 - 44018.2i) q^{93} -1.05638e6i q^{95} -1.49482e6 q^{97} +(-981974. + 578318. i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{3} + 156 q^{7} - 74 q^{9} + 156 q^{13} + 2912 q^{15} - 4500 q^{19} - 15108 q^{21} + 21366 q^{25} + 37574 q^{27} - 74244 q^{31} - 83104 q^{33} + 171132 q^{37} + 200444 q^{39} - 291060 q^{43}+ \cdots - 2849600 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 23.4408 + 13.3988i 0.868178 + 0.496252i
\(4\) 0 0
\(5\) 100.147i 0.801174i 0.916259 + 0.400587i \(0.131194\pi\)
−0.916259 + 0.400587i \(0.868806\pi\)
\(6\) 0 0
\(7\) 56.7723 0.165517 0.0827585 0.996570i \(-0.473627\pi\)
0.0827585 + 0.996570i \(0.473627\pi\)
\(8\) 0 0
\(9\) 369.944 + 628.158i 0.507467 + 0.861671i
\(10\) 0 0
\(11\) 1563.26i 1.17450i 0.809406 + 0.587250i \(0.199789\pi\)
−0.809406 + 0.587250i \(0.800211\pi\)
\(12\) 0 0
\(13\) 2799.15 1.27408 0.637040 0.770831i \(-0.280159\pi\)
0.637040 + 0.770831i \(0.280159\pi\)
\(14\) 0 0
\(15\) −1341.85 + 2347.52i −0.397585 + 0.695562i
\(16\) 0 0
\(17\) 7754.84i 1.57843i −0.614115 0.789216i \(-0.710487\pi\)
0.614115 0.789216i \(-0.289513\pi\)
\(18\) 0 0
\(19\) −10548.4 −1.53788 −0.768942 0.639318i \(-0.779217\pi\)
−0.768942 + 0.639318i \(0.779217\pi\)
\(20\) 0 0
\(21\) 1330.79 + 760.681i 0.143698 + 0.0821382i
\(22\) 0 0
\(23\) 18460.5i 1.51726i −0.651523 0.758628i \(-0.725870\pi\)
0.651523 0.758628i \(-0.274130\pi\)
\(24\) 0 0
\(25\) 5595.62 0.358120
\(26\) 0 0
\(27\) 255.212 + 19681.3i 0.0129661 + 0.999916i
\(28\) 0 0
\(29\) 20877.9i 0.856036i −0.903770 0.428018i \(-0.859212\pi\)
0.903770 0.428018i \(-0.140788\pi\)
\(30\) 0 0
\(31\) −3285.23 −0.110276 −0.0551380 0.998479i \(-0.517560\pi\)
−0.0551380 + 0.998479i \(0.517560\pi\)
\(32\) 0 0
\(33\) −20945.8 + 36644.1i −0.582848 + 1.01968i
\(34\) 0 0
\(35\) 5685.57i 0.132608i
\(36\) 0 0
\(37\) 39303.2 0.775931 0.387966 0.921674i \(-0.373178\pi\)
0.387966 + 0.921674i \(0.373178\pi\)
\(38\) 0 0
\(39\) 65614.4 + 37505.3i 1.10613 + 0.632265i
\(40\) 0 0
\(41\) 44619.0i 0.647393i 0.946161 + 0.323697i \(0.104926\pi\)
−0.946161 + 0.323697i \(0.895074\pi\)
\(42\) 0 0
\(43\) 23655.3 0.297525 0.148763 0.988873i \(-0.452471\pi\)
0.148763 + 0.988873i \(0.452471\pi\)
\(44\) 0 0
\(45\) −62908.0 + 37048.7i −0.690349 + 0.406570i
\(46\) 0 0
\(47\) 65090.8i 0.626940i −0.949598 0.313470i \(-0.898509\pi\)
0.949598 0.313470i \(-0.101491\pi\)
\(48\) 0 0
\(49\) −114426. −0.972604
\(50\) 0 0
\(51\) 103906. 181780.i 0.783301 1.37036i
\(52\) 0 0
\(53\) 65760.4i 0.441709i −0.975307 0.220855i \(-0.929115\pi\)
0.975307 0.220855i \(-0.0708846\pi\)
\(54\) 0 0
\(55\) −156555. −0.940979
\(56\) 0 0
\(57\) −247262. 141335.i −1.33516 0.763179i
\(58\) 0 0
\(59\) 36299.9i 0.176746i 0.996087 + 0.0883731i \(0.0281668\pi\)
−0.996087 + 0.0883731i \(0.971833\pi\)
\(60\) 0 0
\(61\) 412439. 1.81707 0.908533 0.417813i \(-0.137203\pi\)
0.908533 + 0.417813i \(0.137203\pi\)
\(62\) 0 0
\(63\) 21002.6 + 35662.0i 0.0839945 + 0.142621i
\(64\) 0 0
\(65\) 280326.i 1.02076i
\(66\) 0 0
\(67\) −265379. −0.882351 −0.441176 0.897421i \(-0.645438\pi\)
−0.441176 + 0.897421i \(0.645438\pi\)
\(68\) 0 0
\(69\) 247348. 432728.i 0.752942 1.31725i
\(70\) 0 0
\(71\) 552756.i 1.54440i 0.635383 + 0.772198i \(0.280842\pi\)
−0.635383 + 0.772198i \(0.719158\pi\)
\(72\) 0 0
\(73\) 124949. 0.321191 0.160595 0.987020i \(-0.448659\pi\)
0.160595 + 0.987020i \(0.448659\pi\)
\(74\) 0 0
\(75\) 131166. + 74974.6i 0.310912 + 0.177718i
\(76\) 0 0
\(77\) 88749.8i 0.194400i
\(78\) 0 0
\(79\) −281411. −0.570769 −0.285384 0.958413i \(-0.592121\pi\)
−0.285384 + 0.958413i \(0.592121\pi\)
\(80\) 0 0
\(81\) −257724. + 464766.i −0.484954 + 0.874540i
\(82\) 0 0
\(83\) 249255.i 0.435923i 0.975957 + 0.217962i \(0.0699408\pi\)
−0.975957 + 0.217962i \(0.930059\pi\)
\(84\) 0 0
\(85\) 776622. 1.26460
\(86\) 0 0
\(87\) 279739. 489394.i 0.424810 0.743192i
\(88\) 0 0
\(89\) 30731.5i 0.0435927i −0.999762 0.0217963i \(-0.993061\pi\)
0.999762 0.0217963i \(-0.00693854\pi\)
\(90\) 0 0
\(91\) 158914. 0.210882
\(92\) 0 0
\(93\) −77008.6 44018.2i −0.0957393 0.0547247i
\(94\) 0 0
\(95\) 1.05638e6i 1.23211i
\(96\) 0 0
\(97\) −1.49482e6 −1.63785 −0.818924 0.573902i \(-0.805429\pi\)
−0.818924 + 0.573902i \(0.805429\pi\)
\(98\) 0 0
\(99\) −981974. + 578318.i −1.01203 + 0.596020i
\(100\) 0 0
\(101\) 1.67793e6i 1.62858i −0.580458 0.814290i \(-0.697126\pi\)
0.580458 0.814290i \(-0.302874\pi\)
\(102\) 0 0
\(103\) 269950. 0.247042 0.123521 0.992342i \(-0.460581\pi\)
0.123521 + 0.992342i \(0.460581\pi\)
\(104\) 0 0
\(105\) −76179.8 + 133274.i −0.0658070 + 0.115127i
\(106\) 0 0
\(107\) 1.00439e6i 0.819884i −0.912112 0.409942i \(-0.865549\pi\)
0.912112 0.409942i \(-0.134451\pi\)
\(108\) 0 0
\(109\) −790338. −0.610286 −0.305143 0.952307i \(-0.598704\pi\)
−0.305143 + 0.952307i \(0.598704\pi\)
\(110\) 0 0
\(111\) 921300. + 526617.i 0.673647 + 0.385058i
\(112\) 0 0
\(113\) 738845.i 0.512057i 0.966669 + 0.256028i \(0.0824141\pi\)
−0.966669 + 0.256028i \(0.917586\pi\)
\(114\) 0 0
\(115\) 1.84876e6 1.21559
\(116\) 0 0
\(117\) 1.03553e6 + 1.75831e6i 0.646554 + 1.09784i
\(118\) 0 0
\(119\) 440260.i 0.261257i
\(120\) 0 0
\(121\) −672217. −0.379449
\(122\) 0 0
\(123\) −597841. + 1.04591e6i −0.321270 + 0.562053i
\(124\) 0 0
\(125\) 2.12518e6i 1.08809i
\(126\) 0 0
\(127\) 1.01875e6 0.497343 0.248672 0.968588i \(-0.420006\pi\)
0.248672 + 0.968588i \(0.420006\pi\)
\(128\) 0 0
\(129\) 554500. + 316953.i 0.258305 + 0.147648i
\(130\) 0 0
\(131\) 461949.i 0.205485i −0.994708 0.102743i \(-0.967238\pi\)
0.994708 0.102743i \(-0.0327618\pi\)
\(132\) 0 0
\(133\) −598854. −0.254546
\(134\) 0 0
\(135\) −1.97102e6 + 25558.6i −0.801107 + 0.0103881i
\(136\) 0 0
\(137\) 1.86796e6i 0.726450i −0.931701 0.363225i \(-0.881676\pi\)
0.931701 0.363225i \(-0.118324\pi\)
\(138\) 0 0
\(139\) 1.67091e6 0.622169 0.311084 0.950382i \(-0.399308\pi\)
0.311084 + 0.950382i \(0.399308\pi\)
\(140\) 0 0
\(141\) 872139. 1.52578e6i 0.311120 0.544295i
\(142\) 0 0
\(143\) 4.37580e6i 1.49641i
\(144\) 0 0
\(145\) 2.09085e6 0.685834
\(146\) 0 0
\(147\) −2.68224e6 1.53317e6i −0.844394 0.482657i
\(148\) 0 0
\(149\) 1.93135e6i 0.583853i −0.956441 0.291926i \(-0.905704\pi\)
0.956441 0.291926i \(-0.0942962\pi\)
\(150\) 0 0
\(151\) −5.45133e6 −1.58333 −0.791666 0.610955i \(-0.790786\pi\)
−0.791666 + 0.610955i \(0.790786\pi\)
\(152\) 0 0
\(153\) 4.87127e6 2.86885e6i 1.36009 0.801003i
\(154\) 0 0
\(155\) 329006.i 0.0883504i
\(156\) 0 0
\(157\) −3.34693e6 −0.864863 −0.432432 0.901667i \(-0.642344\pi\)
−0.432432 + 0.901667i \(0.642344\pi\)
\(158\) 0 0
\(159\) 881111. 1.54148e6i 0.219199 0.383482i
\(160\) 0 0
\(161\) 1.04804e6i 0.251132i
\(162\) 0 0
\(163\) 273858. 0.0632357 0.0316178 0.999500i \(-0.489934\pi\)
0.0316178 + 0.999500i \(0.489934\pi\)
\(164\) 0 0
\(165\) −3.66979e6 2.09766e6i −0.816938 0.466963i
\(166\) 0 0
\(167\) 879959.i 0.188935i −0.995528 0.0944676i \(-0.969885\pi\)
0.995528 0.0944676i \(-0.0301149\pi\)
\(168\) 0 0
\(169\) 3.00845e6 0.623279
\(170\) 0 0
\(171\) −3.90230e6 6.62603e6i −0.780426 1.32515i
\(172\) 0 0
\(173\) 6.14739e6i 1.18728i 0.804732 + 0.593639i \(0.202309\pi\)
−0.804732 + 0.593639i \(0.797691\pi\)
\(174\) 0 0
\(175\) 317676. 0.0592748
\(176\) 0 0
\(177\) −486376. + 850900.i −0.0877107 + 0.153447i
\(178\) 0 0
\(179\) 8.87757e6i 1.54787i 0.633264 + 0.773936i \(0.281715\pi\)
−0.633264 + 0.773936i \(0.718285\pi\)
\(180\) 0 0
\(181\) −3.84437e6 −0.648320 −0.324160 0.946002i \(-0.605082\pi\)
−0.324160 + 0.946002i \(0.605082\pi\)
\(182\) 0 0
\(183\) 9.66792e6 + 5.52620e6i 1.57754 + 0.901723i
\(184\) 0 0
\(185\) 3.93609e6i 0.621656i
\(186\) 0 0
\(187\) 1.21228e7 1.85387
\(188\) 0 0
\(189\) 14489.0 + 1.11736e6i 0.00214611 + 0.165503i
\(190\) 0 0
\(191\) 9.62289e6i 1.38104i −0.723314 0.690519i \(-0.757382\pi\)
0.723314 0.690519i \(-0.242618\pi\)
\(192\) 0 0
\(193\) 7.10835e6 0.988774 0.494387 0.869242i \(-0.335393\pi\)
0.494387 + 0.869242i \(0.335393\pi\)
\(194\) 0 0
\(195\) −3.75604e6 + 6.57108e6i −0.506554 + 0.886202i
\(196\) 0 0
\(197\) 1.13629e7i 1.48624i 0.669156 + 0.743122i \(0.266656\pi\)
−0.669156 + 0.743122i \(0.733344\pi\)
\(198\) 0 0
\(199\) −8.11010e6 −1.02912 −0.514561 0.857454i \(-0.672045\pi\)
−0.514561 + 0.857454i \(0.672045\pi\)
\(200\) 0 0
\(201\) −6.22069e6 3.55576e6i −0.766038 0.437869i
\(202\) 0 0
\(203\) 1.18528e6i 0.141689i
\(204\) 0 0
\(205\) −4.46845e6 −0.518675
\(206\) 0 0
\(207\) 1.15961e7 6.82933e6i 1.30738 0.769958i
\(208\) 0 0
\(209\) 1.64898e7i 1.80624i
\(210\) 0 0
\(211\) −9.05527e6 −0.963949 −0.481974 0.876185i \(-0.660080\pi\)
−0.481974 + 0.876185i \(0.660080\pi\)
\(212\) 0 0
\(213\) −7.40627e6 + 1.29571e7i −0.766410 + 1.34081i
\(214\) 0 0
\(215\) 2.36901e6i 0.238370i
\(216\) 0 0
\(217\) −186510. −0.0182526
\(218\) 0 0
\(219\) 2.92890e6 + 1.67416e6i 0.278851 + 0.159392i
\(220\) 0 0
\(221\) 2.17070e7i 2.01105i
\(222\) 0 0
\(223\) −1.05611e6 −0.0952343 −0.0476172 0.998866i \(-0.515163\pi\)
−0.0476172 + 0.998866i \(0.515163\pi\)
\(224\) 0 0
\(225\) 2.07006e6 + 3.51493e6i 0.181734 + 0.308581i
\(226\) 0 0
\(227\) 1.73074e7i 1.47963i −0.672810 0.739815i \(-0.734913\pi\)
0.672810 0.739815i \(-0.265087\pi\)
\(228\) 0 0
\(229\) 5.72078e6 0.476375 0.238188 0.971219i \(-0.423447\pi\)
0.238188 + 0.971219i \(0.423447\pi\)
\(230\) 0 0
\(231\) −1.18914e6 + 2.08037e6i −0.0964712 + 0.168774i
\(232\) 0 0
\(233\) 1.54337e7i 1.22012i 0.792356 + 0.610059i \(0.208854\pi\)
−0.792356 + 0.610059i \(0.791146\pi\)
\(234\) 0 0
\(235\) 6.51863e6 0.502288
\(236\) 0 0
\(237\) −6.59651e6 3.77058e6i −0.495529 0.283245i
\(238\) 0 0
\(239\) 5.15623e6i 0.377692i −0.982007 0.188846i \(-0.939525\pi\)
0.982007 0.188846i \(-0.0604748\pi\)
\(240\) 0 0
\(241\) 2.01708e6 0.144103 0.0720513 0.997401i \(-0.477045\pi\)
0.0720513 + 0.997401i \(0.477045\pi\)
\(242\) 0 0
\(243\) −1.22686e7 + 7.44130e6i −0.855019 + 0.518597i
\(244\) 0 0
\(245\) 1.14594e7i 0.779226i
\(246\) 0 0
\(247\) −2.95264e7 −1.95939
\(248\) 0 0
\(249\) −3.33972e6 + 5.84275e6i −0.216328 + 0.378459i
\(250\) 0 0
\(251\) 7.82106e6i 0.494589i 0.968940 + 0.247294i \(0.0795415\pi\)
−0.968940 + 0.247294i \(0.920459\pi\)
\(252\) 0 0
\(253\) 2.88585e7 1.78202
\(254\) 0 0
\(255\) 1.82047e7 + 1.04058e7i 1.09790 + 0.627561i
\(256\) 0 0
\(257\) 5.86764e6i 0.345672i −0.984951 0.172836i \(-0.944707\pi\)
0.984951 0.172836i \(-0.0552930\pi\)
\(258\) 0 0
\(259\) 2.23134e6 0.128430
\(260\) 0 0
\(261\) 1.31146e7 7.72364e6i 0.737622 0.434410i
\(262\) 0 0
\(263\) 2.84551e7i 1.56420i 0.623150 + 0.782102i \(0.285853\pi\)
−0.623150 + 0.782102i \(0.714147\pi\)
\(264\) 0 0
\(265\) 6.58569e6 0.353886
\(266\) 0 0
\(267\) 411765. 720371.i 0.0216330 0.0378462i
\(268\) 0 0
\(269\) 2.59338e7i 1.33232i 0.745808 + 0.666161i \(0.232064\pi\)
−0.745808 + 0.666161i \(0.767936\pi\)
\(270\) 0 0
\(271\) −9.94363e6 −0.499617 −0.249808 0.968295i \(-0.580368\pi\)
−0.249808 + 0.968295i \(0.580368\pi\)
\(272\) 0 0
\(273\) 3.72508e6 + 2.12926e6i 0.183083 + 0.104651i
\(274\) 0 0
\(275\) 8.74740e6i 0.420611i
\(276\) 0 0
\(277\) −8.05111e6 −0.378806 −0.189403 0.981899i \(-0.560655\pi\)
−0.189403 + 0.981899i \(0.560655\pi\)
\(278\) 0 0
\(279\) −1.21535e6 2.06365e6i −0.0559615 0.0950217i
\(280\) 0 0
\(281\) 28050.0i 0.00126419i −1.00000 0.000632096i \(-0.999799\pi\)
1.00000 0.000632096i \(-0.000201202\pi\)
\(282\) 0 0
\(283\) 3.93236e7 1.73498 0.867489 0.497457i \(-0.165733\pi\)
0.867489 + 0.497457i \(0.165733\pi\)
\(284\) 0 0
\(285\) 1.41543e7 2.47625e7i 0.611439 1.06969i
\(286\) 0 0
\(287\) 2.53312e6i 0.107155i
\(288\) 0 0
\(289\) −3.60000e7 −1.49145
\(290\) 0 0
\(291\) −3.50398e7 2.00288e7i −1.42194 0.812786i
\(292\) 0 0
\(293\) 287438.i 0.0114272i −0.999984 0.00571362i \(-0.998181\pi\)
0.999984 0.00571362i \(-0.00181871\pi\)
\(294\) 0 0
\(295\) −3.63532e6 −0.141604
\(296\) 0 0
\(297\) −3.07670e7 + 398962.i −1.17440 + 0.0152287i
\(298\) 0 0
\(299\) 5.16737e7i 1.93311i
\(300\) 0 0
\(301\) 1.34297e6 0.0492455
\(302\) 0 0
\(303\) 2.24822e7 3.93320e7i 0.808187 1.41390i
\(304\) 0 0
\(305\) 4.13045e7i 1.45579i
\(306\) 0 0
\(307\) 3.53898e6 0.122310 0.0611552 0.998128i \(-0.480522\pi\)
0.0611552 + 0.998128i \(0.480522\pi\)
\(308\) 0 0
\(309\) 6.32785e6 + 3.61701e6i 0.214477 + 0.122595i
\(310\) 0 0
\(311\) 6.30383e6i 0.209567i −0.994495 0.104784i \(-0.966585\pi\)
0.994495 0.104784i \(-0.0334150\pi\)
\(312\) 0 0
\(313\) −5.52306e7 −1.80114 −0.900569 0.434713i \(-0.856850\pi\)
−0.900569 + 0.434713i \(0.856850\pi\)
\(314\) 0 0
\(315\) −3.57143e6 + 2.10334e6i −0.114264 + 0.0672942i
\(316\) 0 0
\(317\) 2.84353e7i 0.892648i −0.894871 0.446324i \(-0.852733\pi\)
0.894871 0.446324i \(-0.147267\pi\)
\(318\) 0 0
\(319\) 3.26375e7 1.00541
\(320\) 0 0
\(321\) 1.34577e7 2.35438e7i 0.406869 0.711806i
\(322\) 0 0
\(323\) 8.18008e7i 2.42745i
\(324\) 0 0
\(325\) 1.56630e7 0.456273
\(326\) 0 0
\(327\) −1.85262e7 1.05896e7i −0.529837 0.302856i
\(328\) 0 0
\(329\) 3.69535e6i 0.103769i
\(330\) 0 0
\(331\) 3.80117e7 1.04817 0.524087 0.851665i \(-0.324407\pi\)
0.524087 + 0.851665i \(0.324407\pi\)
\(332\) 0 0
\(333\) 1.45400e7 + 2.46887e7i 0.393760 + 0.668597i
\(334\) 0 0
\(335\) 2.65768e7i 0.706917i
\(336\) 0 0
\(337\) −1.08408e7 −0.283250 −0.141625 0.989920i \(-0.545233\pi\)
−0.141625 + 0.989920i \(0.545233\pi\)
\(338\) 0 0
\(339\) −9.89965e6 + 1.73191e7i −0.254109 + 0.444557i
\(340\) 0 0
\(341\) 5.13567e6i 0.129519i
\(342\) 0 0
\(343\) −1.31754e7 −0.326499
\(344\) 0 0
\(345\) 4.33364e7 + 2.47711e7i 1.05535 + 0.603238i
\(346\) 0 0
\(347\) 5.28512e6i 0.126493i −0.997998 0.0632465i \(-0.979855\pi\)
0.997998 0.0632465i \(-0.0201454\pi\)
\(348\) 0 0
\(349\) −3.21105e7 −0.755389 −0.377694 0.925930i \(-0.623283\pi\)
−0.377694 + 0.925930i \(0.623283\pi\)
\(350\) 0 0
\(351\) 714376. + 5.50911e7i 0.0165198 + 1.27397i
\(352\) 0 0
\(353\) 2.65336e7i 0.603215i 0.953432 + 0.301607i \(0.0975232\pi\)
−0.953432 + 0.301607i \(0.902477\pi\)
\(354\) 0 0
\(355\) −5.53567e7 −1.23733
\(356\) 0 0
\(357\) 5.89896e6 1.03201e7i 0.129650 0.226818i
\(358\) 0 0
\(359\) 2.46209e6i 0.0532133i −0.999646 0.0266066i \(-0.991530\pi\)
0.999646 0.0266066i \(-0.00847015\pi\)
\(360\) 0 0
\(361\) 6.42218e7 1.36509
\(362\) 0 0
\(363\) −1.57573e7 9.00691e6i −0.329429 0.188302i
\(364\) 0 0
\(365\) 1.25132e7i 0.257330i
\(366\) 0 0
\(367\) 8.45375e7 1.71022 0.855109 0.518449i \(-0.173490\pi\)
0.855109 + 0.518449i \(0.173490\pi\)
\(368\) 0 0
\(369\) −2.80278e7 + 1.65065e7i −0.557840 + 0.328531i
\(370\) 0 0
\(371\) 3.73337e6i 0.0731104i
\(372\) 0 0
\(373\) 3.74800e7 0.722226 0.361113 0.932522i \(-0.382397\pi\)
0.361113 + 0.932522i \(0.382397\pi\)
\(374\) 0 0
\(375\) −2.84748e7 + 4.98159e7i −0.539967 + 0.944657i
\(376\) 0 0
\(377\) 5.84403e7i 1.09066i
\(378\) 0 0
\(379\) 7.17708e6 0.131835 0.0659175 0.997825i \(-0.479003\pi\)
0.0659175 + 0.997825i \(0.479003\pi\)
\(380\) 0 0
\(381\) 2.38803e7 + 1.36500e7i 0.431783 + 0.246808i
\(382\) 0 0
\(383\) 7.49783e7i 1.33456i −0.744805 0.667282i \(-0.767457\pi\)
0.744805 0.667282i \(-0.232543\pi\)
\(384\) 0 0
\(385\) −8.88801e6 −0.155748
\(386\) 0 0
\(387\) 8.75114e6 + 1.48593e7i 0.150984 + 0.256369i
\(388\) 0 0
\(389\) 5.40696e7i 0.918553i −0.888293 0.459277i \(-0.848109\pi\)
0.888293 0.459277i \(-0.151891\pi\)
\(390\) 0 0
\(391\) −1.43158e8 −2.39489
\(392\) 0 0
\(393\) 6.18957e6 1.08285e7i 0.101972 0.178398i
\(394\) 0 0
\(395\) 2.81824e7i 0.457286i
\(396\) 0 0
\(397\) −7.70698e7 −1.23172 −0.615861 0.787855i \(-0.711192\pi\)
−0.615861 + 0.787855i \(0.711192\pi\)
\(398\) 0 0
\(399\) −1.40376e7 8.02394e6i −0.220991 0.126319i
\(400\) 0 0
\(401\) 7.02798e7i 1.08993i −0.838460 0.544964i \(-0.816543\pi\)
0.838460 0.544964i \(-0.183457\pi\)
\(402\) 0 0
\(403\) −9.19587e6 −0.140500
\(404\) 0 0
\(405\) −4.65449e7 2.58103e7i −0.700659 0.388532i
\(406\) 0 0
\(407\) 6.14411e7i 0.911331i
\(408\) 0 0
\(409\) 6.76732e7 0.989115 0.494557 0.869145i \(-0.335330\pi\)
0.494557 + 0.869145i \(0.335330\pi\)
\(410\) 0 0
\(411\) 2.50284e7 4.37865e7i 0.360502 0.630688i
\(412\) 0 0
\(413\) 2.06083e6i 0.0292545i
\(414\) 0 0
\(415\) −2.49621e7 −0.349251
\(416\) 0 0
\(417\) 3.91675e7 + 2.23882e7i 0.540154 + 0.308753i
\(418\) 0 0
\(419\) 3.73652e7i 0.507956i −0.967210 0.253978i \(-0.918261\pi\)
0.967210 0.253978i \(-0.0817390\pi\)
\(420\) 0 0
\(421\) 4.66720e6 0.0625476 0.0312738 0.999511i \(-0.490044\pi\)
0.0312738 + 0.999511i \(0.490044\pi\)
\(422\) 0 0
\(423\) 4.08873e7 2.40799e7i 0.540216 0.318151i
\(424\) 0 0
\(425\) 4.33931e7i 0.565268i
\(426\) 0 0
\(427\) 2.34151e7 0.300755
\(428\) 0 0
\(429\) −5.86305e7 + 1.02572e8i −0.742595 + 1.29915i
\(430\) 0 0
\(431\) 9.07386e7i 1.13334i 0.823945 + 0.566670i \(0.191769\pi\)
−0.823945 + 0.566670i \(0.808231\pi\)
\(432\) 0 0
\(433\) 4.32787e7 0.533102 0.266551 0.963821i \(-0.414116\pi\)
0.266551 + 0.963821i \(0.414116\pi\)
\(434\) 0 0
\(435\) 4.90113e7 + 2.80149e7i 0.595427 + 0.340347i
\(436\) 0 0
\(437\) 1.94727e8i 2.33337i
\(438\) 0 0
\(439\) 1.34753e8 1.59274 0.796369 0.604811i \(-0.206751\pi\)
0.796369 + 0.604811i \(0.206751\pi\)
\(440\) 0 0
\(441\) −4.23311e7 7.18776e7i −0.493565 0.838065i
\(442\) 0 0
\(443\) 4.77810e6i 0.0549597i 0.999622 + 0.0274798i \(0.00874821\pi\)
−0.999622 + 0.0274798i \(0.991252\pi\)
\(444\) 0 0
\(445\) 3.07766e6 0.0349253
\(446\) 0 0
\(447\) 2.58779e7 4.52725e7i 0.289738 0.506888i
\(448\) 0 0
\(449\) 9.07831e7i 1.00292i 0.865181 + 0.501460i \(0.167203\pi\)
−0.865181 + 0.501460i \(0.832797\pi\)
\(450\) 0 0
\(451\) −6.97510e7 −0.760363
\(452\) 0 0
\(453\) −1.27784e8 7.30414e7i −1.37461 0.785732i
\(454\) 0 0
\(455\) 1.59148e7i 0.168953i
\(456\) 0 0
\(457\) −2.48525e7 −0.260388 −0.130194 0.991489i \(-0.541560\pi\)
−0.130194 + 0.991489i \(0.541560\pi\)
\(458\) 0 0
\(459\) 1.52626e8 1.97912e6i 1.57830 0.0204661i
\(460\) 0 0
\(461\) 1.05119e8i 1.07294i 0.843918 + 0.536472i \(0.180243\pi\)
−0.843918 + 0.536472i \(0.819757\pi\)
\(462\) 0 0
\(463\) 2.67674e7 0.269689 0.134845 0.990867i \(-0.456946\pi\)
0.134845 + 0.990867i \(0.456946\pi\)
\(464\) 0 0
\(465\) 4.40828e6 7.71216e6i 0.0438441 0.0767039i
\(466\) 0 0
\(467\) 6.62252e7i 0.650239i −0.945673 0.325119i \(-0.894596\pi\)
0.945673 0.325119i \(-0.105404\pi\)
\(468\) 0 0
\(469\) −1.50662e7 −0.146044
\(470\) 0 0
\(471\) −7.84547e7 4.48449e7i −0.750856 0.429190i
\(472\) 0 0
\(473\) 3.69794e7i 0.349443i
\(474\) 0 0
\(475\) −5.90245e7 −0.550747
\(476\) 0 0
\(477\) 4.13079e7 2.43276e7i 0.380608 0.224153i
\(478\) 0 0
\(479\) 5.73689e6i 0.0522000i 0.999659 + 0.0261000i \(0.00830882\pi\)
−0.999659 + 0.0261000i \(0.991691\pi\)
\(480\) 0 0
\(481\) 1.10016e8 0.988598
\(482\) 0 0
\(483\) 1.40425e7 2.45670e7i 0.124625 0.218027i
\(484\) 0 0
\(485\) 1.49701e8i 1.31220i
\(486\) 0 0
\(487\) 4.23093e7 0.366310 0.183155 0.983084i \(-0.441369\pi\)
0.183155 + 0.983084i \(0.441369\pi\)
\(488\) 0 0
\(489\) 6.41945e6 + 3.66937e6i 0.0548998 + 0.0313808i
\(490\) 0 0
\(491\) 2.08106e8i 1.75809i 0.476743 + 0.879043i \(0.341817\pi\)
−0.476743 + 0.879043i \(0.658183\pi\)
\(492\) 0 0
\(493\) −1.61905e8 −1.35120
\(494\) 0 0
\(495\) −5.79167e7 9.83415e7i −0.477516 0.810814i
\(496\) 0 0
\(497\) 3.13812e7i 0.255624i
\(498\) 0 0
\(499\) −2.07046e8 −1.66635 −0.833175 0.553010i \(-0.813479\pi\)
−0.833175 + 0.553010i \(0.813479\pi\)
\(500\) 0 0
\(501\) 1.17904e7 2.06270e7i 0.0937595 0.164029i
\(502\) 0 0
\(503\) 1.69353e8i 1.33073i −0.746518 0.665365i \(-0.768276\pi\)
0.746518 0.665365i \(-0.231724\pi\)
\(504\) 0 0
\(505\) 1.68039e8 1.30478
\(506\) 0 0
\(507\) 7.05205e7 + 4.03096e7i 0.541117 + 0.309303i
\(508\) 0 0
\(509\) 1.85904e8i 1.40973i −0.709341 0.704865i \(-0.751008\pi\)
0.709341 0.704865i \(-0.248992\pi\)
\(510\) 0 0
\(511\) 7.09363e6 0.0531625
\(512\) 0 0
\(513\) −2.69206e6 2.07606e8i −0.0199404 1.53776i
\(514\) 0 0
\(515\) 2.70346e7i 0.197924i
\(516\) 0 0
\(517\) 1.01754e8 0.736340
\(518\) 0 0
\(519\) −8.23677e7 + 1.44100e8i −0.589189 + 1.03077i
\(520\) 0 0
\(521\) 6.72394e7i 0.475456i −0.971332 0.237728i \(-0.923597\pi\)
0.971332 0.237728i \(-0.0764027\pi\)
\(522\) 0 0
\(523\) −2.17123e8 −1.51775 −0.758877 0.651234i \(-0.774252\pi\)
−0.758877 + 0.651234i \(0.774252\pi\)
\(524\) 0 0
\(525\) 7.44659e6 + 4.25648e6i 0.0514611 + 0.0294153i
\(526\) 0 0
\(527\) 2.54765e7i 0.174063i
\(528\) 0 0
\(529\) −1.92753e8 −1.30207
\(530\) 0 0
\(531\) −2.28021e7 + 1.34289e7i −0.152297 + 0.0896929i
\(532\) 0 0
\(533\) 1.24895e8i 0.824830i
\(534\) 0 0
\(535\) 1.00587e8 0.656870
\(536\) 0 0
\(537\) −1.18949e8 + 2.08098e8i −0.768135 + 1.34383i
\(538\) 0 0
\(539\) 1.78877e8i 1.14232i
\(540\) 0 0
\(541\) 2.48308e8 1.56819 0.784097 0.620639i \(-0.213127\pi\)
0.784097 + 0.620639i \(0.213127\pi\)
\(542\) 0 0
\(543\) −9.01152e7 5.15100e7i −0.562858 0.321730i
\(544\) 0 0
\(545\) 7.91498e7i 0.488945i
\(546\) 0 0
\(547\) 3.01224e8 1.84046 0.920232 0.391372i \(-0.127999\pi\)
0.920232 + 0.391372i \(0.127999\pi\)
\(548\) 0 0
\(549\) 1.52579e8 + 2.59077e8i 0.922102 + 1.56571i
\(550\) 0 0
\(551\) 2.20227e8i 1.31649i
\(552\) 0 0
\(553\) −1.59764e7 −0.0944719
\(554\) 0 0
\(555\) −5.27390e7 + 9.22653e7i −0.308498 + 0.539709i
\(556\) 0 0
\(557\) 1.62479e7i 0.0940224i −0.998894 0.0470112i \(-0.985030\pi\)
0.998894 0.0470112i \(-0.0149696\pi\)
\(558\) 0 0
\(559\) 6.62149e7 0.379071
\(560\) 0 0
\(561\) 2.84169e8 + 1.62431e8i 1.60949 + 0.919986i
\(562\) 0 0
\(563\) 5.11459e7i 0.286606i 0.989679 + 0.143303i \(0.0457724\pi\)
−0.989679 + 0.143303i \(0.954228\pi\)
\(564\) 0 0
\(565\) −7.39930e7 −0.410247
\(566\) 0 0
\(567\) −1.46316e7 + 2.63859e7i −0.0802680 + 0.144751i
\(568\) 0 0
\(569\) 2.76329e7i 0.150000i 0.997184 + 0.0749998i \(0.0238956\pi\)
−0.997184 + 0.0749998i \(0.976104\pi\)
\(570\) 0 0
\(571\) −9.21998e7 −0.495247 −0.247623 0.968856i \(-0.579650\pi\)
−0.247623 + 0.968856i \(0.579650\pi\)
\(572\) 0 0
\(573\) 1.28935e8 2.25568e8i 0.685343 1.19899i
\(574\) 0 0
\(575\) 1.03298e8i 0.543359i
\(576\) 0 0
\(577\) −3.18032e8 −1.65555 −0.827776 0.561058i \(-0.810394\pi\)
−0.827776 + 0.561058i \(0.810394\pi\)
\(578\) 0 0
\(579\) 1.66626e8 + 9.52435e7i 0.858432 + 0.490681i
\(580\) 0 0
\(581\) 1.41508e7i 0.0721527i
\(582\) 0 0
\(583\) 1.02800e8 0.518787
\(584\) 0 0
\(585\) −1.76089e8 + 1.03705e8i −0.879559 + 0.518002i
\(586\) 0 0
\(587\) 8.94211e7i 0.442105i −0.975262 0.221053i \(-0.929051\pi\)
0.975262 0.221053i \(-0.0709493\pi\)
\(588\) 0 0
\(589\) 3.46538e7 0.169592
\(590\) 0 0
\(591\) −1.52249e8 + 2.66355e8i −0.737552 + 1.29032i
\(592\) 0 0
\(593\) 2.11746e8i 1.01543i −0.861525 0.507716i \(-0.830490\pi\)
0.861525 0.507716i \(-0.169510\pi\)
\(594\) 0 0
\(595\) 4.40907e7 0.209313
\(596\) 0 0
\(597\) −1.90107e8 1.08666e8i −0.893462 0.510704i
\(598\) 0 0
\(599\) 2.26542e8i 1.05407i −0.849844 0.527034i \(-0.823304\pi\)
0.849844 0.527034i \(-0.176696\pi\)
\(600\) 0 0
\(601\) −2.01797e8 −0.929589 −0.464795 0.885419i \(-0.653872\pi\)
−0.464795 + 0.885419i \(0.653872\pi\)
\(602\) 0 0
\(603\) −9.81752e7 1.66700e8i −0.447765 0.760296i
\(604\) 0 0
\(605\) 6.73204e7i 0.304005i
\(606\) 0 0
\(607\) 4.43041e7 0.198097 0.0990485 0.995083i \(-0.468420\pi\)
0.0990485 + 0.995083i \(0.468420\pi\)
\(608\) 0 0
\(609\) 1.58814e7 2.77840e7i 0.0703132 0.123011i
\(610\) 0 0
\(611\) 1.82199e8i 0.798771i
\(612\) 0 0
\(613\) 1.77466e6 0.00770429 0.00385215 0.999993i \(-0.498774\pi\)
0.00385215 + 0.999993i \(0.498774\pi\)
\(614\) 0 0
\(615\) −1.04744e8 5.98719e7i −0.450302 0.257394i
\(616\) 0 0
\(617\) 4.21693e8i 1.79532i 0.440692 + 0.897658i \(0.354733\pi\)
−0.440692 + 0.897658i \(0.645267\pi\)
\(618\) 0 0
\(619\) 1.93302e8 0.815014 0.407507 0.913202i \(-0.366398\pi\)
0.407507 + 0.913202i \(0.366398\pi\)
\(620\) 0 0
\(621\) 3.63327e8 4.71132e6i 1.51713 0.0196729i
\(622\) 0 0
\(623\) 1.74470e6i 0.00721533i
\(624\) 0 0
\(625\) −1.25398e8 −0.513631
\(626\) 0 0
\(627\) 2.20944e8 3.86534e8i 0.896353 1.56814i
\(628\) 0 0
\(629\) 3.04790e8i 1.22476i
\(630\) 0 0
\(631\) 3.10787e8 1.23701 0.618507 0.785779i \(-0.287738\pi\)
0.618507 + 0.785779i \(0.287738\pi\)
\(632\) 0 0
\(633\) −2.12263e8 1.21330e8i −0.836879 0.478362i
\(634\) 0 0
\(635\) 1.02025e8i 0.398459i
\(636\) 0 0
\(637\) −3.20296e8 −1.23918
\(638\) 0 0
\(639\) −3.47218e8 + 2.04489e8i −1.33076 + 0.783730i
\(640\) 0 0
\(641\) 3.67796e8i 1.39648i 0.715866 + 0.698238i \(0.246032\pi\)
−0.715866 + 0.698238i \(0.753968\pi\)
\(642\) 0 0
\(643\) −1.38536e8 −0.521110 −0.260555 0.965459i \(-0.583905\pi\)
−0.260555 + 0.965459i \(0.583905\pi\)
\(644\) 0 0
\(645\) −3.17419e7 + 5.55315e7i −0.118291 + 0.206947i
\(646\) 0 0
\(647\) 2.01496e8i 0.743966i −0.928240 0.371983i \(-0.878678\pi\)
0.928240 0.371983i \(-0.121322\pi\)
\(648\) 0 0
\(649\) −5.67462e7 −0.207588
\(650\) 0 0
\(651\) −4.37195e6 2.49902e6i −0.0158465 0.00905787i
\(652\) 0 0
\(653\) 1.84529e7i 0.0662712i −0.999451 0.0331356i \(-0.989451\pi\)
0.999451 0.0331356i \(-0.0105493\pi\)
\(654\) 0 0
\(655\) 4.62628e7 0.164629
\(656\) 0 0
\(657\) 4.62240e7 + 7.84876e7i 0.162994 + 0.276761i
\(658\) 0 0
\(659\) 2.35653e8i 0.823410i 0.911317 + 0.411705i \(0.135067\pi\)
−0.911317 + 0.411705i \(0.864933\pi\)
\(660\) 0 0
\(661\) 3.84131e8 1.33007 0.665036 0.746811i \(-0.268416\pi\)
0.665036 + 0.746811i \(0.268416\pi\)
\(662\) 0 0
\(663\) 2.90848e8 5.08829e8i 0.997988 1.74595i
\(664\) 0 0
\(665\) 5.99733e7i 0.203936i
\(666\) 0 0
\(667\) −3.85415e8 −1.29883
\(668\) 0 0
\(669\) −2.47560e7 1.41506e7i −0.0826804 0.0472602i
\(670\) 0 0
\(671\) 6.44750e8i 2.13414i
\(672\) 0 0
\(673\) 8.95297e7 0.293712 0.146856 0.989158i \(-0.453085\pi\)
0.146856 + 0.989158i \(0.453085\pi\)
\(674\) 0 0
\(675\) 1.42807e6 + 1.10129e8i 0.00464341 + 0.358089i
\(676\) 0 0
\(677\) 2.34104e8i 0.754473i 0.926117 + 0.377236i \(0.123126\pi\)
−0.926117 + 0.377236i \(0.876874\pi\)
\(678\) 0 0
\(679\) −8.48644e7 −0.271092
\(680\) 0 0
\(681\) 2.31898e8 4.05698e8i 0.734270 1.28458i
\(682\) 0 0
\(683\) 5.04689e8i 1.58402i 0.610506 + 0.792011i \(0.290966\pi\)
−0.610506 + 0.792011i \(0.709034\pi\)
\(684\) 0 0
\(685\) 1.87070e8 0.582013
\(686\) 0 0
\(687\) 1.34100e8 + 7.66517e7i 0.413578 + 0.236402i
\(688\) 0 0
\(689\) 1.84073e8i 0.562773i
\(690\) 0 0
\(691\) 2.67422e8 0.810517 0.405259 0.914202i \(-0.367181\pi\)
0.405259 + 0.914202i \(0.367181\pi\)
\(692\) 0 0
\(693\) −5.57489e7 + 3.28324e7i −0.167508 + 0.0986514i
\(694\) 0 0
\(695\) 1.67336e8i 0.498466i
\(696\) 0 0
\(697\) 3.46013e8 1.02187
\(698\) 0 0
\(699\) −2.06793e8 + 3.61778e8i −0.605486 + 1.05928i
\(700\) 0 0
\(701\) 2.42624e8i 0.704336i 0.935937 + 0.352168i \(0.114556\pi\)
−0.935937 + 0.352168i \(0.885444\pi\)
\(702\) 0 0
\(703\) −4.14584e8 −1.19329
\(704\) 0 0
\(705\) 1.52802e8 + 8.73419e7i 0.436076 + 0.249262i
\(706\) 0 0
\(707\) 9.52599e7i 0.269558i
\(708\) 0 0
\(709\) 3.69360e8 1.03636 0.518181 0.855271i \(-0.326609\pi\)
0.518181 + 0.855271i \(0.326609\pi\)
\(710\) 0 0
\(711\) −1.04106e8 1.76771e8i −0.289647 0.491815i
\(712\) 0 0
\(713\) 6.06469e7i 0.167317i
\(714\) 0 0
\(715\) −4.38222e8 −1.19888
\(716\) 0 0
\(717\) 6.90873e7 1.20866e8i 0.187431 0.327904i
\(718\) 0 0
\(719\) 4.83852e8i 1.30175i −0.759187 0.650873i \(-0.774403\pi\)
0.759187 0.650873i \(-0.225597\pi\)
\(720\) 0 0
\(721\) 1.53257e7 0.0408897
\(722\) 0 0
\(723\) 4.72820e7 + 2.70265e7i 0.125107 + 0.0715113i
\(724\) 0 0
\(725\) 1.16825e8i 0.306563i
\(726\) 0 0
\(727\) 1.96871e8 0.512364 0.256182 0.966629i \(-0.417535\pi\)
0.256182 + 0.966629i \(0.417535\pi\)
\(728\) 0 0
\(729\) −3.87290e8 + 1.00458e7i −0.999664 + 0.0259300i
\(730\) 0 0
\(731\) 1.83443e8i 0.469624i
\(732\) 0 0
\(733\) −4.00576e8 −1.01712 −0.508561 0.861026i \(-0.669822\pi\)
−0.508561 + 0.861026i \(0.669822\pi\)
\(734\) 0 0
\(735\) 1.53542e8 2.68617e8i 0.386692 0.676507i
\(736\) 0 0
\(737\) 4.14855e8i 1.03632i
\(738\) 0 0
\(739\) 1.55508e8 0.385319 0.192659 0.981266i \(-0.438289\pi\)
0.192659 + 0.981266i \(0.438289\pi\)
\(740\) 0 0
\(741\) −6.92124e8 3.95619e8i −1.70110 0.972350i
\(742\) 0 0
\(743\) 9.36167e7i 0.228238i −0.993467 0.114119i \(-0.963596\pi\)
0.993467 0.114119i \(-0.0364044\pi\)
\(744\) 0 0
\(745\) 1.93419e8 0.467768
\(746\) 0 0
\(747\) −1.56572e8 + 9.22104e7i −0.375622 + 0.221217i
\(748\) 0 0
\(749\) 5.70217e7i 0.135705i
\(750\) 0 0
\(751\) −6.15515e8 −1.45318 −0.726588 0.687073i \(-0.758895\pi\)
−0.726588 + 0.687073i \(0.758895\pi\)
\(752\) 0 0
\(753\) −1.04793e8 + 1.83332e8i −0.245441 + 0.429391i
\(754\) 0 0
\(755\) 5.45933e8i 1.26852i
\(756\) 0 0
\(757\) −5.27277e7 −0.121549 −0.0607745 0.998152i \(-0.519357\pi\)
−0.0607745 + 0.998152i \(0.519357\pi\)
\(758\) 0 0
\(759\) 6.76466e8 + 3.86669e8i 1.54711 + 0.884330i
\(760\) 0 0
\(761\) 1.49175e8i 0.338487i −0.985574 0.169244i \(-0.945867\pi\)
0.985574 0.169244i \(-0.0541325\pi\)
\(762\) 0 0
\(763\) −4.48693e7 −0.101013
\(764\) 0 0
\(765\) 2.87307e8 + 4.87842e8i 0.641743 + 1.08967i
\(766\) 0 0
\(767\) 1.01609e8i 0.225189i
\(768\) 0 0
\(769\) 4.43701e7 0.0975690 0.0487845 0.998809i \(-0.484465\pi\)
0.0487845 + 0.998809i \(0.484465\pi\)
\(770\) 0 0
\(771\) 7.86193e7 1.37542e8i 0.171540 0.300105i
\(772\) 0 0
\(773\) 2.20439e8i 0.477255i 0.971111 + 0.238627i \(0.0766975\pi\)
−0.971111 + 0.238627i \(0.923303\pi\)
\(774\) 0 0
\(775\) −1.83829e7 −0.0394920
\(776\) 0 0
\(777\) 5.23043e7 + 2.98972e7i 0.111500 + 0.0637336i
\(778\) 0 0
\(779\) 4.70657e8i 0.995616i
\(780\) 0 0
\(781\) −8.64101e8 −1.81389
\(782\) 0 0
\(783\) 4.10905e8 5.32827e6i 0.855964 0.0110994i
\(784\) 0 0
\(785\) 3.35184e8i 0.692907i
\(786\) 0 0
\(787\) 7.04884e8 1.44608 0.723042 0.690804i \(-0.242743\pi\)
0.723042 + 0.690804i \(0.242743\pi\)
\(788\) 0 0
\(789\) −3.81265e8 + 6.67012e8i −0.776240 + 1.35801i
\(790\) 0 0
\(791\) 4.19460e7i 0.0847541i
\(792\) 0 0
\(793\) 1.15448e9 2.31509
\(794\) 0 0
\(795\) 1.54374e8 + 8.82404e7i 0.307236 + 0.175617i
\(796\) 0 0
\(797\) 4.00970e8i 0.792021i 0.918246 + 0.396010i \(0.129606\pi\)
−0.918246 + 0.396010i \(0.870394\pi\)
\(798\) 0 0
\(799\) −5.04768e8 −0.989582
\(800\) 0 0
\(801\) 1.93042e7 1.13689e7i 0.0375625 0.0221219i
\(802\) 0 0
\(803\) 1.95327e8i 0.377239i
\(804\) 0 0
\(805\) 1.04958e8 0.201200
\(806\) 0 0
\(807\) −3.47482e8 + 6.07909e8i −0.661168 + 1.15669i
\(808\) 0 0
\(809\) 1.67848e8i 0.317009i −0.987358 0.158505i \(-0.949333\pi\)
0.987358 0.158505i \(-0.0506672\pi\)
\(810\) 0 0
\(811\) 1.91559e8 0.359121 0.179560 0.983747i \(-0.442533\pi\)
0.179560 + 0.983747i \(0.442533\pi\)
\(812\) 0 0
\(813\) −2.33087e8 1.33233e8i −0.433757 0.247936i
\(814\) 0 0
\(815\) 2.74260e7i 0.0506628i
\(816\) 0 0
\(817\) −2.49525e8 −0.457560
\(818\) 0 0
\(819\) 5.87894e7 + 9.98234e7i 0.107016 + 0.181711i
\(820\) 0 0
\(821\) 5.22113e8i 0.943485i −0.881736 0.471743i \(-0.843625\pi\)
0.881736 0.471743i \(-0.156375\pi\)
\(822\) 0 0
\(823\) 5.29791e8 0.950396 0.475198 0.879879i \(-0.342376\pi\)
0.475198 + 0.879879i \(0.342376\pi\)
\(824\) 0 0
\(825\) −1.17205e8 + 2.05046e8i −0.208729 + 0.365166i
\(826\) 0 0
\(827\) 5.42348e8i 0.958875i 0.877576 + 0.479437i \(0.159159\pi\)
−0.877576 + 0.479437i \(0.840841\pi\)
\(828\) 0 0
\(829\) −6.20518e8 −1.08916 −0.544579 0.838709i \(-0.683311\pi\)
−0.544579 + 0.838709i \(0.683311\pi\)
\(830\) 0 0
\(831\) −1.88725e8 1.07875e8i −0.328871 0.187983i
\(832\) 0 0
\(833\) 8.87355e8i 1.53519i
\(834\) 0 0
\(835\) 8.81251e7 0.151370
\(836\) 0 0
\(837\) −838430. 6.46578e7i −0.00142985 0.110267i
\(838\) 0 0
\(839\) 2.61174e8i 0.442226i −0.975248 0.221113i \(-0.929031\pi\)
0.975248 0.221113i \(-0.0709689\pi\)
\(840\) 0 0
\(841\) 1.58938e8 0.267202
\(842\) 0 0
\(843\) 375836. 657514.i 0.000627358 0.00109754i
\(844\) 0 0
\(845\) 3.01286e8i 0.499355i
\(846\) 0 0
\(847\) −3.81633e7 −0.0628052
\(848\) 0 0
\(849\) 9.21777e8 + 5.26889e8i 1.50627 + 0.860987i
\(850\) 0 0
\(851\) 7.25556e8i 1.17729i
\(852\) 0 0
\(853\) 7.52049e8 1.21171 0.605856 0.795574i \(-0.292831\pi\)
0.605856 + 0.795574i \(0.292831\pi\)
\(854\) 0 0
\(855\) 6.63576e8 3.90803e8i 1.06168 0.625258i
\(856\) 0 0
\(857\) 7.93429e8i 1.26057i −0.776366 0.630283i \(-0.782939\pi\)
0.776366 0.630283i \(-0.217061\pi\)
\(858\) 0 0
\(859\) 4.32839e8 0.682884 0.341442 0.939903i \(-0.389085\pi\)
0.341442 + 0.939903i \(0.389085\pi\)
\(860\) 0 0
\(861\) −3.39408e7 + 5.93785e7i −0.0531757 + 0.0930292i
\(862\) 0 0
\(863\) 1.13018e9i 1.75839i 0.476459 + 0.879197i \(0.341920\pi\)
−0.476459 + 0.879197i \(0.658080\pi\)
\(864\) 0 0
\(865\) −6.15641e8 −0.951216
\(866\) 0 0
\(867\) −8.43869e8 4.82357e8i −1.29484 0.740135i
\(868\) 0 0
\(869\) 4.39919e8i 0.670368i
\(870\) 0 0
\(871\) −7.42835e8 −1.12419
\(872\) 0 0
\(873\) −5.52999e8 9.38983e8i −0.831155 1.41129i
\(874\) 0 0
\(875\) 1.20651e8i 0.180097i
\(876\) 0 0
\(877\) 1.28995e8 0.191238 0.0956188 0.995418i \(-0.469517\pi\)
0.0956188 + 0.995418i \(0.469517\pi\)
\(878\) 0 0
\(879\) 3.85133e6 6.73778e6i 0.00567079 0.00992088i
\(880\) 0 0
\(881\) 3.32233e8i 0.485865i 0.970043 + 0.242932i \(0.0781093\pi\)
−0.970043 + 0.242932i \(0.921891\pi\)
\(882\) 0 0
\(883\) −3.57193e8 −0.518825 −0.259412 0.965767i \(-0.583529\pi\)
−0.259412 + 0.965767i \(0.583529\pi\)
\(884\) 0 0
\(885\) −8.52149e7 4.87090e7i −0.122938 0.0702715i
\(886\) 0 0
\(887\) 6.89244e8i 0.987648i −0.869562 0.493824i \(-0.835599\pi\)
0.869562 0.493824i \(-0.164401\pi\)
\(888\) 0 0
\(889\) 5.78368e7 0.0823187
\(890\) 0 0
\(891\) −7.26550e8 4.02890e8i −1.02715 0.569578i
\(892\) 0 0
\(893\) 6.86600e8i 0.964161i
\(894\) 0 0
\(895\) −8.89060e8 −1.24012
\(896\) 0 0
\(897\) 6.92366e8 1.21127e9i 0.959308 1.67828i
\(898\) 0 0
\(899\) 6.85887e7i 0.0944003i
\(900\) 0 0
\(901\) −5.09961e8 −0.697208
\(902\) 0 0
\(903\) 3.14803e7 + 1.79942e7i 0.0427539 + 0.0244382i
\(904\) 0 0
\(905\) 3.85002e8i 0.519418i
\(906\) 0 0
\(907\) −6.43559e7 −0.0862515 −0.0431257 0.999070i \(-0.513732\pi\)
−0.0431257 + 0.999070i \(0.513732\pi\)
\(908\) 0 0
\(909\) 1.05400e9 6.20739e8i 1.40330 0.826452i
\(910\) 0 0
\(911\) 1.09003e9i 1.44173i −0.693074 0.720867i \(-0.743744\pi\)
0.693074 0.720867i \(-0.256256\pi\)
\(912\) 0 0
\(913\) −3.89650e8 −0.511992
\(914\) 0 0
\(915\) −5.53431e8 + 9.68211e8i −0.722437 + 1.26388i
\(916\) 0 0
\(917\) 2.62259e7i 0.0340113i
\(918\) 0 0
\(919\) 2.69622e8 0.347384 0.173692 0.984800i \(-0.444430\pi\)
0.173692 + 0.984800i \(0.444430\pi\)
\(920\) 0 0
\(921\) 8.29567e7 + 4.74182e7i 0.106187 + 0.0606968i
\(922\) 0 0
\(923\) 1.54725e9i 1.96768i
\(924\) 0 0
\(925\) 2.19926e8 0.277876
\(926\) 0 0
\(927\) 9.98663e7 + 1.69571e8i 0.125366 + 0.212869i
\(928\) 0 0
\(929\) 1.39201e8i 0.173618i 0.996225 + 0.0868091i \(0.0276670\pi\)
−0.996225 + 0.0868091i \(0.972333\pi\)
\(930\) 0 0
\(931\) 1.20700e9 1.49575
\(932\) 0 0
\(933\) 8.44638e7 1.47767e8i 0.103998 0.181942i
\(934\) 0 0
\(935\) 1.21406e9i 1.48527i
\(936\) 0 0
\(937\) 5.69417e8 0.692169 0.346084 0.938203i \(-0.387511\pi\)
0.346084 + 0.938203i \(0.387511\pi\)
\(938\) 0 0
\(939\) −1.29465e9 7.40025e8i −1.56371 0.893819i
\(940\) 0 0
\(941\) 5.58214e8i 0.669934i −0.942230 0.334967i \(-0.891275\pi\)
0.942230 0.334967i \(-0.108725\pi\)
\(942\) 0 0
\(943\) 8.23687e8 0.982262
\(944\) 0 0
\(945\) −1.11900e8 + 1.45102e6i −0.132597 + 0.00171941i
\(946\) 0 0
\(947\) 1.25639e9i 1.47936i 0.672957 + 0.739682i \(0.265024\pi\)
−0.672957 + 0.739682i \(0.734976\pi\)
\(948\) 0 0
\(949\) 3.49751e8 0.409223
\(950\) 0 0
\(951\) 3.81000e8 6.66547e8i 0.442979 0.774978i
\(952\) 0 0
\(953\) 1.55995e9i 1.80232i 0.433483 + 0.901162i \(0.357284\pi\)
−0.433483 + 0.901162i \(0.642716\pi\)
\(954\) 0 0
\(955\) 9.63702e8 1.10645
\(956\) 0 0
\(957\) 7.65050e8 + 4.37304e8i 0.872879 + 0.498939i
\(958\) 0 0
\(959\) 1.06048e8i 0.120240i
\(960\) 0 0
\(961\) −8.76711e8 −0.987839
\(962\) 0 0
\(963\) 6.30918e8 3.71569e8i 0.706470 0.416064i
\(964\) 0 0
\(965\) 7.11879e8i 0.792181i
\(966\) 0 0
\(967\) −1.21243e9 −1.34084 −0.670419 0.741983i \(-0.733886\pi\)
−0.670419 + 0.741983i \(0.733886\pi\)
\(968\) 0 0
\(969\) −1.09603e9 + 1.91748e9i −1.20463 + 2.10746i
\(970\) 0 0
\(971\) 2.86909e8i 0.313390i −0.987647 0.156695i \(-0.949916\pi\)
0.987647 0.156695i \(-0.0500840\pi\)
\(972\) 0 0
\(973\) 9.48613e7 0.102979
\(974\) 0 0
\(975\) 3.67153e8 + 2.09865e8i 0.396126 + 0.226426i
\(976\) 0 0
\(977\) 3.70298e8i 0.397071i −0.980094 0.198535i \(-0.936382\pi\)
0.980094 0.198535i \(-0.0636184\pi\)
\(978\) 0 0
\(979\) 4.80413e7 0.0511996
\(980\) 0 0
\(981\) −2.92381e8 4.96457e8i −0.309700 0.525866i
\(982\) 0 0
\(983\) 1.61003e9i 1.69501i −0.530788 0.847505i \(-0.678104\pi\)
0.530788 0.847505i \(-0.321896\pi\)
\(984\) 0 0
\(985\) −1.13796e9 −1.19074
\(986\) 0 0
\(987\) 4.95133e7 8.66221e7i 0.0514957 0.0900901i
\(988\) 0 0
\(989\) 4.36689e8i 0.451422i
\(990\) 0 0
\(991\) 1.41865e9 1.45766 0.728828 0.684696i \(-0.240065\pi\)
0.728828 + 0.684696i \(0.240065\pi\)
\(992\) 0 0
\(993\) 8.91025e8 + 5.09311e8i 0.910001 + 0.520158i
\(994\) 0 0
\(995\) 8.12201e8i 0.824507i
\(996\) 0 0
\(997\) 3.15007e8 0.317859 0.158930 0.987290i \(-0.449196\pi\)
0.158930 + 0.987290i \(0.449196\pi\)
\(998\) 0 0
\(999\) 1.00306e7 + 7.73541e8i 0.0100608 + 0.775866i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 24.7.e.a.17.6 yes 6
3.2 odd 2 inner 24.7.e.a.17.5 6
4.3 odd 2 48.7.e.d.17.1 6
8.3 odd 2 192.7.e.g.65.6 6
8.5 even 2 192.7.e.h.65.1 6
12.11 even 2 48.7.e.d.17.2 6
24.5 odd 2 192.7.e.h.65.2 6
24.11 even 2 192.7.e.g.65.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.7.e.a.17.5 6 3.2 odd 2 inner
24.7.e.a.17.6 yes 6 1.1 even 1 trivial
48.7.e.d.17.1 6 4.3 odd 2
48.7.e.d.17.2 6 12.11 even 2
192.7.e.g.65.5 6 24.11 even 2
192.7.e.g.65.6 6 8.3 odd 2
192.7.e.h.65.1 6 8.5 even 2
192.7.e.h.65.2 6 24.5 odd 2