Properties

Label 24.7.b.a.19.3
Level $24$
Weight $7$
Character 24.19
Analytic conductor $5.521$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24,7,Mod(19,24)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24.19"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 7, names="a")
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 24.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.52129800688\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 31 x^{10} - 1286 x^{9} + 7702 x^{8} - 174032 x^{7} + 1952056 x^{6} + \cdots + 767595744 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{26}\cdot 3^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 19.3
Root \(-9.37784 - 8.67520i\) of defining polynomial
Character \(\chi\) \(=\) 24.19
Dual form 24.7.b.a.19.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.86506 - 6.35069i) q^{2} +15.5885 q^{3} +(-16.6624 + 61.7929i) q^{4} +100.822i q^{5} +(-75.8387 - 98.9974i) q^{6} +277.765i q^{7} +(473.491 - 194.808i) q^{8} +243.000 q^{9} +(640.287 - 490.503i) q^{10} +1922.36 q^{11} +(-259.742 + 963.256i) q^{12} +1721.01i q^{13} +(1764.00 - 1351.34i) q^{14} +1571.65i q^{15} +(-3540.73 - 2059.24i) q^{16} +1654.12 q^{17} +(-1182.21 - 1543.22i) q^{18} -9365.55 q^{19} +(-6230.07 - 1679.94i) q^{20} +4329.93i q^{21} +(-9352.39 - 12208.3i) q^{22} +15697.3i q^{23} +(7381.00 - 3036.76i) q^{24} +5459.98 q^{25} +(10929.6 - 8372.79i) q^{26} +3788.00 q^{27} +(-17163.9 - 4628.24i) q^{28} -28485.7i q^{29} +(9981.09 - 7646.19i) q^{30} +30249.4i q^{31} +(4148.24 + 32504.4i) q^{32} +29966.6 q^{33} +(-8047.37 - 10504.8i) q^{34} -28004.7 q^{35} +(-4048.97 + 15015.7i) q^{36} -72593.3i q^{37} +(45563.9 + 59477.7i) q^{38} +26827.8i q^{39} +(19640.9 + 47738.2i) q^{40} +34125.3 q^{41} +(27498.0 - 21065.3i) q^{42} -71200.1 q^{43} +(-32031.2 + 118788. i) q^{44} +24499.7i q^{45} +(99688.4 - 76368.1i) q^{46} -149872. i q^{47} +(-55194.5 - 32100.4i) q^{48} +40495.6 q^{49} +(-26563.1 - 34674.7i) q^{50} +25785.1 q^{51} +(-106346. - 28676.1i) q^{52} -235085. i q^{53} +(-18428.8 - 24056.4i) q^{54} +193816. i q^{55} +(54110.9 + 131519. i) q^{56} -145994. q^{57} +(-180904. + 138584. i) q^{58} -135778. q^{59} +(-97117.1 - 26187.6i) q^{60} +106714. i q^{61} +(192105. - 147165. i) q^{62} +67496.9i q^{63} +(186244. - 184480. i) q^{64} -173515. q^{65} +(-145789. - 190309. i) q^{66} +207500. q^{67} +(-27561.6 + 102213. i) q^{68} +244696. i q^{69} +(136245. + 177849. i) q^{70} -232520. i q^{71} +(115058. - 47338.4i) q^{72} +645892. q^{73} +(-461017. + 353170. i) q^{74} +85112.7 q^{75} +(156053. - 578725. i) q^{76} +533964. i q^{77} +(170375. - 130519. i) q^{78} +535360. i q^{79} +(207616. - 356982. i) q^{80} +59049.0 q^{81} +(-166021. - 216719. i) q^{82} +660358. q^{83} +(-267559. - 72147.2i) q^{84} +166771. i q^{85} +(346393. + 452170. i) q^{86} -444048. i q^{87} +(910220. - 374491. i) q^{88} -942878. q^{89} +(155590. - 119192. i) q^{90} -478035. q^{91} +(-969980. - 261555. i) q^{92} +471542. i q^{93} +(-951790. + 729136. i) q^{94} -944251. i q^{95} +(64664.7 + 506693. i) q^{96} -1.16254e6 q^{97} +(-197013. - 257175. i) q^{98} +467133. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 10 q^{2} + 24 q^{4} + 162 q^{6} + 796 q^{8} + 2916 q^{9} + 2172 q^{10} + 2720 q^{11} - 972 q^{12} - 6444 q^{14} + 11640 q^{16} - 4888 q^{17} + 2430 q^{18} + 3936 q^{19} - 31608 q^{20} - 60432 q^{22}+ \cdots + 660960 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.86506 6.35069i −0.608132 0.793836i
\(3\) 15.5885 0.577350
\(4\) −16.6624 + 61.7929i −0.260351 + 0.965514i
\(5\) 100.822i 0.806574i 0.915074 + 0.403287i \(0.132132\pi\)
−0.915074 + 0.403287i \(0.867868\pi\)
\(6\) −75.8387 98.9974i −0.351105 0.458321i
\(7\) 277.765i 0.809811i 0.914359 + 0.404905i \(0.132696\pi\)
−0.914359 + 0.404905i \(0.867304\pi\)
\(8\) 473.491 194.808i 0.924787 0.380485i
\(9\) 243.000 0.333333
\(10\) 640.287 490.503i 0.640287 0.490503i
\(11\) 1922.36 1.44430 0.722149 0.691738i \(-0.243155\pi\)
0.722149 + 0.691738i \(0.243155\pi\)
\(12\) −259.742 + 963.256i −0.150313 + 0.557440i
\(13\) 1721.01i 0.783343i 0.920105 + 0.391672i \(0.128103\pi\)
−0.920105 + 0.391672i \(0.871897\pi\)
\(14\) 1764.00 1351.34i 0.642857 0.492472i
\(15\) 1571.65i 0.465675i
\(16\) −3540.73 2059.24i −0.864435 0.502744i
\(17\) 1654.12 0.336681 0.168341 0.985729i \(-0.446159\pi\)
0.168341 + 0.985729i \(0.446159\pi\)
\(18\) −1182.21 1543.22i −0.202711 0.264612i
\(19\) −9365.55 −1.36544 −0.682720 0.730680i \(-0.739203\pi\)
−0.682720 + 0.730680i \(0.739203\pi\)
\(20\) −6230.07 1679.94i −0.778758 0.209992i
\(21\) 4329.93i 0.467544i
\(22\) −9352.39 12208.3i −0.878324 1.14654i
\(23\) 15697.3i 1.29015i 0.764119 + 0.645076i \(0.223174\pi\)
−0.764119 + 0.645076i \(0.776826\pi\)
\(24\) 7381.00 3036.76i 0.533926 0.219673i
\(25\) 5459.98 0.349439
\(26\) 10929.6 8372.79i 0.621846 0.476376i
\(27\) 3788.00 0.192450
\(28\) −17163.9 4628.24i −0.781884 0.210835i
\(29\) 28485.7i 1.16797i −0.811764 0.583986i \(-0.801492\pi\)
0.811764 0.583986i \(-0.198508\pi\)
\(30\) 9981.09 7646.19i 0.369670 0.283192i
\(31\) 30249.4i 1.01539i 0.861537 + 0.507694i \(0.169502\pi\)
−0.861537 + 0.507694i \(0.830498\pi\)
\(32\) 4148.24 + 32504.4i 0.126594 + 0.991955i
\(33\) 29966.6 0.833865
\(34\) −8047.37 10504.8i −0.204747 0.267270i
\(35\) −28004.7 −0.653172
\(36\) −4048.97 + 15015.7i −0.0867835 + 0.321838i
\(37\) 72593.3i 1.43315i −0.697511 0.716574i \(-0.745709\pi\)
0.697511 0.716574i \(-0.254291\pi\)
\(38\) 45563.9 + 59477.7i 0.830368 + 1.08393i
\(39\) 26827.8i 0.452263i
\(40\) 19640.9 + 47738.2i 0.306889 + 0.745909i
\(41\) 34125.3 0.495136 0.247568 0.968871i \(-0.420369\pi\)
0.247568 + 0.968871i \(0.420369\pi\)
\(42\) 27498.0 21065.3i 0.371153 0.284329i
\(43\) −71200.1 −0.895520 −0.447760 0.894154i \(-0.647778\pi\)
−0.447760 + 0.894154i \(0.647778\pi\)
\(44\) −32031.2 + 118788.i −0.376024 + 1.39449i
\(45\) 24499.7i 0.268858i
\(46\) 99688.4 76368.1i 1.02417 0.784582i
\(47\) 149872.i 1.44353i −0.692136 0.721767i \(-0.743330\pi\)
0.692136 0.721767i \(-0.256670\pi\)
\(48\) −55194.5 32100.4i −0.499082 0.290260i
\(49\) 40495.6 0.344207
\(50\) −26563.1 34674.7i −0.212505 0.277397i
\(51\) 25785.1 0.194383
\(52\) −106346. 28676.1i −0.756329 0.203944i
\(53\) 235085.i 1.57906i −0.613713 0.789529i \(-0.710325\pi\)
0.613713 0.789529i \(-0.289675\pi\)
\(54\) −18428.8 24056.4i −0.117035 0.152774i
\(55\) 193816.i 1.16493i
\(56\) 54110.9 + 131519.i 0.308120 + 0.748903i
\(57\) −145994. −0.788337
\(58\) −180904. + 138584.i −0.927178 + 0.710281i
\(59\) −135778. −0.661109 −0.330554 0.943787i \(-0.607236\pi\)
−0.330554 + 0.943787i \(0.607236\pi\)
\(60\) −97117.1 26187.6i −0.449616 0.121239i
\(61\) 106714.i 0.470145i 0.971978 + 0.235072i \(0.0755327\pi\)
−0.971978 + 0.235072i \(0.924467\pi\)
\(62\) 192105. 147165.i 0.806052 0.617490i
\(63\) 67496.9i 0.269937i
\(64\) 186244. 184480.i 0.710463 0.703735i
\(65\) −173515. −0.631824
\(66\) −145789. 190309.i −0.507100 0.661952i
\(67\) 207500. 0.689912 0.344956 0.938619i \(-0.387894\pi\)
0.344956 + 0.938619i \(0.387894\pi\)
\(68\) −27561.6 + 102213.i −0.0876552 + 0.325071i
\(69\) 244696.i 0.744869i
\(70\) 136245. + 177849.i 0.397215 + 0.518511i
\(71\) 232520.i 0.649657i −0.945773 0.324829i \(-0.894693\pi\)
0.945773 0.324829i \(-0.105307\pi\)
\(72\) 115058. 47338.4i 0.308262 0.126828i
\(73\) 645892. 1.66032 0.830160 0.557526i \(-0.188249\pi\)
0.830160 + 0.557526i \(0.188249\pi\)
\(74\) −461017. + 353170.i −1.13768 + 0.871543i
\(75\) 85112.7 0.201749
\(76\) 156053. 578725.i 0.355493 1.31835i
\(77\) 533964.i 1.16961i
\(78\) 170375. 130519.i 0.359023 0.275036i
\(79\) 535360.i 1.08584i 0.839786 + 0.542918i \(0.182681\pi\)
−0.839786 + 0.542918i \(0.817319\pi\)
\(80\) 207616. 356982.i 0.405500 0.697231i
\(81\) 59049.0 0.111111
\(82\) −166021. 216719.i −0.301108 0.393057i
\(83\) 660358. 1.15490 0.577451 0.816426i \(-0.304048\pi\)
0.577451 + 0.816426i \(0.304048\pi\)
\(84\) −267559. 72147.2i −0.451421 0.121725i
\(85\) 166771.i 0.271558i
\(86\) 346393. + 452170.i 0.544595 + 0.710896i
\(87\) 444048.i 0.674329i
\(88\) 910220. 374491.i 1.33567 0.549533i
\(89\) −942878. −1.33747 −0.668737 0.743499i \(-0.733165\pi\)
−0.668737 + 0.743499i \(0.733165\pi\)
\(90\) 155590. 119192.i 0.213429 0.163501i
\(91\) −478035. −0.634360
\(92\) −969980. 261555.i −1.24566 0.335892i
\(93\) 471542.i 0.586235i
\(94\) −951790. + 729136.i −1.14593 + 0.877860i
\(95\) 944251.i 1.10133i
\(96\) 64664.7 + 506693.i 0.0730892 + 0.572705i
\(97\) −1.16254e6 −1.27377 −0.636886 0.770958i \(-0.719778\pi\)
−0.636886 + 0.770958i \(0.719778\pi\)
\(98\) −197013. 257175.i −0.209323 0.273244i
\(99\) 467133. 0.481432
\(100\) −90976.7 + 337388.i −0.0909767 + 0.337388i
\(101\) 327259.i 0.317635i 0.987308 + 0.158817i \(0.0507681\pi\)
−0.987308 + 0.158817i \(0.949232\pi\)
\(102\) −125446. 163753.i −0.118211 0.154308i
\(103\) 972842.i 0.890288i −0.895459 0.445144i \(-0.853153\pi\)
0.895459 0.445144i \(-0.146847\pi\)
\(104\) 335266. + 814881.i 0.298050 + 0.724426i
\(105\) −436551. −0.377109
\(106\) −1.49295e6 + 1.14370e6i −1.25351 + 0.960276i
\(107\) 647520. 0.528569 0.264285 0.964445i \(-0.414864\pi\)
0.264285 + 0.964445i \(0.414864\pi\)
\(108\) −63117.2 + 234071.i −0.0501045 + 0.185813i
\(109\) 2.41440e6i 1.86436i −0.361992 0.932181i \(-0.617903\pi\)
0.361992 0.932181i \(-0.382097\pi\)
\(110\) 1.23086e6 942924.i 0.924765 0.708433i
\(111\) 1.13162e6i 0.827428i
\(112\) 571985. 983490.i 0.407128 0.700029i
\(113\) 767081. 0.531626 0.265813 0.964025i \(-0.414360\pi\)
0.265813 + 0.964025i \(0.414360\pi\)
\(114\) 710272. + 927165.i 0.479413 + 0.625810i
\(115\) −1.58263e6 −1.04060
\(116\) 1.76021e6 + 474641.i 1.12769 + 0.304082i
\(117\) 418204.i 0.261114i
\(118\) 660567. + 862282.i 0.402041 + 0.524812i
\(119\) 459455.i 0.272648i
\(120\) 306171. + 744165.i 0.177182 + 0.430651i
\(121\) 1.92391e6 1.08599
\(122\) 677707. 519169.i 0.373218 0.285910i
\(123\) 531960. 0.285867
\(124\) −1.86920e6 504029.i −0.980372 0.264357i
\(125\) 2.12582e6i 1.08842i
\(126\) 428652. 328376.i 0.214286 0.164157i
\(127\) 2.57772e6i 1.25842i 0.777236 + 0.629209i \(0.216621\pi\)
−0.777236 + 0.629209i \(0.783379\pi\)
\(128\) −2.07766e6 285270.i −0.990705 0.136027i
\(129\) −1.10990e6 −0.517029
\(130\) 844159. + 1.10194e6i 0.384233 + 0.501565i
\(131\) 691211. 0.307466 0.153733 0.988112i \(-0.450870\pi\)
0.153733 + 0.988112i \(0.450870\pi\)
\(132\) −499317. + 1.85172e6i −0.217097 + 0.805109i
\(133\) 2.60142e6i 1.10575i
\(134\) −1.00950e6 1.31777e6i −0.419558 0.547677i
\(135\) 381912.i 0.155225i
\(136\) 783209. 322235.i 0.311359 0.128102i
\(137\) 1.64458e6 0.639577 0.319788 0.947489i \(-0.396388\pi\)
0.319788 + 0.947489i \(0.396388\pi\)
\(138\) 1.55399e6 1.19046e6i 0.591304 0.452979i
\(139\) −2.97102e6 −1.10627 −0.553135 0.833092i \(-0.686569\pi\)
−0.553135 + 0.833092i \(0.686569\pi\)
\(140\) 466627. 1.73049e6i 0.170054 0.630647i
\(141\) 2.33627e6i 0.833425i
\(142\) −1.47666e6 + 1.13122e6i −0.515721 + 0.395078i
\(143\) 3.30839e6i 1.13138i
\(144\) −860396. 500396.i −0.288145 0.167581i
\(145\) 2.87197e6 0.942055
\(146\) −3.14230e6 4.10186e6i −1.00969 1.31802i
\(147\) 631264. 0.198728
\(148\) 4.48575e6 + 1.20958e6i 1.38372 + 0.373121i
\(149\) 1.85074e6i 0.559483i 0.960075 + 0.279741i \(0.0902487\pi\)
−0.960075 + 0.279741i \(0.909751\pi\)
\(150\) −414078. 540524.i −0.122690 0.160155i
\(151\) 3.81427e6i 1.10785i 0.832567 + 0.553925i \(0.186871\pi\)
−0.832567 + 0.553925i \(0.813129\pi\)
\(152\) −4.43450e6 + 1.82448e6i −1.26274 + 0.519529i
\(153\) 401950. 0.112227
\(154\) 3.39104e6 2.59777e6i 0.928476 0.711276i
\(155\) −3.04980e6 −0.818985
\(156\) −1.65777e6 447017.i −0.436667 0.117747i
\(157\) 2.53058e6i 0.653916i −0.945039 0.326958i \(-0.893976\pi\)
0.945039 0.326958i \(-0.106024\pi\)
\(158\) 3.39990e6 2.60455e6i 0.861976 0.660332i
\(159\) 3.66462e6i 0.911670i
\(160\) −3.27715e6 + 418233.i −0.800084 + 0.102108i
\(161\) −4.36015e6 −1.04478
\(162\) −287277. 375002.i −0.0675702 0.0882040i
\(163\) 2.22831e6 0.514533 0.257266 0.966341i \(-0.417178\pi\)
0.257266 + 0.966341i \(0.417178\pi\)
\(164\) −568610. + 2.10870e6i −0.128909 + 0.478061i
\(165\) 3.02129e6i 0.672574i
\(166\) −3.21268e6 4.19372e6i −0.702333 0.916802i
\(167\) 2.36063e6i 0.506849i 0.967355 + 0.253425i \(0.0815569\pi\)
−0.967355 + 0.253425i \(0.918443\pi\)
\(168\) 843505. + 2.05018e6i 0.177893 + 0.432379i
\(169\) 1.86495e6 0.386373
\(170\) 1.05911e6 811349.i 0.215573 0.165143i
\(171\) −2.27583e6 −0.455147
\(172\) 1.18637e6 4.39966e6i 0.233149 0.864638i
\(173\) 1.45298e6i 0.280621i −0.990108 0.140311i \(-0.955190\pi\)
0.990108 0.140311i \(-0.0448101\pi\)
\(174\) −2.82001e6 + 2.16032e6i −0.535306 + 0.410081i
\(175\) 1.51659e6i 0.282979i
\(176\) −6.80655e6 3.95860e6i −1.24850 0.726112i
\(177\) −2.11657e6 −0.381691
\(178\) 4.58715e6 + 5.98792e6i 0.813361 + 1.06174i
\(179\) 1.42925e6 0.249201 0.124601 0.992207i \(-0.460235\pi\)
0.124601 + 0.992207i \(0.460235\pi\)
\(180\) −1.51391e6 408224.i −0.259586 0.0699973i
\(181\) 3.01823e6i 0.508999i 0.967073 + 0.254500i \(0.0819107\pi\)
−0.967073 + 0.254500i \(0.918089\pi\)
\(182\) 2.32567e6 + 3.03585e6i 0.385775 + 0.503577i
\(183\) 1.66351e6i 0.271438i
\(184\) 3.05795e6 + 7.43252e6i 0.490883 + 1.19312i
\(185\) 7.31898e6 1.15594
\(186\) 2.99462e6 2.29408e6i 0.465374 0.356508i
\(187\) 3.17981e6 0.486268
\(188\) 9.26103e6 + 2.49723e6i 1.39375 + 0.375825i
\(189\) 1.05217e6i 0.155848i
\(190\) −5.99664e6 + 4.59383e6i −0.874273 + 0.669753i
\(191\) 1.01412e7i 1.45543i −0.685880 0.727715i \(-0.740582\pi\)
0.685880 0.727715i \(-0.259418\pi\)
\(192\) 2.90325e6 2.87576e6i 0.410186 0.406301i
\(193\) −888729. −0.123622 −0.0618112 0.998088i \(-0.519688\pi\)
−0.0618112 + 0.998088i \(0.519688\pi\)
\(194\) 5.65581e6 + 7.38290e6i 0.774621 + 1.01117i
\(195\) −2.70483e6 −0.364784
\(196\) −674755. + 2.50234e6i −0.0896145 + 0.332337i
\(197\) 9.41343e6i 1.23126i −0.788036 0.615629i \(-0.788902\pi\)
0.788036 0.615629i \(-0.211098\pi\)
\(198\) −2.27263e6 2.96662e6i −0.292775 0.382178i
\(199\) 9.47494e6i 1.20231i −0.799132 0.601156i \(-0.794707\pi\)
0.799132 0.601156i \(-0.205293\pi\)
\(200\) 2.58525e6 1.06365e6i 0.323157 0.132956i
\(201\) 3.23461e6 0.398321
\(202\) 2.07832e6 1.59214e6i 0.252150 0.193164i
\(203\) 7.91232e6 0.945836
\(204\) −429643. + 1.59334e6i −0.0506078 + 0.187680i
\(205\) 3.44057e6i 0.399363i
\(206\) −6.17821e6 + 4.73293e6i −0.706742 + 0.541413i
\(207\) 3.81444e6i 0.430050i
\(208\) 3.54396e6 6.09361e6i 0.393821 0.677149i
\(209\) −1.80040e7 −1.97210
\(210\) 2.12384e6 + 2.77240e6i 0.229332 + 0.299363i
\(211\) −7.65737e6 −0.815140 −0.407570 0.913174i \(-0.633624\pi\)
−0.407570 + 0.913174i \(0.633624\pi\)
\(212\) 1.45266e7 + 3.91710e6i 1.52460 + 0.411109i
\(213\) 3.62462e6i 0.375080i
\(214\) −3.15022e6 4.11220e6i −0.321440 0.419597i
\(215\) 7.17852e6i 0.722303i
\(216\) 1.79358e6 737932.i 0.177975 0.0732243i
\(217\) −8.40223e6 −0.822272
\(218\) −1.53331e7 + 1.17462e7i −1.48000 + 1.13378i
\(219\) 1.00685e7 0.958586
\(220\) −1.19764e7 3.22944e6i −1.12476 0.303291i
\(221\) 2.84674e6i 0.263737i
\(222\) −7.18654e6 + 5.50538e6i −0.656842 + 0.503186i
\(223\) 3.04442e6i 0.274530i −0.990534 0.137265i \(-0.956169\pi\)
0.990534 0.137265i \(-0.0438311\pi\)
\(224\) −9.02858e6 + 1.15224e6i −0.803295 + 0.102517i
\(225\) 1.32678e6 0.116480
\(226\) −3.73189e6 4.87149e6i −0.323299 0.422023i
\(227\) −1.21128e7 −1.03554 −0.517772 0.855519i \(-0.673238\pi\)
−0.517772 + 0.855519i \(0.673238\pi\)
\(228\) 2.43262e6 9.02142e6i 0.205244 0.761150i
\(229\) 1.06343e7i 0.885528i 0.896638 + 0.442764i \(0.146002\pi\)
−0.896638 + 0.442764i \(0.853998\pi\)
\(230\) 7.69956e6 + 1.00508e7i 0.632823 + 0.826067i
\(231\) 8.32368e6i 0.675273i
\(232\) −5.54924e6 1.34877e7i −0.444395 1.08013i
\(233\) 1.39434e7 1.10231 0.551153 0.834404i \(-0.314188\pi\)
0.551153 + 0.834404i \(0.314188\pi\)
\(234\) 2.65588e6 2.03459e6i 0.207282 0.158792i
\(235\) 1.51104e7 1.16432
\(236\) 2.26239e6 8.39011e6i 0.172120 0.638310i
\(237\) 8.34543e6i 0.626908i
\(238\) 2.91786e6 2.23528e6i 0.216438 0.165806i
\(239\) 828490.i 0.0606867i 0.999540 + 0.0303433i \(0.00966007\pi\)
−0.999540 + 0.0303433i \(0.990340\pi\)
\(240\) 3.23642e6 5.56480e6i 0.234116 0.402546i
\(241\) −2.59338e7 −1.85274 −0.926372 0.376611i \(-0.877089\pi\)
−0.926372 + 0.376611i \(0.877089\pi\)
\(242\) −9.35991e6 1.22181e7i −0.660428 0.862102i
\(243\) 920483. 0.0641500
\(244\) −6.59416e6 1.77811e6i −0.453931 0.122402i
\(245\) 4.08283e6i 0.277628i
\(246\) −2.58802e6 3.37831e6i −0.173845 0.226931i
\(247\) 1.61182e7i 1.06961i
\(248\) 5.89283e6 + 1.43228e7i 0.386340 + 0.939018i
\(249\) 1.02940e7 0.666783
\(250\) 1.35004e7 1.03423e7i 0.864028 0.661904i
\(251\) −4.68287e6 −0.296136 −0.148068 0.988977i \(-0.547305\pi\)
−0.148068 + 0.988977i \(0.547305\pi\)
\(252\) −4.17083e6 1.12466e6i −0.260628 0.0702782i
\(253\) 3.01758e7i 1.86336i
\(254\) 1.63703e7 1.25408e7i 0.998978 0.765285i
\(255\) 2.59970e6i 0.156784i
\(256\) 8.29627e6 + 1.45824e7i 0.494496 + 0.869180i
\(257\) 1.06513e7 0.627487 0.313743 0.949508i \(-0.398417\pi\)
0.313743 + 0.949508i \(0.398417\pi\)
\(258\) 5.39973e6 + 7.04863e6i 0.314422 + 0.410436i
\(259\) 2.01639e7 1.16058
\(260\) 2.89118e6 1.07220e7i 0.164496 0.610035i
\(261\) 6.92202e6i 0.389324i
\(262\) −3.36278e6 4.38967e6i −0.186980 0.244077i
\(263\) 1.08575e7i 0.596848i 0.954433 + 0.298424i \(0.0964609\pi\)
−0.954433 + 0.298424i \(0.903539\pi\)
\(264\) 1.41889e7 5.83774e6i 0.771148 0.317273i
\(265\) 2.37017e7 1.27363
\(266\) −1.65208e7 + 1.26561e7i −0.877782 + 0.672441i
\(267\) −1.46980e7 −0.772191
\(268\) −3.45746e6 + 1.28220e7i −0.179619 + 0.666120i
\(269\) 1.27083e7i 0.652878i −0.945218 0.326439i \(-0.894151\pi\)
0.945218 0.326439i \(-0.105849\pi\)
\(270\) 2.42540e6 1.85802e6i 0.123223 0.0943974i
\(271\) 2.24450e7i 1.12775i 0.825861 + 0.563874i \(0.190690\pi\)
−0.825861 + 0.563874i \(0.809310\pi\)
\(272\) −5.85677e6 3.40622e6i −0.291039 0.169265i
\(273\) −7.45183e6 −0.366248
\(274\) −8.00097e6 1.04442e7i −0.388947 0.507719i
\(275\) 1.04961e7 0.504694
\(276\) −1.51205e7 4.07724e6i −0.719182 0.193927i
\(277\) 1.32124e7i 0.621646i −0.950468 0.310823i \(-0.899395\pi\)
0.950468 0.310823i \(-0.100605\pi\)
\(278\) 1.44542e7 + 1.88680e7i 0.672758 + 0.878197i
\(279\) 7.35061e6i 0.338463i
\(280\) −1.32600e7 + 5.45555e6i −0.604045 + 0.248522i
\(281\) 623477. 0.0280997 0.0140498 0.999901i \(-0.495528\pi\)
0.0140498 + 0.999901i \(0.495528\pi\)
\(282\) −1.48369e7 + 1.13661e7i −0.661603 + 0.506832i
\(283\) −484240. −0.0213649 −0.0106825 0.999943i \(-0.503400\pi\)
−0.0106825 + 0.999943i \(0.503400\pi\)
\(284\) 1.43681e7 + 3.87434e6i 0.627253 + 0.169139i
\(285\) 1.47194e7i 0.635852i
\(286\) 2.10106e7 1.60955e7i 0.898131 0.688029i
\(287\) 9.47880e6i 0.400966i
\(288\) 1.00802e6 + 7.89856e6i 0.0421981 + 0.330652i
\(289\) −2.14015e7 −0.886646
\(290\) −1.39723e7 1.82390e7i −0.572894 0.747837i
\(291\) −1.81221e7 −0.735412
\(292\) −1.07621e7 + 3.99116e7i −0.432265 + 1.60306i
\(293\) 1.23605e7i 0.491398i −0.969346 0.245699i \(-0.920983\pi\)
0.969346 0.245699i \(-0.0790175\pi\)
\(294\) −3.07113e6 4.00896e6i −0.120853 0.157757i
\(295\) 1.36894e7i 0.533233i
\(296\) −1.41418e7 3.43723e7i −0.545291 1.32536i
\(297\) 7.28189e6 0.277955
\(298\) 1.17535e7 9.00396e6i 0.444138 0.340240i
\(299\) −2.70151e7 −1.01063
\(300\) −1.41819e6 + 5.25936e6i −0.0525254 + 0.194791i
\(301\) 1.97769e7i 0.725202i
\(302\) 2.42233e7 1.85567e7i 0.879451 0.673719i
\(303\) 5.10147e6i 0.183386i
\(304\) 3.31609e7 + 1.92859e7i 1.18033 + 0.686467i
\(305\) −1.07591e7 −0.379206
\(306\) −1.95551e6 2.55266e6i −0.0682489 0.0890899i
\(307\) −2.59925e7 −0.898323 −0.449161 0.893451i \(-0.648277\pi\)
−0.449161 + 0.893451i \(0.648277\pi\)
\(308\) −3.29952e7 8.89715e6i −1.12927 0.304508i
\(309\) 1.51651e7i 0.514008i
\(310\) 1.48374e7 + 1.93683e7i 0.498051 + 0.650140i
\(311\) 3.78807e7i 1.25932i 0.776869 + 0.629662i \(0.216807\pi\)
−0.776869 + 0.629662i \(0.783193\pi\)
\(312\) 5.22628e6 + 1.27027e7i 0.172079 + 0.418248i
\(313\) 5.00119e7 1.63095 0.815474 0.578794i \(-0.196476\pi\)
0.815474 + 0.578794i \(0.196476\pi\)
\(314\) −1.60709e7 + 1.23114e7i −0.519102 + 0.397667i
\(315\) −6.80515e6 −0.217724
\(316\) −3.30814e7 8.92040e6i −1.04839 0.282698i
\(317\) 4.24239e7i 1.33178i −0.746049 0.665891i \(-0.768052\pi\)
0.746049 0.665891i \(-0.231948\pi\)
\(318\) −2.32728e7 + 1.78286e7i −0.723716 + 0.554416i
\(319\) 5.47597e7i 1.68690i
\(320\) 1.85996e7 + 1.87774e7i 0.567614 + 0.573041i
\(321\) 1.00938e7 0.305170
\(322\) 2.12124e7 + 2.76900e7i 0.635363 + 0.829382i
\(323\) −1.54917e7 −0.459718
\(324\) −983900. + 3.64881e6i −0.0289278 + 0.107279i
\(325\) 9.39666e6i 0.273731i
\(326\) −1.08409e7 1.41513e7i −0.312904 0.408454i
\(327\) 3.76368e7i 1.07639i
\(328\) 1.61580e7 6.64787e6i 0.457895 0.188391i
\(329\) 4.16292e7 1.16899
\(330\) 1.91872e7 1.46987e7i 0.533913 0.409014i
\(331\) 7.44447e6 0.205282 0.102641 0.994718i \(-0.467271\pi\)
0.102641 + 0.994718i \(0.467271\pi\)
\(332\) −1.10032e7 + 4.08054e7i −0.300679 + 1.11507i
\(333\) 1.76402e7i 0.477716i
\(334\) 1.49916e7 1.14846e7i 0.402355 0.308231i
\(335\) 2.09205e7i 0.556465i
\(336\) 8.91637e6 1.53311e7i 0.235055 0.404162i
\(337\) −5.96814e7 −1.55937 −0.779686 0.626171i \(-0.784621\pi\)
−0.779686 + 0.626171i \(0.784621\pi\)
\(338\) −9.07309e6 1.18437e7i −0.234966 0.306717i
\(339\) 1.19576e7 0.306934
\(340\) −1.03052e7 2.77881e6i −0.262193 0.0707004i
\(341\) 5.81503e7i 1.46652i
\(342\) 1.10720e7 + 1.44531e7i 0.276789 + 0.361312i
\(343\) 4.39270e7i 1.08855i
\(344\) −3.37126e7 + 1.38704e7i −0.828166 + 0.340732i
\(345\) −2.46707e7 −0.600792
\(346\) −9.22740e6 + 7.06882e6i −0.222767 + 0.170655i
\(347\) 2.20906e7 0.528713 0.264356 0.964425i \(-0.414841\pi\)
0.264356 + 0.964425i \(0.414841\pi\)
\(348\) 2.74390e7 + 7.39891e6i 0.651074 + 0.175562i
\(349\) 5.69624e6i 0.134002i −0.997753 0.0670011i \(-0.978657\pi\)
0.997753 0.0670011i \(-0.0213431\pi\)
\(350\) 9.63141e6 7.37831e6i 0.224639 0.172089i
\(351\) 6.51916e6i 0.150754i
\(352\) 7.97441e6 + 6.24851e7i 0.182840 + 1.43268i
\(353\) −4.12066e7 −0.936790 −0.468395 0.883519i \(-0.655168\pi\)
−0.468395 + 0.883519i \(0.655168\pi\)
\(354\) 1.02972e7 + 1.34417e7i 0.232119 + 0.303000i
\(355\) 2.34430e7 0.523997
\(356\) 1.57106e7 5.82632e7i 0.348212 1.29135i
\(357\) 7.16220e6i 0.157413i
\(358\) −6.95340e6 9.07674e6i −0.151547 0.197825i
\(359\) 2.94445e6i 0.0636386i −0.999494 0.0318193i \(-0.989870\pi\)
0.999494 0.0318193i \(-0.0101301\pi\)
\(360\) 4.77273e6 + 1.16004e7i 0.102296 + 0.248636i
\(361\) 4.06677e7 0.864426
\(362\) 1.91679e7 1.46839e7i 0.404062 0.309539i
\(363\) 2.99907e7 0.626999
\(364\) 7.96523e6 2.95392e7i 0.165156 0.612483i
\(365\) 6.51200e7i 1.33917i
\(366\) 1.05644e7 8.09305e6i 0.215477 0.165070i
\(367\) 2.64356e7i 0.534800i −0.963586 0.267400i \(-0.913836\pi\)
0.963586 0.267400i \(-0.0861645\pi\)
\(368\) 3.23245e7 5.55797e7i 0.648616 1.11525i
\(369\) 8.29244e6 0.165045
\(370\) −3.56072e7 4.64805e7i −0.702964 0.917626i
\(371\) 6.52985e7 1.27874
\(372\) −2.91379e7 7.85704e6i −0.566018 0.152627i
\(373\) 2.13360e7i 0.411136i −0.978643 0.205568i \(-0.934096\pi\)
0.978643 0.205568i \(-0.0659042\pi\)
\(374\) −1.54699e7 2.01939e7i −0.295715 0.386017i
\(375\) 3.31383e7i 0.628401i
\(376\) −2.91963e7 7.09631e7i −0.549242 1.33496i
\(377\) 4.90240e7 0.914923
\(378\) 6.68202e6 5.11888e6i 0.123718 0.0947763i
\(379\) −1.21237e7 −0.222698 −0.111349 0.993781i \(-0.535517\pi\)
−0.111349 + 0.993781i \(0.535517\pi\)
\(380\) 5.83480e7 + 1.57335e7i 1.06335 + 0.286731i
\(381\) 4.01827e7i 0.726548i
\(382\) −6.44039e7 + 4.93377e7i −1.15537 + 0.885093i
\(383\) 1.48851e7i 0.264945i −0.991187 0.132472i \(-0.957708\pi\)
0.991187 0.132472i \(-0.0422915\pi\)
\(384\) −3.23875e7 4.44692e6i −0.571984 0.0785355i
\(385\) −5.38352e7 −0.943374
\(386\) 4.32372e6 + 5.64404e6i 0.0751788 + 0.0981359i
\(387\) −1.73016e7 −0.298507
\(388\) 1.93707e7 7.18365e7i 0.331627 1.22984i
\(389\) 6.56561e7i 1.11539i 0.830046 + 0.557694i \(0.188314\pi\)
−0.830046 + 0.557694i \(0.811686\pi\)
\(390\) 1.31591e7 + 1.71775e7i 0.221837 + 0.289578i
\(391\) 2.59651e7i 0.434370i
\(392\) 1.91743e7 7.88887e6i 0.318318 0.130965i
\(393\) 1.07749e7 0.177515
\(394\) −5.97817e7 + 4.57969e7i −0.977417 + 0.748767i
\(395\) −5.39759e7 −0.875807
\(396\) −7.78358e6 + 2.88655e7i −0.125341 + 0.464830i
\(397\) 1.53950e7i 0.246042i 0.992404 + 0.123021i \(0.0392582\pi\)
−0.992404 + 0.123021i \(0.960742\pi\)
\(398\) −6.01724e7 + 4.60961e7i −0.954439 + 0.731165i
\(399\) 4.05522e7i 0.638404i
\(400\) −1.93323e7 1.12434e7i −0.302067 0.175679i
\(401\) −5.25147e7 −0.814418 −0.407209 0.913335i \(-0.633498\pi\)
−0.407209 + 0.913335i \(0.633498\pi\)
\(402\) −1.57365e7 2.05420e7i −0.242232 0.316202i
\(403\) −5.20594e7 −0.795398
\(404\) −2.02223e7 5.45294e6i −0.306681 0.0826964i
\(405\) 5.95342e6i 0.0896193i
\(406\) −3.84939e7 5.02487e7i −0.575193 0.750838i
\(407\) 1.39550e8i 2.06989i
\(408\) 1.22090e7 5.02315e6i 0.179763 0.0739598i
\(409\) −5.65258e7 −0.826184 −0.413092 0.910689i \(-0.635551\pi\)
−0.413092 + 0.910689i \(0.635551\pi\)
\(410\) 2.18500e7 1.67385e7i 0.317029 0.242866i
\(411\) 2.56364e7 0.369260
\(412\) 6.01147e7 + 1.62099e7i 0.859586 + 0.231787i
\(413\) 3.77143e7i 0.535373i
\(414\) 2.42243e7 1.85575e7i 0.341389 0.261527i
\(415\) 6.65784e7i 0.931513i
\(416\) −5.59402e7 + 7.13914e6i −0.777041 + 0.0991668i
\(417\) −4.63136e7 −0.638705
\(418\) 8.75903e7 + 1.14337e8i 1.19930 + 1.56552i
\(419\) 7.01771e7 0.954011 0.477006 0.878900i \(-0.341722\pi\)
0.477006 + 0.878900i \(0.341722\pi\)
\(420\) 7.27400e6 2.69757e7i 0.0981805 0.364104i
\(421\) 9.23872e6i 0.123813i 0.998082 + 0.0619064i \(0.0197180\pi\)
−0.998082 + 0.0619064i \(0.980282\pi\)
\(422\) 3.72535e7 + 4.86295e7i 0.495713 + 0.647087i
\(423\) 3.64189e7i 0.481178i
\(424\) −4.57965e7 1.11311e8i −0.600807 1.46029i
\(425\) 9.03145e6 0.117650
\(426\) −2.30188e7 + 1.76340e7i −0.297752 + 0.228098i
\(427\) −2.96414e7 −0.380728
\(428\) −1.07893e7 + 4.00122e7i −0.137613 + 0.510341i
\(429\) 5.15727e7i 0.653203i
\(430\) −4.55885e7 + 3.49239e7i −0.573390 + 0.439256i
\(431\) 1.50713e7i 0.188243i 0.995561 + 0.0941215i \(0.0300042\pi\)
−0.995561 + 0.0941215i \(0.969996\pi\)
\(432\) −1.34123e7 7.80040e6i −0.166361 0.0967532i
\(433\) 1.18653e8 1.46156 0.730779 0.682614i \(-0.239157\pi\)
0.730779 + 0.682614i \(0.239157\pi\)
\(434\) 4.08773e7 + 5.33600e7i 0.500050 + 0.652749i
\(435\) 4.47696e7 0.543896
\(436\) 1.49193e8 + 4.02298e7i 1.80007 + 0.485388i
\(437\) 1.47014e8i 1.76162i
\(438\) −4.89837e7 6.39417e7i −0.582947 0.760960i
\(439\) 8.40011e6i 0.0992868i 0.998767 + 0.0496434i \(0.0158085\pi\)
−0.998767 + 0.0496434i \(0.984192\pi\)
\(440\) 3.77568e7 + 9.17700e7i 0.443239 + 1.07731i
\(441\) 9.84043e6 0.114736
\(442\) 1.80788e7 1.38496e7i 0.209364 0.160387i
\(443\) 1.75231e7 0.201558 0.100779 0.994909i \(-0.467867\pi\)
0.100779 + 0.994909i \(0.467867\pi\)
\(444\) 6.99259e7 + 1.88555e7i 0.798894 + 0.215422i
\(445\) 9.50626e7i 1.07877i
\(446\) −1.93341e7 + 1.48113e7i −0.217932 + 0.166950i
\(447\) 2.88502e7i 0.323018i
\(448\) 5.12420e7 + 5.17320e7i 0.569892 + 0.575341i
\(449\) −1.08791e8 −1.20186 −0.600928 0.799303i \(-0.705202\pi\)
−0.600928 + 0.799303i \(0.705202\pi\)
\(450\) −6.45484e6 8.42594e6i −0.0708350 0.0924657i
\(451\) 6.56010e7 0.715123
\(452\) −1.27814e7 + 4.74002e7i −0.138409 + 0.513292i
\(453\) 5.94586e7i 0.639617i
\(454\) 5.89297e7 + 7.69249e7i 0.629748 + 0.822052i
\(455\) 4.81963e7i 0.511658i
\(456\) −6.91271e7 + 2.84409e7i −0.729044 + 0.299950i
\(457\) 1.35491e8 1.41959 0.709795 0.704409i \(-0.248788\pi\)
0.709795 + 0.704409i \(0.248788\pi\)
\(458\) 6.75351e7 5.17365e7i 0.702964 0.538518i
\(459\) 6.26578e6 0.0647944
\(460\) 2.63704e7 9.77950e7i 0.270921 1.00472i
\(461\) 6.50970e7i 0.664444i 0.943201 + 0.332222i \(0.107798\pi\)
−0.943201 + 0.332222i \(0.892202\pi\)
\(462\) 5.28611e7 4.04952e7i 0.536056 0.410655i
\(463\) 4.98070e7i 0.501819i −0.968011 0.250910i \(-0.919270\pi\)
0.968011 0.250910i \(-0.0807297\pi\)
\(464\) −5.86588e7 + 1.00860e8i −0.587191 + 1.00964i
\(465\) −4.75417e7 −0.472841
\(466\) −6.78357e7 8.85504e7i −0.670348 0.875050i
\(467\) −1.15723e7 −0.113624 −0.0568120 0.998385i \(-0.518094\pi\)
−0.0568120 + 0.998385i \(0.518094\pi\)
\(468\) −2.58421e7 6.96830e6i −0.252110 0.0679813i
\(469\) 5.76363e7i 0.558698i
\(470\) −7.35127e7 9.59611e7i −0.708058 0.924276i
\(471\) 3.94479e7i 0.377538i
\(472\) −6.42896e7 + 2.64506e7i −0.611385 + 0.251542i
\(473\) −1.36872e8 −1.29340
\(474\) 5.29992e7 4.06010e7i 0.497662 0.381243i
\(475\) −5.11358e7 −0.477138
\(476\) −2.83911e7 7.65565e6i −0.263246 0.0709841i
\(477\) 5.71258e7i 0.526353i
\(478\) 5.26148e6 4.03065e6i 0.0481753 0.0369055i
\(479\) 6.30807e7i 0.573971i −0.957935 0.286985i \(-0.907347\pi\)
0.957935 0.286985i \(-0.0926531\pi\)
\(480\) −5.10856e7 + 6.51960e6i −0.461929 + 0.0589518i
\(481\) 1.24933e8 1.12265
\(482\) 1.26169e8 + 1.64698e8i 1.12671 + 1.47077i
\(483\) −6.79681e7 −0.603203
\(484\) −3.20570e7 + 1.18884e8i −0.282739 + 1.04854i
\(485\) 1.17209e8i 1.02739i
\(486\) −4.47820e6 5.84570e6i −0.0390117 0.0509246i
\(487\) 2.05406e8i 1.77839i 0.457530 + 0.889194i \(0.348734\pi\)
−0.457530 + 0.889194i \(0.651266\pi\)
\(488\) 2.07887e7 + 5.05281e7i 0.178883 + 0.434784i
\(489\) 3.47359e7 0.297066
\(490\) 2.59288e7 1.98632e7i 0.220391 0.168835i
\(491\) −1.91695e8 −1.61944 −0.809721 0.586815i \(-0.800382\pi\)
−0.809721 + 0.586815i \(0.800382\pi\)
\(492\) −8.86375e6 + 3.28714e7i −0.0744256 + 0.276008i
\(493\) 4.71186e7i 0.393234i
\(494\) −1.02361e8 + 7.84158e7i −0.849093 + 0.650463i
\(495\) 4.70972e7i 0.388311i
\(496\) 6.22909e7 1.07105e8i 0.510481 0.877737i
\(497\) 6.45858e7 0.526099
\(498\) −5.00807e7 6.53737e7i −0.405492 0.529316i
\(499\) −1.17889e8 −0.948792 −0.474396 0.880312i \(-0.657333\pi\)
−0.474396 + 0.880312i \(0.657333\pi\)
\(500\) −1.31361e8 3.54214e7i −1.05089 0.283371i
\(501\) 3.67986e7i 0.292629i
\(502\) 2.27824e7 + 2.97395e7i 0.180090 + 0.235083i
\(503\) 1.07931e7i 0.0848087i 0.999101 + 0.0424044i \(0.0135018\pi\)
−0.999101 + 0.0424044i \(0.986498\pi\)
\(504\) 1.31489e7 + 3.19592e7i 0.102707 + 0.249634i
\(505\) −3.29948e7 −0.256196
\(506\) 1.91637e8 1.46807e8i 1.47920 1.13317i
\(507\) 2.90717e7 0.223073
\(508\) −1.59285e8 4.29512e7i −1.21502 0.327630i
\(509\) 4.84357e7i 0.367293i 0.982992 + 0.183646i \(0.0587901\pi\)
−0.982992 + 0.183646i \(0.941210\pi\)
\(510\) 1.65099e7 1.26477e7i 0.124461 0.0953455i
\(511\) 1.79406e8i 1.34454i
\(512\) 5.22465e7 1.23631e8i 0.389267 0.921125i
\(513\) −3.54767e7 −0.262779
\(514\) −5.18193e7 6.76432e7i −0.381595 0.498121i
\(515\) 9.80835e7 0.718083
\(516\) 1.84936e7 6.85840e7i 0.134609 0.499199i
\(517\) 2.88108e8i 2.08489i
\(518\) −9.80984e7 1.28054e8i −0.705785 0.921309i
\(519\) 2.26497e7i 0.162017i
\(520\) −8.21577e7 + 3.38021e7i −0.584303 + 0.240399i
\(521\) 2.16291e8 1.52941 0.764706 0.644379i \(-0.222884\pi\)
0.764706 + 0.644379i \(0.222884\pi\)
\(522\) −4.39596e7 + 3.36760e7i −0.309059 + 0.236760i
\(523\) 9.01442e7 0.630134 0.315067 0.949069i \(-0.397973\pi\)
0.315067 + 0.949069i \(0.397973\pi\)
\(524\) −1.15173e7 + 4.27119e7i −0.0800489 + 0.296863i
\(525\) 2.36413e7i 0.163378i
\(526\) 6.89527e7 5.28225e7i 0.473799 0.362962i
\(527\) 5.00361e7i 0.341862i
\(528\) −1.06104e8 6.17085e7i −0.720823 0.419221i
\(529\) −9.83684e7 −0.664490
\(530\) −1.15310e8 1.50522e8i −0.774533 1.01105i
\(531\) −3.29940e7 −0.220370
\(532\) 1.60749e8 + 4.33460e7i 1.06761 + 0.287882i
\(533\) 5.87297e7i 0.387861i
\(534\) 7.15067e7 + 9.33425e7i 0.469594 + 0.612993i
\(535\) 6.52841e7i 0.426330i
\(536\) 9.82495e7 4.04227e7i 0.638022 0.262501i
\(537\) 2.22799e7 0.143876
\(538\) −8.07067e7 + 6.18268e7i −0.518278 + 0.397036i
\(539\) 7.78471e7 0.497137
\(540\) −2.35995e7 6.36359e6i −0.149872 0.0404130i
\(541\) 2.37875e8i 1.50230i 0.660130 + 0.751151i \(0.270501\pi\)
−0.660130 + 0.751151i \(0.729499\pi\)
\(542\) 1.42541e8 1.09196e8i 0.895247 0.685820i
\(543\) 4.70496e7i 0.293871i
\(544\) 6.86167e6 + 5.37660e7i 0.0426219 + 0.333973i
\(545\) 2.43424e8 1.50375
\(546\) 3.62536e7 + 4.73242e7i 0.222727 + 0.290741i
\(547\) −2.03235e8 −1.24176 −0.620878 0.783908i \(-0.713224\pi\)
−0.620878 + 0.783908i \(0.713224\pi\)
\(548\) −2.74027e7 + 1.01623e8i −0.166514 + 0.617520i
\(549\) 2.59315e7i 0.156715i
\(550\) −5.10639e7 6.66572e7i −0.306921 0.400644i
\(551\) 2.66784e8i 1.59479i
\(552\) 4.76688e7 + 1.15861e8i 0.283411 + 0.688845i
\(553\) −1.48704e8 −0.879322
\(554\) −8.39080e7 + 6.42792e7i −0.493485 + 0.378043i
\(555\) 1.14092e8 0.667382
\(556\) 4.95044e7 1.83588e8i 0.288018 1.06812i
\(557\) 1.22171e7i 0.0706971i −0.999375 0.0353486i \(-0.988746\pi\)
0.999375 0.0353486i \(-0.0112541\pi\)
\(558\) 4.66814e7 3.57611e7i 0.268684 0.205830i
\(559\) 1.22536e8i 0.701500i
\(560\) 9.91571e7 + 5.76685e7i 0.564625 + 0.328378i
\(561\) 4.95683e7 0.280747
\(562\) −3.03325e6 3.95951e6i −0.0170883 0.0223065i
\(563\) −8.96182e7 −0.502193 −0.251097 0.967962i \(-0.580791\pi\)
−0.251097 + 0.967962i \(0.580791\pi\)
\(564\) 1.44365e8 + 3.89280e7i 0.804684 + 0.216983i
\(565\) 7.73384e7i 0.428795i
\(566\) 2.35586e6 + 3.07526e6i 0.0129927 + 0.0169602i
\(567\) 1.64017e7i 0.0899790i
\(568\) −4.52967e7 1.10096e8i −0.247185 0.600795i
\(569\) −1.36856e8 −0.742894 −0.371447 0.928454i \(-0.621138\pi\)
−0.371447 + 0.928454i \(0.621138\pi\)
\(570\) −9.34784e7 + 7.16108e7i −0.504762 + 0.386682i
\(571\) 2.26109e8 1.21453 0.607266 0.794498i \(-0.292266\pi\)
0.607266 + 0.794498i \(0.292266\pi\)
\(572\) −2.04435e8 5.51259e7i −1.09236 0.294556i
\(573\) 1.58086e8i 0.840293i
\(574\) 6.01969e7 4.61149e7i 0.318301 0.243840i
\(575\) 8.57069e7i 0.450829i
\(576\) 4.52572e7 4.48286e7i 0.236821 0.234578i
\(577\) 7.81285e7 0.406707 0.203354 0.979105i \(-0.434816\pi\)
0.203354 + 0.979105i \(0.434816\pi\)
\(578\) 1.04119e8 + 1.35914e8i 0.539198 + 0.703851i
\(579\) −1.38539e7 −0.0713735
\(580\) −4.78541e7 + 1.77468e8i −0.245265 + 0.909568i
\(581\) 1.83424e8i 0.935251i
\(582\) 8.81653e7 + 1.15088e8i 0.447228 + 0.583796i
\(583\) 4.51919e8i 2.28063i
\(584\) 3.05824e8 1.25825e8i 1.53544 0.631726i
\(585\) −4.21641e7 −0.210608
\(586\) −7.84977e7 + 6.01346e7i −0.390089 + 0.298835i
\(587\) 1.63395e7 0.0807839 0.0403920 0.999184i \(-0.487139\pi\)
0.0403920 + 0.999184i \(0.487139\pi\)
\(588\) −1.05184e7 + 3.90076e7i −0.0517389 + 0.191875i
\(589\) 2.83303e8i 1.38645i
\(590\) −8.69368e7 + 6.65995e7i −0.423299 + 0.324276i
\(591\) 1.46741e8i 0.710867i
\(592\) −1.49487e8 + 2.57033e8i −0.720507 + 1.23886i
\(593\) −1.22802e8 −0.588898 −0.294449 0.955667i \(-0.595136\pi\)
−0.294449 + 0.955667i \(0.595136\pi\)
\(594\) −3.54268e7 4.62450e7i −0.169033 0.220651i
\(595\) −4.63231e7 −0.219911
\(596\) −1.14363e8 3.08379e7i −0.540189 0.145662i
\(597\) 1.47700e8i 0.694155i
\(598\) 1.31430e8 + 1.71564e8i 0.614597 + 0.802275i
\(599\) 1.70436e8i 0.793016i −0.918031 0.396508i \(-0.870222\pi\)
0.918031 0.396508i \(-0.129778\pi\)
\(600\) 4.03001e7 1.65806e7i 0.186575 0.0767623i
\(601\) −1.40236e8 −0.646005 −0.323003 0.946398i \(-0.604692\pi\)
−0.323003 + 0.946398i \(0.604692\pi\)
\(602\) −1.25597e8 + 9.62158e7i −0.575691 + 0.441019i
\(603\) 5.04225e7 0.229971
\(604\) −2.35695e8 6.35551e7i −1.06964 0.288429i
\(605\) 1.93972e8i 0.875935i
\(606\) 3.23978e7 2.48189e7i 0.145579 0.111523i
\(607\) 3.57258e8i 1.59741i −0.601723 0.798705i \(-0.705519\pi\)
0.601723 0.798705i \(-0.294481\pi\)
\(608\) −3.88506e7 3.04421e8i −0.172857 1.35445i
\(609\) 1.23341e8 0.546079
\(610\) 5.23435e7 + 6.83275e7i 0.230608 + 0.301028i
\(611\) 2.57931e8 1.13078
\(612\) −6.69747e6 + 2.48377e7i −0.0292184 + 0.108357i
\(613\) 3.35039e8i 1.45450i 0.686372 + 0.727250i \(0.259202\pi\)
−0.686372 + 0.727250i \(0.740798\pi\)
\(614\) 1.26455e8 + 1.65070e8i 0.546299 + 0.713121i
\(615\) 5.36331e7i 0.230573i
\(616\) 1.04021e8 + 2.52827e8i 0.445017 + 1.08164i
\(617\) −3.50474e8 −1.49211 −0.746055 0.665885i \(-0.768054\pi\)
−0.746055 + 0.665885i \(0.768054\pi\)
\(618\) −9.63088e7 + 7.37791e7i −0.408038 + 0.312585i
\(619\) 4.73998e7 0.199850 0.0999252 0.994995i \(-0.468140\pi\)
0.0999252 + 0.994995i \(0.468140\pi\)
\(620\) 5.08171e7 1.88456e8i 0.213223 0.790742i
\(621\) 5.94612e7i 0.248290i
\(622\) 2.40569e8 1.84292e8i 0.999696 0.765835i
\(623\) 2.61899e8i 1.08310i
\(624\) 5.52449e7 9.49900e7i 0.227373 0.390952i
\(625\) −1.29017e8 −0.528453
\(626\) −2.43311e8 3.17610e8i −0.991832 1.29471i
\(627\) −2.80654e8 −1.13859
\(628\) 1.56372e8 + 4.21657e7i 0.631365 + 0.170247i
\(629\) 1.20078e8i 0.482514i
\(630\) 3.31075e7 + 4.32174e7i 0.132405 + 0.172837i
\(631\) 6.31596e7i 0.251392i −0.992069 0.125696i \(-0.959884\pi\)
0.992069 0.125696i \(-0.0401164\pi\)
\(632\) 1.04292e8 + 2.53488e8i 0.413144 + 1.00417i
\(633\) −1.19367e8 −0.470621
\(634\) −2.69421e8 + 2.06395e8i −1.05722 + 0.809899i
\(635\) −2.59890e8 −1.01501
\(636\) 2.26447e8 + 6.10615e7i 0.880230 + 0.237354i
\(637\) 6.96931e7i 0.269632i
\(638\) −3.47762e8 + 2.66409e8i −1.33912 + 1.02586i
\(639\) 5.65022e7i 0.216552i
\(640\) 2.87614e7 2.09473e8i 0.109716 0.799077i
\(641\) 1.45116e8 0.550987 0.275494 0.961303i \(-0.411159\pi\)
0.275494 + 0.961303i \(0.411159\pi\)
\(642\) −4.91071e7 6.41028e7i −0.185583 0.242255i
\(643\) 8.95736e7 0.336936 0.168468 0.985707i \(-0.446118\pi\)
0.168468 + 0.985707i \(0.446118\pi\)
\(644\) 7.26508e7 2.69426e8i 0.272009 1.00875i
\(645\) 1.11902e8i 0.417022i
\(646\) 7.53680e7 + 9.83829e7i 0.279569 + 0.364941i
\(647\) 4.79942e8i 1.77205i 0.463638 + 0.886025i \(0.346544\pi\)
−0.463638 + 0.886025i \(0.653456\pi\)
\(648\) 2.79592e7 1.15032e7i 0.102754 0.0422761i
\(649\) −2.61014e8 −0.954837
\(650\) 5.96753e7 4.57153e7i 0.217297 0.166464i
\(651\) −1.30978e8 −0.474739
\(652\) −3.71291e7 + 1.37694e8i −0.133959 + 0.496789i
\(653\) 2.92267e8i 1.04964i −0.851213 0.524820i \(-0.824133\pi\)
0.851213 0.524820i \(-0.175867\pi\)
\(654\) −2.39020e8 + 1.83105e8i −0.854477 + 0.654587i
\(655\) 6.96891e7i 0.247994i
\(656\) −1.20828e8 7.02721e7i −0.428013 0.248927i
\(657\) 1.56952e8 0.553440
\(658\) −2.02529e8 2.64374e8i −0.710900 0.927986i
\(659\) 4.27588e8 1.49406 0.747032 0.664788i \(-0.231478\pi\)
0.747032 + 0.664788i \(0.231478\pi\)
\(660\) −1.86694e8 5.03420e7i −0.649380 0.175105i
\(661\) 3.87743e8i 1.34258i 0.741196 + 0.671288i \(0.234259\pi\)
−0.741196 + 0.671288i \(0.765741\pi\)
\(662\) −3.62178e7 4.72775e7i −0.124838 0.162960i
\(663\) 4.43763e7i 0.152269i
\(664\) 3.12673e8 1.28643e8i 1.06804 0.439422i
\(665\) 2.62280e8 0.891867
\(666\) −1.12027e8 + 8.58204e7i −0.379228 + 0.290514i
\(667\) 4.47147e8 1.50686
\(668\) −1.45870e8 3.93339e7i −0.489370 0.131958i
\(669\) 4.74577e7i 0.158500i
\(670\) 1.32860e8 1.01779e8i 0.441742 0.338404i
\(671\) 2.05143e8i 0.679029i
\(672\) −1.40742e8 + 1.79616e7i −0.463783 + 0.0591884i
\(673\) 1.03450e8 0.339381 0.169690 0.985497i \(-0.445723\pi\)
0.169690 + 0.985497i \(0.445723\pi\)
\(674\) 2.90354e8 + 3.79018e8i 0.948304 + 1.23788i
\(675\) 2.06824e7 0.0672496
\(676\) −3.10746e7 + 1.15241e8i −0.100593 + 0.373049i
\(677\) 2.13601e8i 0.688395i 0.938897 + 0.344197i \(0.111849\pi\)
−0.938897 + 0.344197i \(0.888151\pi\)
\(678\) −5.81745e7 7.59390e7i −0.186657 0.243655i
\(679\) 3.22912e8i 1.03151i
\(680\) 3.24883e7 + 7.89645e7i 0.103324 + 0.251134i
\(681\) −1.88821e8 −0.597872
\(682\) 3.69294e8 2.82904e8i 1.16418 0.891840i
\(683\) −5.14381e8 −1.61444 −0.807222 0.590248i \(-0.799030\pi\)
−0.807222 + 0.590248i \(0.799030\pi\)
\(684\) 3.79209e7 1.40630e8i 0.118498 0.439450i
\(685\) 1.65809e8i 0.515866i
\(686\) 2.78967e8 2.13708e8i 0.864132 0.661984i
\(687\) 1.65772e8i 0.511260i
\(688\) 2.52100e8 + 1.46618e8i 0.774119 + 0.450218i
\(689\) 4.04583e8 1.23694
\(690\) 1.20024e8 + 1.56676e8i 0.365361 + 0.476930i
\(691\) 3.80607e8 1.15357 0.576783 0.816897i \(-0.304308\pi\)
0.576783 + 0.816897i \(0.304308\pi\)
\(692\) 8.97837e7 + 2.42101e7i 0.270944 + 0.0730599i
\(693\) 1.29753e8i 0.389869i
\(694\) −1.07472e8 1.40291e8i −0.321527 0.419711i
\(695\) 2.99543e8i 0.892288i
\(696\) −8.65040e7 2.10253e8i −0.256572 0.623611i
\(697\) 5.64471e7 0.166703
\(698\) −3.61750e7 + 2.77125e7i −0.106376 + 0.0814910i
\(699\) 2.17357e8 0.636417
\(700\) −9.37147e7 2.52701e7i −0.273221 0.0736739i
\(701\) 2.83744e8i 0.823707i −0.911250 0.411854i \(-0.864881\pi\)
0.911250 0.411854i \(-0.135119\pi\)
\(702\) 4.14011e7 3.17161e7i 0.119674 0.0916787i
\(703\) 6.79876e8i 1.95688i
\(704\) 3.58027e8 3.54637e8i 1.02612 1.01640i
\(705\) 2.35547e8 0.672219
\(706\) 2.00472e8 + 2.61690e8i 0.569692 + 0.743658i
\(707\) −9.09012e7 −0.257224
\(708\) 3.52672e7 1.30789e8i 0.0993735 0.368528i
\(709\) 1.29996e8i 0.364746i −0.983229 0.182373i \(-0.941622\pi\)
0.983229 0.182373i \(-0.0583778\pi\)
\(710\) −1.14052e8 1.48879e8i −0.318659 0.415967i
\(711\) 1.30092e8i 0.361945i
\(712\) −4.46444e8 + 1.83680e8i −1.23688 + 0.508888i
\(713\) −4.74833e8 −1.31000
\(714\) 4.54849e7 3.48445e7i 0.124960 0.0957282i
\(715\) −3.33558e8 −0.912542
\(716\) −2.38149e7 + 8.83178e7i −0.0648797 + 0.240607i
\(717\) 1.29149e7i 0.0350375i
\(718\) −1.86993e7 + 1.43249e7i −0.0505186 + 0.0387007i
\(719\) 1.93158e8i 0.519669i 0.965653 + 0.259834i \(0.0836679\pi\)
−0.965653 + 0.259834i \(0.916332\pi\)
\(720\) 5.04507e7 8.67466e7i 0.135167 0.232410i
\(721\) 2.70221e8 0.720965
\(722\) −1.97850e8 2.58268e8i −0.525685 0.686212i
\(723\) −4.04268e8 −1.06968
\(724\) −1.86505e8 5.02911e7i −0.491446 0.132518i
\(725\) 1.55531e8i 0.408135i
\(726\) −1.45907e8 1.90462e8i −0.381299 0.497735i
\(727\) 1.11756e8i 0.290849i 0.989369 + 0.145425i \(0.0464548\pi\)
−0.989369 + 0.145425i \(0.953545\pi\)
\(728\) −2.26345e8 + 9.31251e7i −0.586648 + 0.241364i
\(729\) 1.43489e7 0.0370370
\(730\) 4.13557e8 3.16812e8i 1.06308 0.814392i
\(731\) −1.17773e8 −0.301505
\(732\) −1.02793e8 2.77181e7i −0.262077 0.0706691i
\(733\) 5.01654e8i 1.27377i 0.770957 + 0.636887i \(0.219778\pi\)
−0.770957 + 0.636887i \(0.780222\pi\)
\(734\) −1.67884e8 + 1.28611e8i −0.424543 + 0.325229i
\(735\) 6.36451e7i 0.160289i
\(736\) −5.10230e8 + 6.51160e7i −1.27977 + 0.163326i
\(737\) 3.98890e8 0.996439
\(738\) −4.03432e7 5.26627e7i −0.100369 0.131019i
\(739\) −3.98842e8 −0.988252 −0.494126 0.869390i \(-0.664512\pi\)
−0.494126 + 0.869390i \(0.664512\pi\)
\(740\) −1.21952e8 + 4.52261e8i −0.300950 + 1.11608i
\(741\) 2.51257e8i 0.617539i
\(742\) −3.17681e8 4.14690e8i −0.777642 1.01511i
\(743\) 3.10665e8i 0.757400i −0.925519 0.378700i \(-0.876371\pi\)
0.925519 0.378700i \(-0.123629\pi\)
\(744\) 9.18602e7 + 2.23271e8i 0.223053 + 0.542142i
\(745\) −1.86595e8 −0.451264
\(746\) −1.35498e8 + 1.03801e8i −0.326375 + 0.250025i
\(747\) 1.60467e8 0.384967
\(748\) −5.29833e7 + 1.96489e8i −0.126600 + 0.469499i
\(749\) 1.79858e8i 0.428041i
\(750\) 2.10451e8 1.61220e8i 0.498847 0.382151i
\(751\) 2.28649e8i 0.539820i −0.962885 0.269910i \(-0.913006\pi\)
0.962885 0.269910i \(-0.0869940\pi\)
\(752\) −3.08623e8 + 5.30656e8i −0.725729 + 1.24784i
\(753\) −7.29988e7 −0.170974
\(754\) −2.38504e8 3.11336e8i −0.556394 0.726299i
\(755\) −3.84561e8 −0.893562
\(756\) −6.50168e7 1.75318e7i −0.150474 0.0405752i
\(757\) 5.50703e8i 1.26949i −0.772721 0.634746i \(-0.781105\pi\)
0.772721 0.634746i \(-0.218895\pi\)
\(758\) 5.89824e7 + 7.69936e7i 0.135430 + 0.176786i
\(759\) 4.70394e8i 1.07581i
\(760\) −1.83948e8 4.47094e8i −0.419038 1.01849i
\(761\) −4.86110e8 −1.10301 −0.551507 0.834170i \(-0.685947\pi\)
−0.551507 + 0.834170i \(0.685947\pi\)
\(762\) 2.55188e8 1.95491e8i 0.576760 0.441837i
\(763\) 6.70637e8 1.50978
\(764\) 6.26657e8 + 1.68978e8i 1.40524 + 0.378922i
\(765\) 4.05253e7i 0.0905194i
\(766\) −9.45305e7 + 7.24168e7i −0.210322 + 0.161121i
\(767\) 2.33674e8i 0.517875i
\(768\) 1.29326e8 + 2.27317e8i 0.285497 + 0.501821i
\(769\) −6.00550e7 −0.132060 −0.0660298 0.997818i \(-0.521033\pi\)
−0.0660298 + 0.997818i \(0.521033\pi\)
\(770\) 2.61911e8 + 3.41890e8i 0.573696 + 0.748884i
\(771\) 1.66038e8 0.362280
\(772\) 1.48084e7 5.49171e7i 0.0321852 0.119359i
\(773\) 5.19835e8i 1.12545i −0.826644 0.562726i \(-0.809753\pi\)
0.826644 0.562726i \(-0.190247\pi\)
\(774\) 8.41734e7 + 1.09877e8i 0.181532 + 0.236965i
\(775\) 1.65161e8i 0.354816i
\(776\) −5.50451e8 + 2.26471e8i −1.17797 + 0.484650i
\(777\) 3.14324e8 0.670060
\(778\) 4.16961e8 3.19421e8i 0.885436 0.678304i
\(779\) −3.19602e8 −0.676078
\(780\) 4.50690e7 1.67139e8i 0.0949717 0.352204i
\(781\) 4.46986e8i 0.938299i
\(782\) 1.64896e8 1.26322e8i 0.344818 0.264154i
\(783\) 1.07904e8i 0.224776i
\(784\) −1.43384e8 8.33902e7i −0.297544 0.173048i
\(785\) 2.55138e8 0.527431
\(786\) −5.24206e7 6.84281e7i −0.107953 0.140918i
\(787\) −6.57660e8 −1.34920 −0.674601 0.738182i \(-0.735684\pi\)
−0.674601 + 0.738182i \(0.735684\pi\)
\(788\) 5.81683e8 + 1.56851e8i 1.18880 + 0.320559i
\(789\) 1.69252e8i 0.344590i
\(790\) 2.62596e8 + 3.42784e8i 0.532606 + 0.695247i
\(791\) 2.13068e8i 0.430516i
\(792\) 2.21184e8 9.10014e7i 0.445223 0.183178i
\(793\) −1.83655e8 −0.368285
\(794\) 9.77689e7 7.48976e7i 0.195317 0.149626i
\(795\) 3.69473e8 0.735329
\(796\) 5.85484e8 + 1.57876e8i 1.16085 + 0.313023i
\(797\) 8.87902e8i 1.75384i −0.480637 0.876920i \(-0.659594\pi\)
0.480637 0.876920i \(-0.340406\pi\)
\(798\) −2.57534e8 + 1.97289e8i −0.506788 + 0.388234i
\(799\) 2.47906e8i 0.486011i
\(800\) 2.26493e7 + 1.77473e8i 0.0442370 + 0.346628i
\(801\) −2.29119e8 −0.445825
\(802\) 2.55487e8 + 3.33504e8i 0.495274 + 0.646514i
\(803\) 1.24164e9 2.39800
\(804\) −5.38964e7 + 1.99876e8i −0.103703 + 0.384585i
\(805\) 4.39598e8i 0.842690i
\(806\) 2.53272e8 + 3.30613e8i 0.483707 + 0.631415i
\(807\) 1.98103e8i 0.376939i
\(808\) 6.37528e7 + 1.54954e8i 0.120855 + 0.293745i
\(809\) 2.61371e8 0.493641 0.246821 0.969061i \(-0.420614\pi\)
0.246821 + 0.969061i \(0.420614\pi\)
\(810\) 3.78083e7 2.89637e7i 0.0711430 0.0545004i
\(811\) −8.91041e8 −1.67046 −0.835228 0.549904i \(-0.814664\pi\)
−0.835228 + 0.549904i \(0.814664\pi\)
\(812\) −1.31839e8 + 4.88925e8i −0.246249 + 0.913218i
\(813\) 3.49883e8i 0.651106i
\(814\) −8.86241e8 + 6.78920e8i −1.64315 + 1.25877i
\(815\) 2.24662e8i 0.415008i
\(816\) −9.12980e7 5.30978e7i −0.168032 0.0977250i
\(817\) 6.66828e8 1.22278
\(818\) 2.75001e8 + 3.58978e8i 0.502429 + 0.655854i
\(819\) −1.16163e8 −0.211453
\(820\) −2.12603e8 5.73282e7i −0.385591 0.103975i
\(821\) 1.91855e8i 0.346693i 0.984861 + 0.173346i \(0.0554580\pi\)
−0.984861 + 0.173346i \(0.944542\pi\)
\(822\) −1.24723e8 1.62809e8i −0.224559 0.293132i
\(823\) 9.88312e7i 0.177294i 0.996063 + 0.0886471i \(0.0282543\pi\)
−0.996063 + 0.0886471i \(0.971746\pi\)
\(824\) −1.89517e8 4.60632e8i −0.338741 0.823327i
\(825\) 1.63617e8 0.291385
\(826\) −2.39512e8 + 1.83482e8i −0.424998 + 0.325577i
\(827\) −8.06273e8 −1.42549 −0.712747 0.701421i \(-0.752549\pi\)
−0.712747 + 0.701421i \(0.752549\pi\)
\(828\) −2.35705e8 6.35578e7i −0.415220 0.111964i
\(829\) 6.07971e8i 1.06713i 0.845758 + 0.533567i \(0.179149\pi\)
−0.845758 + 0.533567i \(0.820851\pi\)
\(830\) 4.22818e8 3.23908e8i 0.739468 0.566483i
\(831\) 2.05961e8i 0.358907i
\(832\) 3.17491e8 + 3.20526e8i 0.551266 + 0.556537i
\(833\) 6.69844e7 0.115888
\(834\) 2.25318e8 + 2.94123e8i 0.388417 + 0.507027i
\(835\) −2.38003e8 −0.408811
\(836\) 2.99990e8 1.11252e9i 0.513438 1.90409i
\(837\) 1.14585e8i 0.195412i
\(838\) −3.41416e8 4.45673e8i −0.580165 0.757328i
\(839\) 5.33468e8i 0.903280i −0.892200 0.451640i \(-0.850839\pi\)
0.892200 0.451640i \(-0.149161\pi\)
\(840\) −2.06703e8 + 8.50436e7i −0.348746 + 0.143484i
\(841\) −2.16610e8 −0.364158
\(842\) 5.86722e7 4.49469e7i 0.0982870 0.0752945i
\(843\) 9.71905e6 0.0162234
\(844\) 1.27590e8 4.73171e8i 0.212222 0.787029i
\(845\) 1.88027e8i 0.311638i
\(846\) −2.31285e8 + 1.77180e8i −0.381976 + 0.292620i
\(847\) 5.34394e8i 0.879450i
\(848\) −4.84098e8 + 8.32373e8i −0.793863 + 1.36499i
\(849\) −7.54855e6 −0.0123350
\(850\) −4.39385e7 5.73559e7i −0.0715465 0.0933945i
\(851\) 1.13952e9 1.84898
\(852\) 2.23976e8 + 6.03950e7i 0.362145 + 0.0976523i
\(853\) 2.10766e8i 0.339589i 0.985480 + 0.169794i \(0.0543104\pi\)
−0.985480 + 0.169794i \(0.945690\pi\)
\(854\) 1.44207e8 + 1.88243e8i 0.231533 + 0.302236i
\(855\) 2.29453e8i 0.367109i
\(856\) 3.06595e8 1.26142e8i 0.488814 0.201112i
\(857\) −3.39277e8 −0.539030 −0.269515 0.962996i \(-0.586863\pi\)
−0.269515 + 0.962996i \(0.586863\pi\)
\(858\) 3.27522e8 2.50904e8i 0.518536 0.397234i
\(859\) 6.89905e8 1.08845 0.544227 0.838938i \(-0.316823\pi\)
0.544227 + 0.838938i \(0.316823\pi\)
\(860\) 4.43582e8 + 1.19612e8i 0.697394 + 0.188052i
\(861\) 1.47760e8i 0.231498i
\(862\) 9.57130e7 7.33227e7i 0.149434 0.114477i
\(863\) 7.15874e8i 1.11379i −0.830582 0.556896i \(-0.811992\pi\)
0.830582 0.556896i \(-0.188008\pi\)
\(864\) 1.57135e7 + 1.23126e8i 0.0243631 + 0.190902i
\(865\) 1.46492e8 0.226342
\(866\) −5.77255e8 7.53530e8i −0.888821 1.16024i
\(867\) −3.33616e8 −0.511905
\(868\) 1.40002e8 5.19198e8i 0.214079 0.793915i
\(869\) 1.02915e9i 1.56827i
\(870\) −2.17807e8 2.84318e8i −0.330760 0.431764i
\(871\) 3.57109e8i 0.540438i
\(872\) −4.70345e8 1.14320e9i −0.709361 1.72414i
\(873\) −2.82496e8 −0.424590
\(874\) −9.33637e8 + 7.15229e8i −1.39844 + 1.07130i
\(875\) −5.90480e8 −0.881416
\(876\) −1.67765e8 + 6.22160e8i −0.249568 + 0.925528i
\(877\) 5.18679e8i 0.768952i −0.923135 0.384476i \(-0.874382\pi\)
0.923135 0.384476i \(-0.125618\pi\)
\(878\) 5.33465e7 4.08670e7i 0.0788174 0.0603795i
\(879\) 1.92681e8i 0.283709i
\(880\) 3.99113e8 6.86248e8i 0.585663 1.00701i
\(881\) −6.17449e8 −0.902971 −0.451485 0.892279i \(-0.649106\pi\)
−0.451485 + 0.892279i \(0.649106\pi\)
\(882\) −4.78742e7 6.24935e7i −0.0697744 0.0910812i
\(883\) 6.73125e8 0.977718 0.488859 0.872363i \(-0.337413\pi\)
0.488859 + 0.872363i \(0.337413\pi\)
\(884\) −1.75908e8 4.74337e7i −0.254642 0.0686641i
\(885\) 2.13396e8i 0.307862i
\(886\) −8.52509e7 1.11284e8i −0.122574 0.160004i
\(887\) 1.13085e9i 1.62045i 0.586119 + 0.810225i \(0.300655\pi\)
−0.586119 + 0.810225i \(0.699345\pi\)
\(888\) −2.20448e8 5.35810e8i −0.314824 0.765195i
\(889\) −7.16001e8 −1.01908
\(890\) −6.03712e8 + 4.62485e8i −0.856367 + 0.656036i
\(891\) 1.13513e8 0.160477
\(892\) 1.88123e8 + 5.07274e7i 0.265062 + 0.0714740i
\(893\) 1.40363e9i 1.97106i
\(894\) 1.83219e8 1.40358e8i 0.256423 0.196437i
\(895\) 1.44100e8i 0.200999i
\(896\) 7.92381e7 5.77101e8i 0.110156 0.802283i
\(897\) −4.21123e8 −0.583488
\(898\) 5.29272e8 + 6.90895e8i 0.730887 + 0.954076i
\(899\) 8.61675e8 1.18594
\(900\) −2.21073e7 + 8.19854e7i −0.0303256 + 0.112463i
\(901\) 3.88858e8i 0.531639i
\(902\) −3.19153e8 4.16611e8i −0.434889 0.567690i
\(903\) 3.08291e8i 0.418695i
\(904\) 3.63206e8 1.49434e8i 0.491641 0.202275i
\(905\) −3.04303e8 −0.410545
\(906\) 3.77603e8 2.89270e8i 0.507751 0.388972i
\(907\) −1.74361e8 −0.233683 −0.116842 0.993151i \(-0.537277\pi\)
−0.116842 + 0.993151i \(0.537277\pi\)
\(908\) 2.01830e8 7.48488e8i 0.269605 0.999832i
\(909\) 7.95240e7i 0.105878i
\(910\) −3.06080e8 + 2.34478e8i −0.406172 + 0.311156i
\(911\) 8.56397e8i 1.13271i −0.824160 0.566356i \(-0.808353\pi\)
0.824160 0.566356i \(-0.191647\pi\)
\(912\) 5.16927e8 + 3.00638e8i 0.681466 + 0.396332i
\(913\) 1.26945e9 1.66802
\(914\) −6.59173e8 8.60463e8i −0.863298 1.12692i
\(915\) −1.67717e8 −0.218935
\(916\) −6.57124e8 1.77193e8i −0.854990 0.230548i
\(917\) 1.91994e8i 0.248989i
\(918\) −3.04834e7 3.97920e7i −0.0394035 0.0514361i
\(919\) 9.29130e8i 1.19710i −0.801086 0.598550i \(-0.795744\pi\)
0.801086 0.598550i \(-0.204256\pi\)
\(920\) −7.49359e8 + 3.08308e8i −0.962335 + 0.395933i
\(921\) −4.05182e8 −0.518647
\(922\) 4.13411e8 3.16701e8i 0.527459 0.404070i
\(923\) 4.00167e8 0.508905
\(924\) −5.14344e8 1.38693e8i −0.651986 0.175808i
\(925\) 3.96358e8i 0.500798i
\(926\) −3.16308e8 + 2.42314e8i −0.398362 + 0.305172i
\(927\) 2.36401e8i 0.296763i
\(928\) 9.25908e8 1.18165e8i 1.15857 0.147859i
\(929\) −1.46510e9 −1.82734 −0.913672 0.406451i \(-0.866766\pi\)
−0.913672 + 0.406451i \(0.866766\pi\)
\(930\) 2.31293e8 + 3.01922e8i 0.287550 + 0.375358i
\(931\) −3.79263e8 −0.469994
\(932\) −2.32332e8 + 8.61606e8i −0.286986 + 1.06429i
\(933\) 5.90502e8i 0.727071i
\(934\) 5.63001e7 + 7.34923e7i 0.0690984 + 0.0901988i
\(935\) 3.20593e8i 0.392211i
\(936\) 8.14696e7 + 1.98016e8i 0.0993500 + 0.241475i
\(937\) 4.26387e8 0.518305 0.259152 0.965836i \(-0.416557\pi\)
0.259152 + 0.965836i \(0.416557\pi\)
\(938\) 3.66030e8 2.80404e8i 0.443515 0.339762i
\(939\) 7.79608e8 0.941628
\(940\) −2.51775e8 + 9.33713e8i −0.303131 + 1.12416i
\(941\) 1.14292e9i 1.37166i 0.727763 + 0.685828i \(0.240560\pi\)
−0.727763 + 0.685828i \(0.759440\pi\)
\(942\) −2.50521e8 + 1.91916e8i −0.299704 + 0.229593i
\(943\) 5.35673e8i 0.638800i
\(944\) 4.80752e8 + 2.79599e8i 0.571485 + 0.332369i
\(945\) −1.06082e8 −0.125703
\(946\) 6.65891e8 + 8.69233e8i 0.786557 + 1.02675i
\(947\) −3.04615e8 −0.358675 −0.179338 0.983788i \(-0.557395\pi\)
−0.179338 + 0.983788i \(0.557395\pi\)
\(948\) −5.15688e8 1.39055e8i −0.605288 0.163216i
\(949\) 1.11158e9i 1.30060i
\(950\) 2.48778e8 + 3.24747e8i 0.290163 + 0.378769i
\(951\) 6.61323e8i 0.768904i
\(952\) 8.95056e7 + 2.17548e8i 0.103738 + 0.252142i
\(953\) 1.45008e9 1.67538 0.837692 0.546143i \(-0.183905\pi\)
0.837692 + 0.546143i \(0.183905\pi\)
\(954\) −3.62788e8 + 2.77920e8i −0.417838 + 0.320092i
\(955\) 1.02246e9 1.17391
\(956\) −5.11948e7 1.38047e7i −0.0585939 0.0157998i
\(957\) 8.53619e8i 0.973931i
\(958\) −4.00606e8 + 3.06891e8i −0.455639 + 0.349050i
\(959\) 4.56806e8i 0.517936i
\(960\) 2.89939e8 + 2.92711e8i 0.327712 + 0.330845i
\(961\) −2.75244e7 −0.0310133
\(962\) −6.07808e8 7.93413e8i −0.682718 0.891197i
\(963\) 1.57347e8 0.176190
\(964\) 4.32121e8 1.60253e9i 0.482363 1.78885i
\(965\) 8.96032e7i 0.0997106i
\(966\) 3.30668e8 + 4.31644e8i 0.366827 + 0.478844i
\(967\) 1.10779e9i 1.22512i 0.790423 + 0.612561i \(0.209861\pi\)
−0.790423 + 0.612561i \(0.790139\pi\)
\(968\) 9.10953e8 3.74793e8i 1.00431 0.413204i
\(969\) −2.41492e8 −0.265418
\(970\) −7.44357e8 + 5.70228e8i −0.815579 + 0.624789i
\(971\) −1.58886e9 −1.73552 −0.867759 0.496986i \(-0.834440\pi\)
−0.867759 + 0.496986i \(0.834440\pi\)
\(972\) −1.53375e7 + 5.68793e7i −0.0167015 + 0.0619378i
\(973\) 8.25246e8i 0.895869i
\(974\) 1.30447e9 9.99313e8i 1.41175 1.08150i
\(975\) 1.46479e8i 0.158039i
\(976\) 2.19750e8 3.77845e8i 0.236363 0.406410i
\(977\) 1.43593e9 1.53975 0.769875 0.638194i \(-0.220318\pi\)
0.769875 + 0.638194i \(0.220318\pi\)
\(978\) −1.68992e8 2.20597e8i −0.180655 0.235821i
\(979\) −1.81255e9 −1.93171
\(980\) −2.52290e8 6.80300e7i −0.268054 0.0722807i
\(981\) 5.86700e8i 0.621454i
\(982\) 9.32605e8 + 1.21739e9i 0.984835 + 1.28557i
\(983\) 1.10373e9i 1.16199i −0.813906 0.580997i \(-0.802663\pi\)
0.813906 0.580997i \(-0.197337\pi\)
\(984\) 2.51878e8 1.03630e8i 0.264366 0.108768i
\(985\) 9.49078e8 0.993100
\(986\) −2.99235e8 + 2.29235e8i −0.312163 + 0.239138i
\(987\) 6.48935e8 0.674916
\(988\) 9.95988e8 + 2.68568e8i 1.03272 + 0.278473i
\(989\) 1.11765e9i 1.15536i
\(990\) 2.99099e8 2.29131e8i 0.308255 0.236144i
\(991\) 1.81704e9i 1.86700i −0.358581 0.933499i \(-0.616739\pi\)
0.358581 0.933499i \(-0.383261\pi\)
\(992\) −9.83239e8 + 1.25482e8i −1.00722 + 0.128542i
\(993\) 1.16048e8 0.118519
\(994\) −3.14214e8 4.10164e8i −0.319938 0.417637i
\(995\) 9.55280e8 0.969753
\(996\) −1.71522e8 + 6.36094e8i −0.173597 + 0.643788i
\(997\) 3.61159e8i 0.364430i −0.983259 0.182215i \(-0.941673\pi\)
0.983259 0.182215i \(-0.0583266\pi\)
\(998\) 5.73536e8 + 7.48675e8i 0.576991 + 0.753185i
\(999\) 2.74983e8i 0.275809i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 24.7.b.a.19.3 12
3.2 odd 2 72.7.b.c.19.10 12
4.3 odd 2 96.7.b.a.79.5 12
8.3 odd 2 inner 24.7.b.a.19.4 yes 12
8.5 even 2 96.7.b.a.79.2 12
12.11 even 2 288.7.b.d.271.4 12
16.3 odd 4 768.7.g.l.511.6 24
16.5 even 4 768.7.g.l.511.5 24
16.11 odd 4 768.7.g.l.511.7 24
16.13 even 4 768.7.g.l.511.8 24
24.5 odd 2 288.7.b.d.271.9 12
24.11 even 2 72.7.b.c.19.9 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.7.b.a.19.3 12 1.1 even 1 trivial
24.7.b.a.19.4 yes 12 8.3 odd 2 inner
72.7.b.c.19.9 12 24.11 even 2
72.7.b.c.19.10 12 3.2 odd 2
96.7.b.a.79.2 12 8.5 even 2
96.7.b.a.79.5 12 4.3 odd 2
288.7.b.d.271.4 12 12.11 even 2
288.7.b.d.271.9 12 24.5 odd 2
768.7.g.l.511.5 24 16.5 even 4
768.7.g.l.511.6 24 16.3 odd 4
768.7.g.l.511.7 24 16.11 odd 4
768.7.g.l.511.8 24 16.13 even 4