Properties

Label 24.28.f
Level 2424
Weight 2828
Character orbit 24.f
Rep. character χ24(11,)\chi_{24}(11,\cdot)
Character field Q\Q
Dimension 106106
Newform subspaces 22
Sturm bound 112112
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 24=233 24 = 2^{3} \cdot 3
Weight: k k == 28 28
Character orbit: [χ][\chi] == 24.f (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 24 24
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 112112
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M28(24,[χ])M_{28}(24, [\chi]).

Total New Old
Modular forms 110 110 0
Cusp forms 106 106 0
Eisenstein series 4 4 0

Trace form

106q2q3+118953412q429615742008q62q911696046941304q10+833046350880916q12+90275072969320q1623 ⁣ ⁣76q1836 ⁣ ⁣80q1927 ⁣ ⁣16q22++20 ⁣ ⁣40q99+O(q100) 106 q - 2 q^{3} + 118953412 q^{4} - 29615742008 q^{6} - 2 q^{9} - 11696046941304 q^{10} + 833046350880916 q^{12} + 90275072969320 q^{16} - 23\!\cdots\!76 q^{18} - 36\!\cdots\!80 q^{19} - 27\!\cdots\!16 q^{22}+ \cdots + 20\!\cdots\!40 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S28new(24,[χ])S_{28}^{\mathrm{new}}(24, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
24.28.f.a 24.f 24.f 22 110.845110.845 Q(2)\Q(\sqrt{-2}) Q(2)\Q(\sqrt{-2}) 24.28.f.a 00 4360310-4360310 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+213βq2+(2180155+1198441β)q3+q+2^{13}\beta q^{2}+(-2180155+1198441\beta )q^{3}+\cdots
24.28.f.b 24.f 24.f 104104 110.845110.845 None 24.28.f.b 00 43603084360308 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]