Defining parameters
Level: | \( N \) | \(=\) | \( 24 = 2^{3} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 28 \) |
Character orbit: | \([\chi]\) | \(=\) | 24.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{28}(24, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 110 | 110 | 0 |
Cusp forms | 106 | 106 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{28}^{\mathrm{new}}(24, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
24.28.f.a | $2$ | $110.845$ | \(\Q(\sqrt{-2}) \) | \(\Q(\sqrt{-2}) \) | \(0\) | \(-4360310\) | \(0\) | \(0\) | \(q+2^{13}\beta q^{2}+(-2180155+1198441\beta )q^{3}+\cdots\) |
24.28.f.b | $104$ | $110.845$ | None | \(0\) | \(4360308\) | \(0\) | \(0\) |