Properties

Label 24.25.h.a
Level $24$
Weight $25$
Character orbit 24.h
Self dual yes
Analytic conductor $87.592$
Analytic rank $0$
Dimension $1$
CM discriminant -24
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24,25,Mod(5,24)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24.5"); S:= CuspForms(chi, 25); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 25, names="a")
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 25 \)
Character orbit: \([\chi]\) \(=\) 24.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-4096] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(87.5921165419\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4096 q^{2} - 531441 q^{3} + 16777216 q^{4} + 365381854 q^{5} + 2176782336 q^{6} - 27475271998 q^{7} - 68719476736 q^{8} + 282429536481 q^{9} - 1496604073984 q^{10} - 5105521239842 q^{11} - 8916100448256 q^{12}+ \cdots - 14\!\cdots\!02 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
0
−4096.00 −531441. 1.67772e7 3.65382e8 2.17678e9 −2.74753e10 −6.87195e10 2.82430e11 −1.49660e12
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 24.25.h.a 1
3.b odd 2 1 24.25.h.b yes 1
8.b even 2 1 24.25.h.b yes 1
24.h odd 2 1 CM 24.25.h.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.25.h.a 1 1.a even 1 1 trivial
24.25.h.a 1 24.h odd 2 1 CM
24.25.h.b yes 1 3.b odd 2 1
24.25.h.b yes 1 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 365381854 \) acting on \(S_{25}^{\mathrm{new}}(24, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4096 \) Copy content Toggle raw display
$3$ \( T + 531441 \) Copy content Toggle raw display
$5$ \( T - 365381854 \) Copy content Toggle raw display
$7$ \( T + 27475271998 \) Copy content Toggle raw display
$11$ \( T + 5105521239842 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 70\!\cdots\!82 \) Copy content Toggle raw display
$31$ \( T + 98\!\cdots\!78 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 85\!\cdots\!82 \) Copy content Toggle raw display
$59$ \( T + 18\!\cdots\!62 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 22\!\cdots\!58 \) Copy content Toggle raw display
$79$ \( T + 23\!\cdots\!18 \) Copy content Toggle raw display
$83$ \( T + 58\!\cdots\!22 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T + 10\!\cdots\!18 \) Copy content Toggle raw display
show more
show less