Properties

Label 24.22.a.b.1.2
Level $24$
Weight $22$
Character 24.1
Self dual yes
Analytic conductor $67.075$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24,22,Mod(1,24)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24.1"); S:= CuspForms(chi, 22); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 22, names="a")
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 24.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-177147,0,-4833126] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.0745626289\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 53560x - 70812 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{21}\cdot 3^{4}\cdot 5\cdot 7 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.32215\) of defining polynomial
Character \(\chi\) \(=\) 24.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-59049.0 q^{3} +995860. q^{5} -1.18014e9 q^{7} +3.48678e9 q^{9} -3.52053e10 q^{11} -8.44606e11 q^{13} -5.88045e10 q^{15} +1.17645e13 q^{17} -1.89418e13 q^{19} +6.96862e13 q^{21} -2.72308e14 q^{23} -4.75845e14 q^{25} -2.05891e14 q^{27} +1.38288e15 q^{29} -1.93945e15 q^{31} +2.07884e15 q^{33} -1.17526e15 q^{35} -5.29854e16 q^{37} +4.98732e16 q^{39} +1.37432e17 q^{41} -1.40042e16 q^{43} +3.47235e15 q^{45} -1.53143e17 q^{47} +8.34188e17 q^{49} -6.94683e17 q^{51} -1.04072e18 q^{53} -3.50595e16 q^{55} +1.11850e18 q^{57} +4.07509e18 q^{59} +3.59286e18 q^{61} -4.11490e18 q^{63} -8.41109e17 q^{65} -6.22840e16 q^{67} +1.60795e19 q^{69} +3.80609e19 q^{71} +5.06568e19 q^{73} +2.80982e19 q^{75} +4.15472e19 q^{77} -2.16125e19 q^{79} +1.21577e19 q^{81} +1.97785e20 q^{83} +1.17158e19 q^{85} -8.16575e19 q^{87} -9.11760e19 q^{89} +9.96755e20 q^{91} +1.14523e20 q^{93} -1.88634e19 q^{95} +9.35999e20 q^{97} -1.22753e20 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 177147 q^{3} - 4833126 q^{5} + 271431024 q^{7} + 10460353203 q^{9} + 61194658188 q^{11} - 594486202422 q^{13} + 285391257174 q^{15} + 1424819519334 q^{17} - 35094825681804 q^{19} - 16027730536176 q^{21}+ \cdots + 21\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −59049.0 −0.577350
\(4\) 0 0
\(5\) 995860. 0.0456051 0.0228025 0.999740i \(-0.492741\pi\)
0.0228025 + 0.999740i \(0.492741\pi\)
\(6\) 0 0
\(7\) −1.18014e9 −1.57908 −0.789541 0.613698i \(-0.789681\pi\)
−0.789541 + 0.613698i \(0.789681\pi\)
\(8\) 0 0
\(9\) 3.48678e9 0.333333
\(10\) 0 0
\(11\) −3.52053e10 −0.409246 −0.204623 0.978841i \(-0.565597\pi\)
−0.204623 + 0.978841i \(0.565597\pi\)
\(12\) 0 0
\(13\) −8.44606e11 −1.69922 −0.849609 0.527413i \(-0.823162\pi\)
−0.849609 + 0.527413i \(0.823162\pi\)
\(14\) 0 0
\(15\) −5.88045e10 −0.0263301
\(16\) 0 0
\(17\) 1.17645e13 1.41534 0.707670 0.706544i \(-0.249747\pi\)
0.707670 + 0.706544i \(0.249747\pi\)
\(18\) 0 0
\(19\) −1.89418e13 −0.708776 −0.354388 0.935098i \(-0.615311\pi\)
−0.354388 + 0.935098i \(0.615311\pi\)
\(20\) 0 0
\(21\) 6.96862e13 0.911683
\(22\) 0 0
\(23\) −2.72308e14 −1.37062 −0.685312 0.728250i \(-0.740334\pi\)
−0.685312 + 0.728250i \(0.740334\pi\)
\(24\) 0 0
\(25\) −4.75845e14 −0.997920
\(26\) 0 0
\(27\) −2.05891e14 −0.192450
\(28\) 0 0
\(29\) 1.38288e15 0.610386 0.305193 0.952290i \(-0.401279\pi\)
0.305193 + 0.952290i \(0.401279\pi\)
\(30\) 0 0
\(31\) −1.93945e15 −0.424992 −0.212496 0.977162i \(-0.568159\pi\)
−0.212496 + 0.977162i \(0.568159\pi\)
\(32\) 0 0
\(33\) 2.07884e15 0.236278
\(34\) 0 0
\(35\) −1.17526e15 −0.0720141
\(36\) 0 0
\(37\) −5.29854e16 −1.81150 −0.905750 0.423812i \(-0.860692\pi\)
−0.905750 + 0.423812i \(0.860692\pi\)
\(38\) 0 0
\(39\) 4.98732e16 0.981044
\(40\) 0 0
\(41\) 1.37432e17 1.59903 0.799514 0.600647i \(-0.205090\pi\)
0.799514 + 0.600647i \(0.205090\pi\)
\(42\) 0 0
\(43\) −1.40042e16 −0.0988189 −0.0494095 0.998779i \(-0.515734\pi\)
−0.0494095 + 0.998779i \(0.515734\pi\)
\(44\) 0 0
\(45\) 3.47235e15 0.0152017
\(46\) 0 0
\(47\) −1.53143e17 −0.424688 −0.212344 0.977195i \(-0.568110\pi\)
−0.212344 + 0.977195i \(0.568110\pi\)
\(48\) 0 0
\(49\) 8.34188e17 1.49350
\(50\) 0 0
\(51\) −6.94683e17 −0.817146
\(52\) 0 0
\(53\) −1.04072e18 −0.817403 −0.408702 0.912668i \(-0.634018\pi\)
−0.408702 + 0.912668i \(0.634018\pi\)
\(54\) 0 0
\(55\) −3.50595e16 −0.0186637
\(56\) 0 0
\(57\) 1.11850e18 0.409212
\(58\) 0 0
\(59\) 4.07509e18 1.03799 0.518993 0.854779i \(-0.326307\pi\)
0.518993 + 0.854779i \(0.326307\pi\)
\(60\) 0 0
\(61\) 3.59286e18 0.644877 0.322439 0.946590i \(-0.395497\pi\)
0.322439 + 0.946590i \(0.395497\pi\)
\(62\) 0 0
\(63\) −4.11490e18 −0.526361
\(64\) 0 0
\(65\) −8.41109e17 −0.0774930
\(66\) 0 0
\(67\) −6.22840e16 −0.00417437 −0.00208719 0.999998i \(-0.500664\pi\)
−0.00208719 + 0.999998i \(0.500664\pi\)
\(68\) 0 0
\(69\) 1.60795e19 0.791330
\(70\) 0 0
\(71\) 3.80609e19 1.38761 0.693803 0.720165i \(-0.255934\pi\)
0.693803 + 0.720165i \(0.255934\pi\)
\(72\) 0 0
\(73\) 5.06568e19 1.37958 0.689792 0.724008i \(-0.257702\pi\)
0.689792 + 0.724008i \(0.257702\pi\)
\(74\) 0 0
\(75\) 2.80982e19 0.576149
\(76\) 0 0
\(77\) 4.15472e19 0.646233
\(78\) 0 0
\(79\) −2.16125e19 −0.256815 −0.128407 0.991722i \(-0.540986\pi\)
−0.128407 + 0.991722i \(0.540986\pi\)
\(80\) 0 0
\(81\) 1.21577e19 0.111111
\(82\) 0 0
\(83\) 1.97785e20 1.39918 0.699591 0.714544i \(-0.253366\pi\)
0.699591 + 0.714544i \(0.253366\pi\)
\(84\) 0 0
\(85\) 1.17158e19 0.0645466
\(86\) 0 0
\(87\) −8.16575e19 −0.352407
\(88\) 0 0
\(89\) −9.11760e19 −0.309945 −0.154973 0.987919i \(-0.549529\pi\)
−0.154973 + 0.987919i \(0.549529\pi\)
\(90\) 0 0
\(91\) 9.96755e20 2.68321
\(92\) 0 0
\(93\) 1.14523e20 0.245369
\(94\) 0 0
\(95\) −1.88634e19 −0.0323238
\(96\) 0 0
\(97\) 9.35999e20 1.28876 0.644380 0.764705i \(-0.277115\pi\)
0.644380 + 0.764705i \(0.277115\pi\)
\(98\) 0 0
\(99\) −1.22753e20 −0.136415
\(100\) 0 0
\(101\) 1.46129e21 1.31632 0.658159 0.752879i \(-0.271335\pi\)
0.658159 + 0.752879i \(0.271335\pi\)
\(102\) 0 0
\(103\) −1.98468e21 −1.45512 −0.727560 0.686044i \(-0.759346\pi\)
−0.727560 + 0.686044i \(0.759346\pi\)
\(104\) 0 0
\(105\) 6.93976e19 0.0415774
\(106\) 0 0
\(107\) 2.24032e20 0.110098 0.0550492 0.998484i \(-0.482468\pi\)
0.0550492 + 0.998484i \(0.482468\pi\)
\(108\) 0 0
\(109\) −1.34317e21 −0.543441 −0.271720 0.962376i \(-0.587593\pi\)
−0.271720 + 0.962376i \(0.587593\pi\)
\(110\) 0 0
\(111\) 3.12874e21 1.04587
\(112\) 0 0
\(113\) 1.93517e21 0.536283 0.268142 0.963379i \(-0.413590\pi\)
0.268142 + 0.963379i \(0.413590\pi\)
\(114\) 0 0
\(115\) −2.71181e20 −0.0625074
\(116\) 0 0
\(117\) −2.94496e21 −0.566406
\(118\) 0 0
\(119\) −1.38838e22 −2.23494
\(120\) 0 0
\(121\) −6.16084e21 −0.832518
\(122\) 0 0
\(123\) −8.11520e21 −0.923200
\(124\) 0 0
\(125\) −9.48738e20 −0.0911153
\(126\) 0 0
\(127\) −2.29611e21 −0.186661 −0.0933305 0.995635i \(-0.529751\pi\)
−0.0933305 + 0.995635i \(0.529751\pi\)
\(128\) 0 0
\(129\) 8.26935e20 0.0570531
\(130\) 0 0
\(131\) −1.02004e22 −0.598783 −0.299391 0.954130i \(-0.596784\pi\)
−0.299391 + 0.954130i \(0.596784\pi\)
\(132\) 0 0
\(133\) 2.23540e22 1.11922
\(134\) 0 0
\(135\) −2.05039e20 −0.00877670
\(136\) 0 0
\(137\) −2.02671e22 −0.743407 −0.371703 0.928352i \(-0.621226\pi\)
−0.371703 + 0.928352i \(0.621226\pi\)
\(138\) 0 0
\(139\) −4.87536e22 −1.53586 −0.767929 0.640535i \(-0.778713\pi\)
−0.767929 + 0.640535i \(0.778713\pi\)
\(140\) 0 0
\(141\) 9.04296e21 0.245194
\(142\) 0 0
\(143\) 2.97346e22 0.695398
\(144\) 0 0
\(145\) 1.37715e21 0.0278367
\(146\) 0 0
\(147\) −4.92580e22 −0.862273
\(148\) 0 0
\(149\) −4.22945e22 −0.642433 −0.321216 0.947006i \(-0.604092\pi\)
−0.321216 + 0.947006i \(0.604092\pi\)
\(150\) 0 0
\(151\) 3.24829e21 0.0428940 0.0214470 0.999770i \(-0.493173\pi\)
0.0214470 + 0.999770i \(0.493173\pi\)
\(152\) 0 0
\(153\) 4.10203e22 0.471780
\(154\) 0 0
\(155\) −1.93142e21 −0.0193818
\(156\) 0 0
\(157\) 7.93683e22 0.696146 0.348073 0.937467i \(-0.386836\pi\)
0.348073 + 0.937467i \(0.386836\pi\)
\(158\) 0 0
\(159\) 6.14534e22 0.471928
\(160\) 0 0
\(161\) 3.21362e23 2.16433
\(162\) 0 0
\(163\) −1.28319e23 −0.759139 −0.379569 0.925163i \(-0.623928\pi\)
−0.379569 + 0.925163i \(0.623928\pi\)
\(164\) 0 0
\(165\) 2.07023e21 0.0107755
\(166\) 0 0
\(167\) −3.95828e23 −1.81545 −0.907724 0.419569i \(-0.862181\pi\)
−0.907724 + 0.419569i \(0.862181\pi\)
\(168\) 0 0
\(169\) 4.66296e23 1.88734
\(170\) 0 0
\(171\) −6.60461e22 −0.236259
\(172\) 0 0
\(173\) 4.16073e23 1.31730 0.658651 0.752449i \(-0.271127\pi\)
0.658651 + 0.752449i \(0.271127\pi\)
\(174\) 0 0
\(175\) 5.61565e23 1.57580
\(176\) 0 0
\(177\) −2.40630e23 −0.599281
\(178\) 0 0
\(179\) 1.27122e23 0.281360 0.140680 0.990055i \(-0.455071\pi\)
0.140680 + 0.990055i \(0.455071\pi\)
\(180\) 0 0
\(181\) 8.28267e23 1.63134 0.815671 0.578516i \(-0.196368\pi\)
0.815671 + 0.578516i \(0.196368\pi\)
\(182\) 0 0
\(183\) −2.12155e23 −0.372320
\(184\) 0 0
\(185\) −5.27661e22 −0.0826136
\(186\) 0 0
\(187\) −4.14173e23 −0.579222
\(188\) 0 0
\(189\) 2.42981e23 0.303894
\(190\) 0 0
\(191\) −8.25338e23 −0.924233 −0.462117 0.886819i \(-0.652910\pi\)
−0.462117 + 0.886819i \(0.652910\pi\)
\(192\) 0 0
\(193\) −6.79233e23 −0.681815 −0.340908 0.940097i \(-0.610734\pi\)
−0.340908 + 0.940097i \(0.610734\pi\)
\(194\) 0 0
\(195\) 4.96667e22 0.0447406
\(196\) 0 0
\(197\) −3.06756e23 −0.248254 −0.124127 0.992266i \(-0.539613\pi\)
−0.124127 + 0.992266i \(0.539613\pi\)
\(198\) 0 0
\(199\) −8.09278e23 −0.589034 −0.294517 0.955646i \(-0.595159\pi\)
−0.294517 + 0.955646i \(0.595159\pi\)
\(200\) 0 0
\(201\) 3.67781e21 0.00241008
\(202\) 0 0
\(203\) −1.63199e24 −0.963850
\(204\) 0 0
\(205\) 1.36863e23 0.0729238
\(206\) 0 0
\(207\) −9.49480e23 −0.456875
\(208\) 0 0
\(209\) 6.66852e23 0.290064
\(210\) 0 0
\(211\) 1.58081e24 0.622176 0.311088 0.950381i \(-0.399307\pi\)
0.311088 + 0.950381i \(0.399307\pi\)
\(212\) 0 0
\(213\) −2.24746e24 −0.801135
\(214\) 0 0
\(215\) −1.39462e22 −0.00450664
\(216\) 0 0
\(217\) 2.28883e24 0.671097
\(218\) 0 0
\(219\) −2.99123e24 −0.796503
\(220\) 0 0
\(221\) −9.93639e24 −2.40497
\(222\) 0 0
\(223\) 4.04934e24 0.891626 0.445813 0.895126i \(-0.352915\pi\)
0.445813 + 0.895126i \(0.352915\pi\)
\(224\) 0 0
\(225\) −1.65917e24 −0.332640
\(226\) 0 0
\(227\) −4.16746e24 −0.761377 −0.380688 0.924703i \(-0.624313\pi\)
−0.380688 + 0.924703i \(0.624313\pi\)
\(228\) 0 0
\(229\) 7.85951e24 1.30955 0.654776 0.755823i \(-0.272763\pi\)
0.654776 + 0.755823i \(0.272763\pi\)
\(230\) 0 0
\(231\) −2.45332e24 −0.373103
\(232\) 0 0
\(233\) −4.71187e24 −0.654570 −0.327285 0.944926i \(-0.606134\pi\)
−0.327285 + 0.944926i \(0.606134\pi\)
\(234\) 0 0
\(235\) −1.52509e23 −0.0193679
\(236\) 0 0
\(237\) 1.27619e24 0.148272
\(238\) 0 0
\(239\) 1.76020e25 1.87234 0.936169 0.351550i \(-0.114345\pi\)
0.936169 + 0.351550i \(0.114345\pi\)
\(240\) 0 0
\(241\) −1.92639e23 −0.0187744 −0.00938718 0.999956i \(-0.502988\pi\)
−0.00938718 + 0.999956i \(0.502988\pi\)
\(242\) 0 0
\(243\) −7.17898e23 −0.0641500
\(244\) 0 0
\(245\) 8.30734e23 0.0681112
\(246\) 0 0
\(247\) 1.59984e25 1.20437
\(248\) 0 0
\(249\) −1.16790e25 −0.807818
\(250\) 0 0
\(251\) −2.97473e25 −1.89179 −0.945895 0.324472i \(-0.894813\pi\)
−0.945895 + 0.324472i \(0.894813\pi\)
\(252\) 0 0
\(253\) 9.58668e24 0.560922
\(254\) 0 0
\(255\) −6.91807e23 −0.0372660
\(256\) 0 0
\(257\) 1.69961e25 0.843436 0.421718 0.906727i \(-0.361427\pi\)
0.421718 + 0.906727i \(0.361427\pi\)
\(258\) 0 0
\(259\) 6.25303e25 2.86051
\(260\) 0 0
\(261\) 4.82180e24 0.203462
\(262\) 0 0
\(263\) 4.05987e25 1.58116 0.790582 0.612356i \(-0.209778\pi\)
0.790582 + 0.612356i \(0.209778\pi\)
\(264\) 0 0
\(265\) −1.03641e24 −0.0372777
\(266\) 0 0
\(267\) 5.38385e24 0.178947
\(268\) 0 0
\(269\) −4.80880e25 −1.47787 −0.738937 0.673775i \(-0.764672\pi\)
−0.738937 + 0.673775i \(0.764672\pi\)
\(270\) 0 0
\(271\) 4.82122e25 1.37082 0.685408 0.728159i \(-0.259624\pi\)
0.685408 + 0.728159i \(0.259624\pi\)
\(272\) 0 0
\(273\) −5.88574e25 −1.54915
\(274\) 0 0
\(275\) 1.67523e25 0.408395
\(276\) 0 0
\(277\) 2.25627e25 0.509747 0.254873 0.966974i \(-0.417966\pi\)
0.254873 + 0.966974i \(0.417966\pi\)
\(278\) 0 0
\(279\) −6.76244e24 −0.141664
\(280\) 0 0
\(281\) 2.49516e24 0.0484932 0.0242466 0.999706i \(-0.492281\pi\)
0.0242466 + 0.999706i \(0.492281\pi\)
\(282\) 0 0
\(283\) −1.36006e25 −0.245359 −0.122679 0.992446i \(-0.539149\pi\)
−0.122679 + 0.992446i \(0.539149\pi\)
\(284\) 0 0
\(285\) 1.11387e24 0.0186621
\(286\) 0 0
\(287\) −1.62189e26 −2.52500
\(288\) 0 0
\(289\) 6.93120e25 1.00318
\(290\) 0 0
\(291\) −5.52698e25 −0.744066
\(292\) 0 0
\(293\) −1.56999e26 −1.96693 −0.983463 0.181110i \(-0.942031\pi\)
−0.983463 + 0.181110i \(0.942031\pi\)
\(294\) 0 0
\(295\) 4.05822e24 0.0473374
\(296\) 0 0
\(297\) 7.24845e24 0.0787594
\(298\) 0 0
\(299\) 2.29993e26 2.32899
\(300\) 0 0
\(301\) 1.65270e25 0.156043
\(302\) 0 0
\(303\) −8.62875e25 −0.759977
\(304\) 0 0
\(305\) 3.57798e24 0.0294097
\(306\) 0 0
\(307\) −1.74656e26 −1.34038 −0.670192 0.742187i \(-0.733788\pi\)
−0.670192 + 0.742187i \(0.733788\pi\)
\(308\) 0 0
\(309\) 1.17193e26 0.840114
\(310\) 0 0
\(311\) −1.24531e26 −0.834246 −0.417123 0.908850i \(-0.636961\pi\)
−0.417123 + 0.908850i \(0.636961\pi\)
\(312\) 0 0
\(313\) −2.42614e26 −1.51950 −0.759749 0.650216i \(-0.774678\pi\)
−0.759749 + 0.650216i \(0.774678\pi\)
\(314\) 0 0
\(315\) −4.09786e24 −0.0240047
\(316\) 0 0
\(317\) −1.12301e25 −0.0615548 −0.0307774 0.999526i \(-0.509798\pi\)
−0.0307774 + 0.999526i \(0.509798\pi\)
\(318\) 0 0
\(319\) −4.86846e25 −0.249798
\(320\) 0 0
\(321\) −1.32289e25 −0.0635654
\(322\) 0 0
\(323\) −2.22842e26 −1.00316
\(324\) 0 0
\(325\) 4.01902e26 1.69568
\(326\) 0 0
\(327\) 7.93127e25 0.313756
\(328\) 0 0
\(329\) 1.80731e26 0.670618
\(330\) 0 0
\(331\) 1.06388e26 0.370422 0.185211 0.982699i \(-0.440703\pi\)
0.185211 + 0.982699i \(0.440703\pi\)
\(332\) 0 0
\(333\) −1.84749e26 −0.603833
\(334\) 0 0
\(335\) −6.20261e22 −0.000190373 0
\(336\) 0 0
\(337\) 4.17700e26 1.20434 0.602172 0.798366i \(-0.294302\pi\)
0.602172 + 0.798366i \(0.294302\pi\)
\(338\) 0 0
\(339\) −1.14270e26 −0.309623
\(340\) 0 0
\(341\) 6.82789e25 0.173926
\(342\) 0 0
\(343\) −3.25297e26 −0.779277
\(344\) 0 0
\(345\) 1.60129e25 0.0360887
\(346\) 0 0
\(347\) −2.09387e26 −0.444109 −0.222054 0.975034i \(-0.571276\pi\)
−0.222054 + 0.975034i \(0.571276\pi\)
\(348\) 0 0
\(349\) −4.26717e26 −0.852066 −0.426033 0.904708i \(-0.640089\pi\)
−0.426033 + 0.904708i \(0.640089\pi\)
\(350\) 0 0
\(351\) 1.73897e26 0.327015
\(352\) 0 0
\(353\) 1.08602e27 1.92399 0.961995 0.273066i \(-0.0880377\pi\)
0.961995 + 0.273066i \(0.0880377\pi\)
\(354\) 0 0
\(355\) 3.79033e25 0.0632818
\(356\) 0 0
\(357\) 8.19824e26 1.29034
\(358\) 0 0
\(359\) 9.95627e26 1.47776 0.738882 0.673835i \(-0.235354\pi\)
0.738882 + 0.673835i \(0.235354\pi\)
\(360\) 0 0
\(361\) −3.55417e26 −0.497636
\(362\) 0 0
\(363\) 3.63791e26 0.480654
\(364\) 0 0
\(365\) 5.04471e25 0.0629160
\(366\) 0 0
\(367\) −3.79742e26 −0.447193 −0.223596 0.974682i \(-0.571780\pi\)
−0.223596 + 0.974682i \(0.571780\pi\)
\(368\) 0 0
\(369\) 4.79195e26 0.533010
\(370\) 0 0
\(371\) 1.22819e27 1.29075
\(372\) 0 0
\(373\) 2.69702e26 0.267880 0.133940 0.990989i \(-0.457237\pi\)
0.133940 + 0.990989i \(0.457237\pi\)
\(374\) 0 0
\(375\) 5.60220e25 0.0526054
\(376\) 0 0
\(377\) −1.16799e27 −1.03718
\(378\) 0 0
\(379\) −1.52196e27 −1.27848 −0.639238 0.769009i \(-0.720750\pi\)
−0.639238 + 0.769009i \(0.720750\pi\)
\(380\) 0 0
\(381\) 1.35583e26 0.107769
\(382\) 0 0
\(383\) −2.90339e26 −0.218433 −0.109217 0.994018i \(-0.534834\pi\)
−0.109217 + 0.994018i \(0.534834\pi\)
\(384\) 0 0
\(385\) 4.13752e25 0.0294715
\(386\) 0 0
\(387\) −4.88297e25 −0.0329396
\(388\) 0 0
\(389\) 3.69707e26 0.236258 0.118129 0.992998i \(-0.462310\pi\)
0.118129 + 0.992998i \(0.462310\pi\)
\(390\) 0 0
\(391\) −3.20357e27 −1.93990
\(392\) 0 0
\(393\) 6.02324e26 0.345707
\(394\) 0 0
\(395\) −2.15230e25 −0.0117120
\(396\) 0 0
\(397\) −1.41599e27 −0.730736 −0.365368 0.930863i \(-0.619057\pi\)
−0.365368 + 0.930863i \(0.619057\pi\)
\(398\) 0 0
\(399\) −1.31998e27 −0.646180
\(400\) 0 0
\(401\) −1.31866e27 −0.612515 −0.306257 0.951949i \(-0.599077\pi\)
−0.306257 + 0.951949i \(0.599077\pi\)
\(402\) 0 0
\(403\) 1.63807e27 0.722154
\(404\) 0 0
\(405\) 1.21073e25 0.00506723
\(406\) 0 0
\(407\) 1.86537e27 0.741349
\(408\) 0 0
\(409\) −3.20193e27 −1.20870 −0.604348 0.796721i \(-0.706566\pi\)
−0.604348 + 0.796721i \(0.706566\pi\)
\(410\) 0 0
\(411\) 1.19675e27 0.429206
\(412\) 0 0
\(413\) −4.80919e27 −1.63906
\(414\) 0 0
\(415\) 1.96966e26 0.0638097
\(416\) 0 0
\(417\) 2.87885e27 0.886728
\(418\) 0 0
\(419\) 3.51711e27 1.03024 0.515120 0.857118i \(-0.327747\pi\)
0.515120 + 0.857118i \(0.327747\pi\)
\(420\) 0 0
\(421\) −5.09209e27 −1.41884 −0.709420 0.704786i \(-0.751043\pi\)
−0.709420 + 0.704786i \(0.751043\pi\)
\(422\) 0 0
\(423\) −5.33978e26 −0.141563
\(424\) 0 0
\(425\) −5.59809e27 −1.41240
\(426\) 0 0
\(427\) −4.24008e27 −1.01831
\(428\) 0 0
\(429\) −1.75580e27 −0.401488
\(430\) 0 0
\(431\) 7.67930e27 1.67228 0.836142 0.548513i \(-0.184806\pi\)
0.836142 + 0.548513i \(0.184806\pi\)
\(432\) 0 0
\(433\) 4.55461e27 0.944774 0.472387 0.881391i \(-0.343392\pi\)
0.472387 + 0.881391i \(0.343392\pi\)
\(434\) 0 0
\(435\) −8.13194e25 −0.0160715
\(436\) 0 0
\(437\) 5.15801e27 0.971466
\(438\) 0 0
\(439\) 2.37092e27 0.425637 0.212819 0.977092i \(-0.431736\pi\)
0.212819 + 0.977092i \(0.431736\pi\)
\(440\) 0 0
\(441\) 2.90863e27 0.497833
\(442\) 0 0
\(443\) 1.41566e27 0.231058 0.115529 0.993304i \(-0.463144\pi\)
0.115529 + 0.993304i \(0.463144\pi\)
\(444\) 0 0
\(445\) −9.07985e25 −0.0141351
\(446\) 0 0
\(447\) 2.49745e27 0.370909
\(448\) 0 0
\(449\) −4.28806e27 −0.607679 −0.303839 0.952723i \(-0.598269\pi\)
−0.303839 + 0.952723i \(0.598269\pi\)
\(450\) 0 0
\(451\) −4.83832e27 −0.654396
\(452\) 0 0
\(453\) −1.91808e26 −0.0247649
\(454\) 0 0
\(455\) 9.92628e26 0.122368
\(456\) 0 0
\(457\) 2.53901e27 0.298912 0.149456 0.988768i \(-0.452248\pi\)
0.149456 + 0.988768i \(0.452248\pi\)
\(458\) 0 0
\(459\) −2.42221e27 −0.272382
\(460\) 0 0
\(461\) −1.34137e27 −0.144108 −0.0720541 0.997401i \(-0.522955\pi\)
−0.0720541 + 0.997401i \(0.522955\pi\)
\(462\) 0 0
\(463\) 1.82493e28 1.87347 0.936735 0.350038i \(-0.113831\pi\)
0.936735 + 0.350038i \(0.113831\pi\)
\(464\) 0 0
\(465\) 1.14048e26 0.0111901
\(466\) 0 0
\(467\) 3.72909e27 0.349764 0.174882 0.984589i \(-0.444046\pi\)
0.174882 + 0.984589i \(0.444046\pi\)
\(468\) 0 0
\(469\) 7.35040e25 0.00659168
\(470\) 0 0
\(471\) −4.68662e27 −0.401920
\(472\) 0 0
\(473\) 4.93022e26 0.0404413
\(474\) 0 0
\(475\) 9.01338e27 0.707302
\(476\) 0 0
\(477\) −3.62876e27 −0.272468
\(478\) 0 0
\(479\) −3.98246e27 −0.286173 −0.143086 0.989710i \(-0.545703\pi\)
−0.143086 + 0.989710i \(0.545703\pi\)
\(480\) 0 0
\(481\) 4.47518e28 3.07813
\(482\) 0 0
\(483\) −1.89761e28 −1.24957
\(484\) 0 0
\(485\) 9.32124e26 0.0587740
\(486\) 0 0
\(487\) −9.44835e26 −0.0570561 −0.0285280 0.999593i \(-0.509082\pi\)
−0.0285280 + 0.999593i \(0.509082\pi\)
\(488\) 0 0
\(489\) 7.57711e27 0.438289
\(490\) 0 0
\(491\) 1.33942e28 0.742268 0.371134 0.928579i \(-0.378969\pi\)
0.371134 + 0.928579i \(0.378969\pi\)
\(492\) 0 0
\(493\) 1.62689e28 0.863903
\(494\) 0 0
\(495\) −1.22245e26 −0.00622123
\(496\) 0 0
\(497\) −4.49172e28 −2.19114
\(498\) 0 0
\(499\) −3.84837e28 −1.79978 −0.899892 0.436112i \(-0.856355\pi\)
−0.899892 + 0.436112i \(0.856355\pi\)
\(500\) 0 0
\(501\) 2.33733e28 1.04815
\(502\) 0 0
\(503\) 1.67092e28 0.718610 0.359305 0.933220i \(-0.383014\pi\)
0.359305 + 0.933220i \(0.383014\pi\)
\(504\) 0 0
\(505\) 1.45524e27 0.0600308
\(506\) 0 0
\(507\) −2.75343e28 −1.08966
\(508\) 0 0
\(509\) −4.22522e28 −1.60440 −0.802200 0.597055i \(-0.796337\pi\)
−0.802200 + 0.597055i \(0.796337\pi\)
\(510\) 0 0
\(511\) −5.97822e28 −2.17847
\(512\) 0 0
\(513\) 3.89996e27 0.136404
\(514\) 0 0
\(515\) −1.97646e27 −0.0663608
\(516\) 0 0
\(517\) 5.39145e27 0.173802
\(518\) 0 0
\(519\) −2.45687e28 −0.760544
\(520\) 0 0
\(521\) 5.08622e28 1.51216 0.756082 0.654477i \(-0.227111\pi\)
0.756082 + 0.654477i \(0.227111\pi\)
\(522\) 0 0
\(523\) 5.12940e28 1.46487 0.732434 0.680838i \(-0.238384\pi\)
0.732434 + 0.680838i \(0.238384\pi\)
\(524\) 0 0
\(525\) −3.31598e28 −0.909787
\(526\) 0 0
\(527\) −2.28167e28 −0.601508
\(528\) 0 0
\(529\) 3.46801e28 0.878609
\(530\) 0 0
\(531\) 1.42090e28 0.345995
\(532\) 0 0
\(533\) −1.16076e29 −2.71710
\(534\) 0 0
\(535\) 2.23105e26 0.00502105
\(536\) 0 0
\(537\) −7.50640e27 −0.162443
\(538\) 0 0
\(539\) −2.93678e28 −0.611209
\(540\) 0 0
\(541\) 2.98076e28 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(542\) 0 0
\(543\) −4.89083e28 −0.941856
\(544\) 0 0
\(545\) −1.33761e27 −0.0247836
\(546\) 0 0
\(547\) 5.19133e28 0.925575 0.462788 0.886469i \(-0.346849\pi\)
0.462788 + 0.886469i \(0.346849\pi\)
\(548\) 0 0
\(549\) 1.25275e28 0.214959
\(550\) 0 0
\(551\) −2.61942e28 −0.432627
\(552\) 0 0
\(553\) 2.55057e28 0.405531
\(554\) 0 0
\(555\) 3.11578e27 0.0476970
\(556\) 0 0
\(557\) 5.37882e28 0.792881 0.396440 0.918060i \(-0.370245\pi\)
0.396440 + 0.918060i \(0.370245\pi\)
\(558\) 0 0
\(559\) 1.18281e28 0.167915
\(560\) 0 0
\(561\) 2.44565e28 0.334414
\(562\) 0 0
\(563\) 5.50087e28 0.724592 0.362296 0.932063i \(-0.381993\pi\)
0.362296 + 0.932063i \(0.381993\pi\)
\(564\) 0 0
\(565\) 1.92715e27 0.0244572
\(566\) 0 0
\(567\) −1.43478e28 −0.175454
\(568\) 0 0
\(569\) 1.68810e29 1.98939 0.994695 0.102871i \(-0.0328029\pi\)
0.994695 + 0.102871i \(0.0328029\pi\)
\(570\) 0 0
\(571\) −1.01286e29 −1.15046 −0.575230 0.817992i \(-0.695087\pi\)
−0.575230 + 0.817992i \(0.695087\pi\)
\(572\) 0 0
\(573\) 4.87354e28 0.533606
\(574\) 0 0
\(575\) 1.29577e29 1.36777
\(576\) 0 0
\(577\) −1.45726e28 −0.148317 −0.0741585 0.997246i \(-0.523627\pi\)
−0.0741585 + 0.997246i \(0.523627\pi\)
\(578\) 0 0
\(579\) 4.01080e28 0.393646
\(580\) 0 0
\(581\) −2.33415e29 −2.20942
\(582\) 0 0
\(583\) 3.66388e28 0.334519
\(584\) 0 0
\(585\) −2.93277e27 −0.0258310
\(586\) 0 0
\(587\) 9.93629e28 0.844353 0.422177 0.906514i \(-0.361266\pi\)
0.422177 + 0.906514i \(0.361266\pi\)
\(588\) 0 0
\(589\) 3.67367e28 0.301224
\(590\) 0 0
\(591\) 1.81136e28 0.143330
\(592\) 0 0
\(593\) −1.83739e29 −1.40323 −0.701614 0.712557i \(-0.747537\pi\)
−0.701614 + 0.712557i \(0.747537\pi\)
\(594\) 0 0
\(595\) −1.38263e28 −0.101924
\(596\) 0 0
\(597\) 4.77871e28 0.340079
\(598\) 0 0
\(599\) 2.52254e29 1.73323 0.866614 0.498979i \(-0.166292\pi\)
0.866614 + 0.498979i \(0.166292\pi\)
\(600\) 0 0
\(601\) 1.14887e28 0.0762234 0.0381117 0.999273i \(-0.487866\pi\)
0.0381117 + 0.999273i \(0.487866\pi\)
\(602\) 0 0
\(603\) −2.17171e26 −0.00139146
\(604\) 0 0
\(605\) −6.13533e27 −0.0379670
\(606\) 0 0
\(607\) −6.52264e28 −0.389890 −0.194945 0.980814i \(-0.562453\pi\)
−0.194945 + 0.980814i \(0.562453\pi\)
\(608\) 0 0
\(609\) 9.63674e28 0.556479
\(610\) 0 0
\(611\) 1.29346e29 0.721638
\(612\) 0 0
\(613\) −3.10672e29 −1.67482 −0.837409 0.546577i \(-0.815930\pi\)
−0.837409 + 0.546577i \(0.815930\pi\)
\(614\) 0 0
\(615\) −8.08160e27 −0.0421026
\(616\) 0 0
\(617\) 2.33223e29 1.17429 0.587147 0.809481i \(-0.300251\pi\)
0.587147 + 0.809481i \(0.300251\pi\)
\(618\) 0 0
\(619\) 8.01970e28 0.390307 0.195154 0.980773i \(-0.437479\pi\)
0.195154 + 0.980773i \(0.437479\pi\)
\(620\) 0 0
\(621\) 5.60658e28 0.263777
\(622\) 0 0
\(623\) 1.07601e29 0.489429
\(624\) 0 0
\(625\) 2.25956e29 0.993765
\(626\) 0 0
\(627\) −3.93770e28 −0.167468
\(628\) 0 0
\(629\) −6.23348e29 −2.56389
\(630\) 0 0
\(631\) −5.48800e28 −0.218326 −0.109163 0.994024i \(-0.534817\pi\)
−0.109163 + 0.994024i \(0.534817\pi\)
\(632\) 0 0
\(633\) −9.33451e28 −0.359213
\(634\) 0 0
\(635\) −2.28660e27 −0.00851268
\(636\) 0 0
\(637\) −7.04561e29 −2.53778
\(638\) 0 0
\(639\) 1.32710e29 0.462535
\(640\) 0 0
\(641\) 3.70840e29 1.25077 0.625385 0.780316i \(-0.284942\pi\)
0.625385 + 0.780316i \(0.284942\pi\)
\(642\) 0 0
\(643\) −3.51390e29 −1.14703 −0.573514 0.819196i \(-0.694420\pi\)
−0.573514 + 0.819196i \(0.694420\pi\)
\(644\) 0 0
\(645\) 8.23511e26 0.00260191
\(646\) 0 0
\(647\) −5.82634e29 −1.78197 −0.890986 0.454031i \(-0.849986\pi\)
−0.890986 + 0.454031i \(0.849986\pi\)
\(648\) 0 0
\(649\) −1.43465e29 −0.424792
\(650\) 0 0
\(651\) −1.35153e29 −0.387458
\(652\) 0 0
\(653\) 3.13916e28 0.0871416 0.0435708 0.999050i \(-0.486127\pi\)
0.0435708 + 0.999050i \(0.486127\pi\)
\(654\) 0 0
\(655\) −1.01582e28 −0.0273075
\(656\) 0 0
\(657\) 1.76629e29 0.459861
\(658\) 0 0
\(659\) 3.33583e29 0.841215 0.420607 0.907243i \(-0.361817\pi\)
0.420607 + 0.907243i \(0.361817\pi\)
\(660\) 0 0
\(661\) 5.89161e28 0.143919 0.0719596 0.997408i \(-0.477075\pi\)
0.0719596 + 0.997408i \(0.477075\pi\)
\(662\) 0 0
\(663\) 5.86734e29 1.38851
\(664\) 0 0
\(665\) 2.22615e28 0.0510419
\(666\) 0 0
\(667\) −3.76569e29 −0.836610
\(668\) 0 0
\(669\) −2.39109e29 −0.514781
\(670\) 0 0
\(671\) −1.26488e29 −0.263913
\(672\) 0 0
\(673\) −5.66425e29 −1.14547 −0.572735 0.819740i \(-0.694118\pi\)
−0.572735 + 0.819740i \(0.694118\pi\)
\(674\) 0 0
\(675\) 9.79724e28 0.192050
\(676\) 0 0
\(677\) 1.74529e29 0.331654 0.165827 0.986155i \(-0.446971\pi\)
0.165827 + 0.986155i \(0.446971\pi\)
\(678\) 0 0
\(679\) −1.10461e30 −2.03506
\(680\) 0 0
\(681\) 2.46084e29 0.439581
\(682\) 0 0
\(683\) −2.06449e29 −0.357598 −0.178799 0.983886i \(-0.557221\pi\)
−0.178799 + 0.983886i \(0.557221\pi\)
\(684\) 0 0
\(685\) −2.01832e28 −0.0339031
\(686\) 0 0
\(687\) −4.64096e29 −0.756070
\(688\) 0 0
\(689\) 8.78997e29 1.38895
\(690\) 0 0
\(691\) 9.21370e29 1.41226 0.706130 0.708082i \(-0.250439\pi\)
0.706130 + 0.708082i \(0.250439\pi\)
\(692\) 0 0
\(693\) 1.44866e29 0.215411
\(694\) 0 0
\(695\) −4.85517e28 −0.0700429
\(696\) 0 0
\(697\) 1.61682e30 2.26317
\(698\) 0 0
\(699\) 2.78231e29 0.377916
\(700\) 0 0
\(701\) 1.27540e30 1.68115 0.840576 0.541694i \(-0.182217\pi\)
0.840576 + 0.541694i \(0.182217\pi\)
\(702\) 0 0
\(703\) 1.00364e30 1.28395
\(704\) 0 0
\(705\) 9.00552e27 0.0111821
\(706\) 0 0
\(707\) −1.72453e30 −2.07858
\(708\) 0 0
\(709\) −5.15684e29 −0.603390 −0.301695 0.953404i \(-0.597552\pi\)
−0.301695 + 0.953404i \(0.597552\pi\)
\(710\) 0 0
\(711\) −7.53580e28 −0.0856048
\(712\) 0 0
\(713\) 5.28128e29 0.582504
\(714\) 0 0
\(715\) 2.96115e28 0.0317137
\(716\) 0 0
\(717\) −1.03938e30 −1.08100
\(718\) 0 0
\(719\) 3.68507e29 0.372214 0.186107 0.982530i \(-0.440413\pi\)
0.186107 + 0.982530i \(0.440413\pi\)
\(720\) 0 0
\(721\) 2.34220e30 2.29775
\(722\) 0 0
\(723\) 1.13751e28 0.0108394
\(724\) 0 0
\(725\) −6.58036e29 −0.609117
\(726\) 0 0
\(727\) 2.00029e30 1.79880 0.899398 0.437130i \(-0.144005\pi\)
0.899398 + 0.437130i \(0.144005\pi\)
\(728\) 0 0
\(729\) 4.23912e28 0.0370370
\(730\) 0 0
\(731\) −1.64753e29 −0.139862
\(732\) 0 0
\(733\) −1.63425e30 −1.34812 −0.674059 0.738678i \(-0.735451\pi\)
−0.674059 + 0.738678i \(0.735451\pi\)
\(734\) 0 0
\(735\) −4.90540e28 −0.0393240
\(736\) 0 0
\(737\) 2.19273e27 0.00170835
\(738\) 0 0
\(739\) −2.17982e30 −1.65064 −0.825322 0.564662i \(-0.809007\pi\)
−0.825322 + 0.564662i \(0.809007\pi\)
\(740\) 0 0
\(741\) −9.44689e29 −0.695341
\(742\) 0 0
\(743\) 8.10599e29 0.579994 0.289997 0.957028i \(-0.406346\pi\)
0.289997 + 0.957028i \(0.406346\pi\)
\(744\) 0 0
\(745\) −4.21193e28 −0.0292982
\(746\) 0 0
\(747\) 6.89635e29 0.466394
\(748\) 0 0
\(749\) −2.64390e29 −0.173854
\(750\) 0 0
\(751\) 4.66500e27 0.00298286 0.00149143 0.999999i \(-0.499525\pi\)
0.00149143 + 0.999999i \(0.499525\pi\)
\(752\) 0 0
\(753\) 1.75655e30 1.09223
\(754\) 0 0
\(755\) 3.23484e27 0.00195619
\(756\) 0 0
\(757\) 2.77260e29 0.163072 0.0815362 0.996670i \(-0.474017\pi\)
0.0815362 + 0.996670i \(0.474017\pi\)
\(758\) 0 0
\(759\) −5.66084e29 −0.323849
\(760\) 0 0
\(761\) −2.32433e29 −0.129348 −0.0646738 0.997906i \(-0.520601\pi\)
−0.0646738 + 0.997906i \(0.520601\pi\)
\(762\) 0 0
\(763\) 1.58513e30 0.858137
\(764\) 0 0
\(765\) 4.08505e28 0.0215155
\(766\) 0 0
\(767\) −3.44185e30 −1.76376
\(768\) 0 0
\(769\) 1.70610e30 0.850705 0.425352 0.905028i \(-0.360150\pi\)
0.425352 + 0.905028i \(0.360150\pi\)
\(770\) 0 0
\(771\) −1.00360e30 −0.486958
\(772\) 0 0
\(773\) 1.50011e30 0.708335 0.354168 0.935182i \(-0.384764\pi\)
0.354168 + 0.935182i \(0.384764\pi\)
\(774\) 0 0
\(775\) 9.22878e29 0.424108
\(776\) 0 0
\(777\) −3.69235e30 −1.65151
\(778\) 0 0
\(779\) −2.60321e30 −1.13335
\(780\) 0 0
\(781\) −1.33994e30 −0.567872
\(782\) 0 0
\(783\) −2.84722e29 −0.117469
\(784\) 0 0
\(785\) 7.90396e28 0.0317478
\(786\) 0 0
\(787\) 4.40356e30 1.72214 0.861071 0.508485i \(-0.169794\pi\)
0.861071 + 0.508485i \(0.169794\pi\)
\(788\) 0 0
\(789\) −2.39731e30 −0.912885
\(790\) 0 0
\(791\) −2.28377e30 −0.846836
\(792\) 0 0
\(793\) −3.03455e30 −1.09579
\(794\) 0 0
\(795\) 6.11989e28 0.0215223
\(796\) 0 0
\(797\) −2.64344e30 −0.905434 −0.452717 0.891654i \(-0.649545\pi\)
−0.452717 + 0.891654i \(0.649545\pi\)
\(798\) 0 0
\(799\) −1.80166e30 −0.601078
\(800\) 0 0
\(801\) −3.17911e29 −0.103315
\(802\) 0 0
\(803\) −1.78339e30 −0.564589
\(804\) 0 0
\(805\) 3.20031e29 0.0987043
\(806\) 0 0
\(807\) 2.83955e30 0.853251
\(808\) 0 0
\(809\) 1.79810e30 0.526447 0.263224 0.964735i \(-0.415214\pi\)
0.263224 + 0.964735i \(0.415214\pi\)
\(810\) 0 0
\(811\) 6.41630e30 1.83048 0.915241 0.402906i \(-0.132000\pi\)
0.915241 + 0.402906i \(0.132000\pi\)
\(812\) 0 0
\(813\) −2.84688e30 −0.791441
\(814\) 0 0
\(815\) −1.27788e29 −0.0346206
\(816\) 0 0
\(817\) 2.65266e29 0.0700405
\(818\) 0 0
\(819\) 3.47547e30 0.894402
\(820\) 0 0
\(821\) −4.18469e30 −1.04969 −0.524844 0.851198i \(-0.675877\pi\)
−0.524844 + 0.851198i \(0.675877\pi\)
\(822\) 0 0
\(823\) −1.69536e30 −0.414537 −0.207269 0.978284i \(-0.566457\pi\)
−0.207269 + 0.978284i \(0.566457\pi\)
\(824\) 0 0
\(825\) −9.89205e29 −0.235787
\(826\) 0 0
\(827\) −3.73546e29 −0.0868032 −0.0434016 0.999058i \(-0.513820\pi\)
−0.0434016 + 0.999058i \(0.513820\pi\)
\(828\) 0 0
\(829\) −3.37284e30 −0.764141 −0.382071 0.924133i \(-0.624789\pi\)
−0.382071 + 0.924133i \(0.624789\pi\)
\(830\) 0 0
\(831\) −1.33231e30 −0.294302
\(832\) 0 0
\(833\) 9.81382e30 2.11381
\(834\) 0 0
\(835\) −3.94189e29 −0.0827936
\(836\) 0 0
\(837\) 3.99316e29 0.0817898
\(838\) 0 0
\(839\) −2.40344e30 −0.480102 −0.240051 0.970760i \(-0.577164\pi\)
−0.240051 + 0.970760i \(0.577164\pi\)
\(840\) 0 0
\(841\) −3.22049e30 −0.627429
\(842\) 0 0
\(843\) −1.47336e29 −0.0279976
\(844\) 0 0
\(845\) 4.64365e29 0.0860724
\(846\) 0 0
\(847\) 7.27066e30 1.31461
\(848\) 0 0
\(849\) 8.03103e29 0.141658
\(850\) 0 0
\(851\) 1.44284e31 2.48289
\(852\) 0 0
\(853\) 1.29292e30 0.217074 0.108537 0.994092i \(-0.465383\pi\)
0.108537 + 0.994092i \(0.465383\pi\)
\(854\) 0 0
\(855\) −6.57726e28 −0.0107746
\(856\) 0 0
\(857\) −2.56383e30 −0.409817 −0.204909 0.978781i \(-0.565690\pi\)
−0.204909 + 0.978781i \(0.565690\pi\)
\(858\) 0 0
\(859\) −1.40233e30 −0.218737 −0.109369 0.994001i \(-0.534883\pi\)
−0.109369 + 0.994001i \(0.534883\pi\)
\(860\) 0 0
\(861\) 9.57709e30 1.45781
\(862\) 0 0
\(863\) 5.48238e30 0.814434 0.407217 0.913331i \(-0.366499\pi\)
0.407217 + 0.913331i \(0.366499\pi\)
\(864\) 0 0
\(865\) 4.14350e29 0.0600756
\(866\) 0 0
\(867\) −4.09280e30 −0.579189
\(868\) 0 0
\(869\) 7.60872e29 0.105100
\(870\) 0 0
\(871\) 5.26055e28 0.00709317
\(872\) 0 0
\(873\) 3.26363e30 0.429587
\(874\) 0 0
\(875\) 1.11965e30 0.143878
\(876\) 0 0
\(877\) 5.89368e30 0.739419 0.369709 0.929147i \(-0.379457\pi\)
0.369709 + 0.929147i \(0.379457\pi\)
\(878\) 0 0
\(879\) 9.27066e30 1.13561
\(880\) 0 0
\(881\) −1.21940e30 −0.145848 −0.0729238 0.997338i \(-0.523233\pi\)
−0.0729238 + 0.997338i \(0.523233\pi\)
\(882\) 0 0
\(883\) −1.36507e31 −1.59429 −0.797144 0.603790i \(-0.793657\pi\)
−0.797144 + 0.603790i \(0.793657\pi\)
\(884\) 0 0
\(885\) −2.39634e29 −0.0273303
\(886\) 0 0
\(887\) −6.50423e30 −0.724433 −0.362216 0.932094i \(-0.617980\pi\)
−0.362216 + 0.932094i \(0.617980\pi\)
\(888\) 0 0
\(889\) 2.70973e30 0.294753
\(890\) 0 0
\(891\) −4.28014e29 −0.0454718
\(892\) 0 0
\(893\) 2.90081e30 0.301009
\(894\) 0 0
\(895\) 1.26595e29 0.0128314
\(896\) 0 0
\(897\) −1.35809e31 −1.34464
\(898\) 0 0
\(899\) −2.68202e30 −0.259409
\(900\) 0 0
\(901\) −1.22435e31 −1.15690
\(902\) 0 0
\(903\) −9.75901e29 −0.0900916
\(904\) 0 0
\(905\) 8.24837e29 0.0743975
\(906\) 0 0
\(907\) −1.08087e31 −0.952571 −0.476286 0.879291i \(-0.658017\pi\)
−0.476286 + 0.879291i \(0.658017\pi\)
\(908\) 0 0
\(909\) 5.09519e30 0.438773
\(910\) 0 0
\(911\) 3.63526e30 0.305909 0.152954 0.988233i \(-0.451121\pi\)
0.152954 + 0.988233i \(0.451121\pi\)
\(912\) 0 0
\(913\) −6.96308e30 −0.572609
\(914\) 0 0
\(915\) −2.11276e29 −0.0169797
\(916\) 0 0
\(917\) 1.20379e31 0.945527
\(918\) 0 0
\(919\) −5.58006e30 −0.428377 −0.214188 0.976792i \(-0.568711\pi\)
−0.214188 + 0.976792i \(0.568711\pi\)
\(920\) 0 0
\(921\) 1.03132e31 0.773872
\(922\) 0 0
\(923\) −3.21465e31 −2.35785
\(924\) 0 0
\(925\) 2.52129e31 1.80773
\(926\) 0 0
\(927\) −6.92014e30 −0.485040
\(928\) 0 0
\(929\) 2.15700e31 1.47804 0.739020 0.673684i \(-0.235289\pi\)
0.739020 + 0.673684i \(0.235289\pi\)
\(930\) 0 0
\(931\) −1.58011e31 −1.05856
\(932\) 0 0
\(933\) 7.35344e30 0.481652
\(934\) 0 0
\(935\) −4.12458e29 −0.0264155
\(936\) 0 0
\(937\) −1.41281e31 −0.884743 −0.442371 0.896832i \(-0.645863\pi\)
−0.442371 + 0.896832i \(0.645863\pi\)
\(938\) 0 0
\(939\) 1.43261e31 0.877283
\(940\) 0 0
\(941\) −6.25041e30 −0.374298 −0.187149 0.982332i \(-0.559925\pi\)
−0.187149 + 0.982332i \(0.559925\pi\)
\(942\) 0 0
\(943\) −3.74237e31 −2.19167
\(944\) 0 0
\(945\) 2.41975e29 0.0138591
\(946\) 0 0
\(947\) 1.56241e31 0.875225 0.437612 0.899164i \(-0.355824\pi\)
0.437612 + 0.899164i \(0.355824\pi\)
\(948\) 0 0
\(949\) −4.27851e31 −2.34421
\(950\) 0 0
\(951\) 6.63127e29 0.0355387
\(952\) 0 0
\(953\) −2.51938e31 −1.32074 −0.660371 0.750939i \(-0.729601\pi\)
−0.660371 + 0.750939i \(0.729601\pi\)
\(954\) 0 0
\(955\) −8.21921e29 −0.0421497
\(956\) 0 0
\(957\) 2.87478e30 0.144221
\(958\) 0 0
\(959\) 2.39181e31 1.17390
\(960\) 0 0
\(961\) −1.70640e31 −0.819382
\(962\) 0 0
\(963\) 7.81153e29 0.0366995
\(964\) 0 0
\(965\) −6.76420e29 −0.0310942
\(966\) 0 0
\(967\) 2.95777e31 1.33041 0.665206 0.746660i \(-0.268344\pi\)
0.665206 + 0.746660i \(0.268344\pi\)
\(968\) 0 0
\(969\) 1.31586e31 0.579174
\(970\) 0 0
\(971\) 6.84548e30 0.294851 0.147425 0.989073i \(-0.452901\pi\)
0.147425 + 0.989073i \(0.452901\pi\)
\(972\) 0 0
\(973\) 5.75361e31 2.42525
\(974\) 0 0
\(975\) −2.37319e31 −0.979004
\(976\) 0 0
\(977\) −2.28485e31 −0.922498 −0.461249 0.887271i \(-0.652598\pi\)
−0.461249 + 0.887271i \(0.652598\pi\)
\(978\) 0 0
\(979\) 3.20987e30 0.126844
\(980\) 0 0
\(981\) −4.68334e30 −0.181147
\(982\) 0 0
\(983\) 3.53478e30 0.133829 0.0669146 0.997759i \(-0.478685\pi\)
0.0669146 + 0.997759i \(0.478685\pi\)
\(984\) 0 0
\(985\) −3.05485e29 −0.0113217
\(986\) 0 0
\(987\) −1.06720e31 −0.387181
\(988\) 0 0
\(989\) 3.81346e30 0.135444
\(990\) 0 0
\(991\) −2.61702e31 −0.909982 −0.454991 0.890496i \(-0.650358\pi\)
−0.454991 + 0.890496i \(0.650358\pi\)
\(992\) 0 0
\(993\) −6.28208e30 −0.213863
\(994\) 0 0
\(995\) −8.05927e29 −0.0268629
\(996\) 0 0
\(997\) 4.15801e31 1.35702 0.678511 0.734590i \(-0.262626\pi\)
0.678511 + 0.734590i \(0.262626\pi\)
\(998\) 0 0
\(999\) 1.09092e31 0.348623
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 24.22.a.b.1.2 3
3.2 odd 2 72.22.a.e.1.2 3
4.3 odd 2 48.22.a.k.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.22.a.b.1.2 3 1.1 even 1 trivial
48.22.a.k.1.2 3 4.3 odd 2
72.22.a.e.1.2 3 3.2 odd 2