Properties

Label 24.17.h.a.5.1
Level $24$
Weight $17$
Character 24.5
Self dual yes
Analytic conductor $38.958$
Analytic rank $0$
Dimension $1$
CM discriminant -24
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [24,17,Mod(5,24)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("24.5"); S:= CuspForms(chi, 17); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 17, names="a")
 
Level: \( N \) \(=\) \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) \(=\) \( 17 \)
Character orbit: \([\chi]\) \(=\) 24.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-256] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.9578905256\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 5.1
Character \(\chi\) \(=\) 24.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-256.000 q^{2} -6561.00 q^{3} +65536.0 q^{4} +31294.0 q^{5} +1.67962e6 q^{6} +1.14912e7 q^{7} -1.67772e7 q^{8} +4.30467e7 q^{9} -8.01126e6 q^{10} +3.45580e8 q^{11} -4.29982e8 q^{12} -2.94175e9 q^{14} -2.05320e8 q^{15} +4.29497e9 q^{16} -1.10200e10 q^{18} +2.05088e9 q^{20} -7.53938e10 q^{21} -8.84684e10 q^{22} +1.10075e11 q^{24} -1.51609e11 q^{25} -2.82430e11 q^{27} +7.53087e11 q^{28} +4.44815e11 q^{29} +5.25619e10 q^{30} +9.13948e11 q^{31} -1.09951e12 q^{32} -2.26735e12 q^{33} +3.59606e11 q^{35} +2.82111e12 q^{36} -5.25026e11 q^{40} +1.93008e13 q^{42} +2.26479e13 q^{44} +1.34710e12 q^{45} -2.81793e13 q^{48} +9.88148e13 q^{49} +3.88118e13 q^{50} +9.50840e13 q^{53} +7.23020e13 q^{54} +1.08146e13 q^{55} -1.92790e14 q^{56} -1.13873e14 q^{58} -2.28568e14 q^{59} -1.34558e13 q^{60} -2.33971e14 q^{62} +4.94659e14 q^{63} +2.81475e14 q^{64} +5.80441e14 q^{66} -9.20591e13 q^{70} -7.22204e14 q^{72} -1.51773e15 q^{73} +9.94704e14 q^{75} +3.97113e15 q^{77} -3.00678e15 q^{79} +1.34407e14 q^{80} +1.85302e15 q^{81} -1.49562e15 q^{83} -4.94101e15 q^{84} -2.91843e15 q^{87} -5.79787e15 q^{88} -3.44859e14 q^{90} -5.99641e15 q^{93} +7.21390e15 q^{96} -8.86128e14 q^{97} -2.52966e16 q^{98} +1.48761e16 q^{99} +O(q^{100})\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/24\mathbb{Z}\right)^\times\).

\(n\) \(7\) \(13\) \(17\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −256.000 −1.00000
\(3\) −6561.00 −1.00000
\(4\) 65536.0 1.00000
\(5\) 31294.0 0.0801126 0.0400563 0.999197i \(-0.487246\pi\)
0.0400563 + 0.999197i \(0.487246\pi\)
\(6\) 1.67962e6 1.00000
\(7\) 1.14912e7 1.99334 0.996669 0.0815477i \(-0.0259863\pi\)
0.996669 + 0.0815477i \(0.0259863\pi\)
\(8\) −1.67772e7 −1.00000
\(9\) 4.30467e7 1.00000
\(10\) −8.01126e6 −0.0801126
\(11\) 3.45580e8 1.61216 0.806078 0.591810i \(-0.201586\pi\)
0.806078 + 0.591810i \(0.201586\pi\)
\(12\) −4.29982e8 −1.00000
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −2.94175e9 −1.99334
\(15\) −2.05320e8 −0.0801126
\(16\) 4.29497e9 1.00000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −1.10200e10 −1.00000
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 2.05088e9 0.0801126
\(21\) −7.53938e10 −1.99334
\(22\) −8.84684e10 −1.61216
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 1.10075e11 1.00000
\(25\) −1.51609e11 −0.993582
\(26\) 0 0
\(27\) −2.82430e11 −1.00000
\(28\) 7.53087e11 1.99334
\(29\) 4.44815e11 0.889192 0.444596 0.895731i \(-0.353347\pi\)
0.444596 + 0.895731i \(0.353347\pi\)
\(30\) 5.25619e10 0.0801126
\(31\) 9.13948e11 1.07159 0.535794 0.844349i \(-0.320012\pi\)
0.535794 + 0.844349i \(0.320012\pi\)
\(32\) −1.09951e12 −1.00000
\(33\) −2.26735e12 −1.61216
\(34\) 0 0
\(35\) 3.59606e11 0.159692
\(36\) 2.82111e12 1.00000
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −5.25026e11 −0.0801126
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 1.93008e13 1.99334
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 2.26479e13 1.61216
\(45\) 1.34710e12 0.0801126
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −2.81793e13 −1.00000
\(49\) 9.88148e13 2.97340
\(50\) 3.88118e13 0.993582
\(51\) 0 0
\(52\) 0 0
\(53\) 9.50840e13 1.52722 0.763608 0.645680i \(-0.223426\pi\)
0.763608 + 0.645680i \(0.223426\pi\)
\(54\) 7.23020e13 1.00000
\(55\) 1.08146e13 0.129154
\(56\) −1.92790e14 −1.99334
\(57\) 0 0
\(58\) −1.13873e14 −0.889192
\(59\) −2.28568e14 −1.55668 −0.778339 0.627844i \(-0.783938\pi\)
−0.778339 + 0.627844i \(0.783938\pi\)
\(60\) −1.34558e13 −0.0801126
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −2.33971e14 −1.07159
\(63\) 4.94659e14 1.99334
\(64\) 2.81475e14 1.00000
\(65\) 0 0
\(66\) 5.80441e14 1.61216
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −9.20591e13 −0.159692
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −7.22204e14 −1.00000
\(73\) −1.51773e15 −1.88197 −0.940983 0.338453i \(-0.890097\pi\)
−0.940983 + 0.338453i \(0.890097\pi\)
\(74\) 0 0
\(75\) 9.94704e14 0.993582
\(76\) 0 0
\(77\) 3.97113e15 3.21357
\(78\) 0 0
\(79\) −3.00678e15 −1.98192 −0.990958 0.134169i \(-0.957163\pi\)
−0.990958 + 0.134169i \(0.957163\pi\)
\(80\) 1.34407e14 0.0801126
\(81\) 1.85302e15 1.00000
\(82\) 0 0
\(83\) −1.49562e15 −0.664042 −0.332021 0.943272i \(-0.607730\pi\)
−0.332021 + 0.943272i \(0.607730\pi\)
\(84\) −4.94101e15 −1.99334
\(85\) 0 0
\(86\) 0 0
\(87\) −2.91843e15 −0.889192
\(88\) −5.79787e15 −1.61216
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) −3.44859e14 −0.0801126
\(91\) 0 0
\(92\) 0 0
\(93\) −5.99641e15 −1.07159
\(94\) 0 0
\(95\) 0 0
\(96\) 7.21390e15 1.00000
\(97\) −8.86128e14 −0.113063 −0.0565317 0.998401i \(-0.518004\pi\)
−0.0565317 + 0.998401i \(0.518004\pi\)
\(98\) −2.52966e16 −2.97340
\(99\) 1.48761e16 1.61216
\(100\) −9.93582e15 −0.993582
\(101\) 2.01898e16 1.86449 0.932245 0.361828i \(-0.117847\pi\)
0.932245 + 0.361828i \(0.117847\pi\)
\(102\) 0 0
\(103\) 2.34473e16 1.85095 0.925477 0.378803i \(-0.123664\pi\)
0.925477 + 0.378803i \(0.123664\pi\)
\(104\) 0 0
\(105\) −2.35937e15 −0.159692
\(106\) −2.43415e16 −1.52722
\(107\) 3.38864e16 1.97222 0.986110 0.166091i \(-0.0531147\pi\)
0.986110 + 0.166091i \(0.0531147\pi\)
\(108\) −1.85093e16 −1.00000
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −2.76853e15 −0.129154
\(111\) 0 0
\(112\) 4.93543e16 1.99334
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.91514e16 0.889192
\(117\) 0 0
\(118\) 5.85133e16 1.55668
\(119\) 0 0
\(120\) 3.44470e15 0.0801126
\(121\) 7.34757e16 1.59905
\(122\) 0 0
\(123\) 0 0
\(124\) 5.98965e16 1.07159
\(125\) −9.51952e15 −0.159711
\(126\) −1.26633e17 −1.99334
\(127\) −1.26477e17 −1.86889 −0.934444 0.356111i \(-0.884102\pi\)
−0.934444 + 0.356111i \(0.884102\pi\)
\(128\) −7.20576e16 −1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 1.31435e17 1.51545 0.757726 0.652573i \(-0.226310\pi\)
0.757726 + 0.652573i \(0.226310\pi\)
\(132\) −1.48593e17 −1.61216
\(133\) 0 0
\(134\) 0 0
\(135\) −8.83835e15 −0.0801126
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 2.35671e16 0.159692
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 1.84884e17 1.00000
\(145\) 1.39200e16 0.0712355
\(146\) 3.88539e17 1.88197
\(147\) −6.48324e17 −2.97340
\(148\) 0 0
\(149\) 1.37578e17 0.566318 0.283159 0.959073i \(-0.408618\pi\)
0.283159 + 0.959073i \(0.408618\pi\)
\(150\) −2.54644e17 −0.993582
\(151\) 1.42774e17 0.528244 0.264122 0.964489i \(-0.414918\pi\)
0.264122 + 0.964489i \(0.414918\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −1.01661e18 −3.21357
\(155\) 2.86011e16 0.0858478
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 7.69737e17 1.98192
\(159\) −6.23846e17 −1.52722
\(160\) −3.44081e16 −0.0801126
\(161\) 0 0
\(162\) −4.74373e17 −1.00000
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) −7.09544e16 −0.129154
\(166\) 3.82878e17 0.664042
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 1.26490e18 1.99334
\(169\) 6.65417e17 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.75046e17 −0.965959 −0.482979 0.875632i \(-0.660445\pi\)
−0.482979 + 0.875632i \(0.660445\pi\)
\(174\) 7.47118e17 0.889192
\(175\) −1.74216e18 −1.98055
\(176\) 1.48425e18 1.61216
\(177\) 1.49963e18 1.55668
\(178\) 0 0
\(179\) −1.61009e18 −1.52766 −0.763828 0.645419i \(-0.776683\pi\)
−0.763828 + 0.645419i \(0.776683\pi\)
\(180\) 8.82838e16 0.0801126
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 1.53508e18 1.07159
\(187\) 0 0
\(188\) 0 0
\(189\) −3.24545e18 −1.99334
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −1.84676e18 −1.00000
\(193\) 3.34705e18 1.73862 0.869308 0.494271i \(-0.164565\pi\)
0.869308 + 0.494271i \(0.164565\pi\)
\(194\) 2.26849e17 0.113063
\(195\) 0 0
\(196\) 6.47593e18 2.97340
\(197\) 2.53831e18 1.11896 0.559481 0.828843i \(-0.311001\pi\)
0.559481 + 0.828843i \(0.311001\pi\)
\(198\) −3.80828e18 −1.61216
\(199\) −2.15627e18 −0.876754 −0.438377 0.898791i \(-0.644446\pi\)
−0.438377 + 0.898791i \(0.644446\pi\)
\(200\) 2.54357e18 0.993582
\(201\) 0 0
\(202\) −5.16858e18 −1.86449
\(203\) 5.11146e18 1.77246
\(204\) 0 0
\(205\) 0 0
\(206\) −6.00252e18 −1.85095
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 6.03999e17 0.159692
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 6.23143e18 1.52722
\(213\) 0 0
\(214\) −8.67492e18 −1.97222
\(215\) 0 0
\(216\) 4.73838e18 1.00000
\(217\) 1.05024e19 2.13604
\(218\) 0 0
\(219\) 9.95783e18 1.88197
\(220\) 7.08744e17 0.129154
\(221\) 0 0
\(222\) 0 0
\(223\) −4.51225e18 −0.737826 −0.368913 0.929464i \(-0.620270\pi\)
−0.368913 + 0.929464i \(0.620270\pi\)
\(224\) −1.26347e19 −1.99334
\(225\) −6.52625e18 −0.993582
\(226\) 0 0
\(227\) −1.12304e19 −1.59290 −0.796448 0.604707i \(-0.793290\pi\)
−0.796448 + 0.604707i \(0.793290\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) −2.60546e19 −3.21357
\(232\) −7.46276e18 −0.889192
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −1.49794e19 −1.55668
\(237\) 1.97275e19 1.98192
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −8.81842e17 −0.0801126
\(241\) 1.15920e19 1.01864 0.509320 0.860577i \(-0.329897\pi\)
0.509320 + 0.860577i \(0.329897\pi\)
\(242\) −1.88098e19 −1.59905
\(243\) −1.21577e19 −1.00000
\(244\) 0 0
\(245\) 3.09231e18 0.238207
\(246\) 0 0
\(247\) 0 0
\(248\) −1.53335e19 −1.07159
\(249\) 9.81273e18 0.664042
\(250\) 2.43700e18 0.159711
\(251\) 3.03686e19 1.92768 0.963841 0.266478i \(-0.0858600\pi\)
0.963841 + 0.266478i \(0.0858600\pi\)
\(252\) 3.24179e19 1.99334
\(253\) 0 0
\(254\) 3.23782e19 1.86889
\(255\) 0 0
\(256\) 1.84467e19 1.00000
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1.91478e19 0.889192
\(262\) −3.36475e19 −1.51545
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 3.80398e19 1.61216
\(265\) 2.97556e18 0.122349
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.36296e19 −0.861863 −0.430932 0.902385i \(-0.641815\pi\)
−0.430932 + 0.902385i \(0.641815\pi\)
\(270\) 2.26262e18 0.0801126
\(271\) 3.80597e19 1.30831 0.654155 0.756360i \(-0.273024\pi\)
0.654155 + 0.756360i \(0.273024\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.23929e19 −1.60181
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 3.93425e19 1.07159
\(280\) −6.03318e18 −0.159692
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −4.73304e19 −1.00000
\(289\) 4.86612e19 1.00000
\(290\) −3.56353e18 −0.0712355
\(291\) 5.81388e18 0.113063
\(292\) −9.94660e19 −1.88197
\(293\) −9.37074e19 −1.72517 −0.862587 0.505909i \(-0.831157\pi\)
−0.862587 + 0.505909i \(0.831157\pi\)
\(294\) 1.65971e20 2.97340
\(295\) −7.15280e18 −0.124710
\(296\) 0 0
\(297\) −9.76020e19 −1.61216
\(298\) −3.52201e19 −0.566318
\(299\) 0 0
\(300\) 6.51889e19 0.993582
\(301\) 0 0
\(302\) −3.65502e19 −0.528244
\(303\) −1.32465e20 −1.86449
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 2.60252e20 3.21357
\(309\) −1.53838e20 −1.85095
\(310\) −7.32188e18 −0.0858478
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −4.07844e19 −0.442731 −0.221365 0.975191i \(-0.571051\pi\)
−0.221365 + 0.975191i \(0.571051\pi\)
\(314\) 0 0
\(315\) 1.54798e19 0.159692
\(316\) −1.97053e20 −1.98192
\(317\) 5.51061e19 0.540412 0.270206 0.962802i \(-0.412908\pi\)
0.270206 + 0.962802i \(0.412908\pi\)
\(318\) 1.59705e20 1.52722
\(319\) 1.53719e20 1.43352
\(320\) 8.80848e18 0.0801126
\(321\) −2.22329e20 −1.97222
\(322\) 0 0
\(323\) 0 0
\(324\) 1.21440e20 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 1.81643e19 0.129154
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −9.80167e19 −0.664042
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −3.23814e20 −1.99334
\(337\) −2.18229e20 −1.31182 −0.655910 0.754839i \(-0.727715\pi\)
−0.655910 + 0.754839i \(0.727715\pi\)
\(338\) −1.70347e20 −1.00000
\(339\) 0 0
\(340\) 0 0
\(341\) 3.15842e20 1.72757
\(342\) 0 0
\(343\) 7.53614e20 3.93365
\(344\) 0 0
\(345\) 0 0
\(346\) 1.98412e20 0.965959
\(347\) −1.41820e20 −0.674686 −0.337343 0.941382i \(-0.609528\pi\)
−0.337343 + 0.941382i \(0.609528\pi\)
\(348\) −1.91262e20 −0.889192
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 4.45994e20 1.98055
\(351\) 0 0
\(352\) −3.79969e20 −1.61216
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) −3.83906e20 −1.55668
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 4.12183e20 1.52766
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) −2.26007e19 −0.0801126
\(361\) 2.88441e20 1.00000
\(362\) 0 0
\(363\) −4.82074e20 −1.59905
\(364\) 0 0
\(365\) −4.74959e19 −0.150769
\(366\) 0 0
\(367\) −3.04303e20 −0.924652 −0.462326 0.886710i \(-0.652985\pi\)
−0.462326 + 0.886710i \(0.652985\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.09263e21 3.04426
\(372\) −3.92981e20 −1.07159
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 6.24576e19 0.159711
\(376\) 0 0
\(377\) 0 0
\(378\) 8.30836e20 1.99334
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 8.29818e20 1.86889
\(382\) 0 0
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 4.72770e20 1.00000
\(385\) 1.24272e20 0.257448
\(386\) −8.56845e20 −1.73862
\(387\) 0 0
\(388\) −5.80733e19 −0.113063
\(389\) 4.11152e20 0.784161 0.392081 0.919931i \(-0.371755\pi\)
0.392081 + 0.919931i \(0.371755\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.65784e21 −2.97340
\(393\) −8.62348e20 −1.51545
\(394\) −6.49808e20 −1.11896
\(395\) −9.40943e19 −0.158777
\(396\) 9.74919e20 1.61216
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 5.52004e20 0.876754
\(399\) 0 0
\(400\) −6.51154e20 −0.993582
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 1.32316e21 1.86449
\(405\) 5.79884e19 0.0801126
\(406\) −1.30853e21 −1.77246
\(407\) 0 0
\(408\) 0 0
\(409\) −1.02698e21 −1.31153 −0.655764 0.754966i \(-0.727653\pi\)
−0.655764 + 0.754966i \(0.727653\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.53665e21 1.85095
\(413\) −2.62652e21 −3.10299
\(414\) 0 0
\(415\) −4.68038e19 −0.0531981
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.08198e21 1.13896 0.569481 0.822005i \(-0.307144\pi\)
0.569481 + 0.822005i \(0.307144\pi\)
\(420\) −1.54624e20 −0.159692
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −1.59524e21 −1.52722
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 2.22078e21 1.97222
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −1.21303e21 −1.00000
\(433\) 1.73285e21 1.40236 0.701179 0.712985i \(-0.252657\pi\)
0.701179 + 0.712985i \(0.252657\pi\)
\(434\) −2.68860e21 −2.13604
\(435\) −9.13294e19 −0.0712355
\(436\) 0 0
\(437\) 0 0
\(438\) −2.54921e21 −1.88197
\(439\) −2.33136e21 −1.69003 −0.845013 0.534746i \(-0.820407\pi\)
−0.845013 + 0.534746i \(0.820407\pi\)
\(440\) −1.81438e20 −0.129154
\(441\) 4.25365e21 2.97340
\(442\) 0 0
\(443\) −2.11369e21 −1.42499 −0.712495 0.701677i \(-0.752435\pi\)
−0.712495 + 0.701677i \(0.752435\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.15514e21 0.737826
\(447\) −9.02652e20 −0.566318
\(448\) 3.23449e21 1.99334
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 1.67072e21 0.993582
\(451\) 0 0
\(452\) 0 0
\(453\) −9.36742e20 −0.528244
\(454\) 2.87498e21 1.59290
\(455\) 0 0
\(456\) 0 0
\(457\) 8.90237e20 0.467925 0.233962 0.972246i \(-0.424831\pi\)
0.233962 + 0.972246i \(0.424831\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.57894e20 −0.371536 −0.185768 0.982594i \(-0.559477\pi\)
−0.185768 + 0.982594i \(0.559477\pi\)
\(462\) 6.66997e21 3.21357
\(463\) −2.44084e21 −1.15583 −0.577913 0.816099i \(-0.696133\pi\)
−0.577913 + 0.816099i \(0.696133\pi\)
\(464\) 1.91047e21 0.889192
\(465\) −1.87652e20 −0.0858478
\(466\) 0 0
\(467\) −4.30300e21 −1.90211 −0.951057 0.309016i \(-0.900000\pi\)
−0.951057 + 0.309016i \(0.900000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 3.83473e21 1.55668
\(473\) 0 0
\(474\) −5.05024e21 −1.98192
\(475\) 0 0
\(476\) 0 0
\(477\) 4.09305e21 1.52722
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 2.25752e20 0.0801126
\(481\) 0 0
\(482\) −2.96754e21 −1.01864
\(483\) 0 0
\(484\) 4.81530e21 1.59905
\(485\) −2.77305e19 −0.00905781
\(486\) 3.11236e21 1.00000
\(487\) 4.73529e21 1.49663 0.748315 0.663343i \(-0.230863\pi\)
0.748315 + 0.663343i \(0.230863\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −7.91631e20 −0.238207
\(491\) 4.45358e21 1.31843 0.659216 0.751954i \(-0.270888\pi\)
0.659216 + 0.751954i \(0.270888\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 4.65532e20 0.129154
\(496\) 3.92538e21 1.07159
\(497\) 0 0
\(498\) −2.51206e21 −0.664042
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) −6.23872e20 −0.159711
\(501\) 0 0
\(502\) −7.77437e21 −1.92768
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −8.29899e21 −1.99334
\(505\) 6.31818e20 0.149369
\(506\) 0 0
\(507\) −4.36580e21 −1.00000
\(508\) −8.28882e21 −1.86889
\(509\) −4.84132e21 −1.07454 −0.537269 0.843411i \(-0.680544\pi\)
−0.537269 + 0.843411i \(0.680544\pi\)
\(510\) 0 0
\(511\) −1.74406e22 −3.75140
\(512\) −4.72237e21 −1.00000
\(513\) 0 0
\(514\) 0 0
\(515\) 7.33761e20 0.148285
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 5.08508e21 0.965959
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) −4.90184e21 −0.889192
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 8.61376e21 1.51545
\(525\) 1.14303e22 1.98055
\(526\) 0 0
\(527\) 0 0
\(528\) −9.73819e21 −1.61216
\(529\) 6.13261e21 1.00000
\(530\) −7.61743e20 −0.122349
\(531\) −9.83909e21 −1.55668
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.06044e21 0.158000
\(536\) 0 0
\(537\) 1.05638e22 1.52766
\(538\) 6.04918e21 0.861863
\(539\) 3.41484e22 4.79358
\(540\) −5.79230e20 −0.0801126
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) −9.74328e21 −1.30831
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.34126e22 1.60181
\(551\) 0 0
\(552\) 0 0
\(553\) −3.45516e22 −3.95063
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.88197e21 −0.311063 −0.155531 0.987831i \(-0.549709\pi\)
−0.155531 + 0.987831i \(0.549709\pi\)
\(558\) −1.00717e22 −1.07159
\(559\) 0 0
\(560\) 1.54449e21 0.159692
\(561\) 0 0
\(562\) 0 0
\(563\) 1.41837e22 1.40515 0.702575 0.711610i \(-0.252033\pi\)
0.702575 + 0.711610i \(0.252033\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.12934e22 1.99334
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.21166e22 1.00000
\(577\) −1.09391e22 −0.890381 −0.445191 0.895436i \(-0.646864\pi\)
−0.445191 + 0.895436i \(0.646864\pi\)
\(578\) −1.24573e22 −1.00000
\(579\) −2.19600e22 −1.73862
\(580\) 9.12264e20 0.0712355
\(581\) −1.71864e22 −1.32366
\(582\) −1.48835e21 −0.113063
\(583\) 3.28591e22 2.46211
\(584\) 2.54633e22 1.88197
\(585\) 0 0
\(586\) 2.39891e22 1.72517
\(587\) −2.55710e22 −1.81403 −0.907013 0.421103i \(-0.861643\pi\)
−0.907013 + 0.421103i \(0.861643\pi\)
\(588\) −4.24886e22 −2.97340
\(589\) 0 0
\(590\) 1.83112e21 0.124710
\(591\) −1.66539e22 −1.11896
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 2.49861e22 1.61216
\(595\) 0 0
\(596\) 9.01634e21 0.566318
\(597\) 1.41473e22 0.876754
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) −1.66884e22 −0.993582
\(601\) 2.70424e22 1.58873 0.794365 0.607441i \(-0.207804\pi\)
0.794365 + 0.607441i \(0.207804\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 9.35685e21 0.528244
\(605\) 2.29935e21 0.128104
\(606\) 3.39110e22 1.86449
\(607\) 1.59927e22 0.867783 0.433892 0.900965i \(-0.357140\pi\)
0.433892 + 0.900965i \(0.357140\pi\)
\(608\) 0 0
\(609\) −3.35363e22 −1.77246
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −6.66245e22 −3.21357
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 3.93825e22 1.85095
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 1.87440e21 0.0858478
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.28357e22 0.980787
\(626\) 1.04408e22 0.442731
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) −3.96284e21 −0.159692
\(631\) 4.07681e20 0.0162213 0.00811066 0.999967i \(-0.497418\pi\)
0.00811066 + 0.999967i \(0.497418\pi\)
\(632\) 5.04455e22 1.98192
\(633\) 0 0
\(634\) −1.41071e22 −0.540412
\(635\) −3.95798e21 −0.149721
\(636\) −4.08844e22 −1.52722
\(637\) 0 0
\(638\) −3.93521e22 −1.43352
\(639\) 0 0
\(640\) −2.25497e21 −0.0801126
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 5.69162e22 1.97222
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −3.10885e22 −1.00000
\(649\) −7.89884e22 −2.50961
\(650\) 0 0
\(651\) −6.89060e22 −2.13604
\(652\) 0 0
\(653\) −4.83257e22 −1.46175 −0.730875 0.682511i \(-0.760888\pi\)
−0.730875 + 0.682511i \(0.760888\pi\)
\(654\) 0 0
\(655\) 4.11314e21 0.121407
\(656\) 0 0
\(657\) −6.53334e22 −1.88197
\(658\) 0 0
\(659\) 1.16326e21 0.0327035 0.0163518 0.999866i \(-0.494795\pi\)
0.0163518 + 0.999866i \(0.494795\pi\)
\(660\) −4.65007e21 −0.129154
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 2.50923e22 0.664042
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 2.96049e22 0.737826
\(670\) 0 0
\(671\) 0 0
\(672\) 8.28963e22 1.99334
\(673\) 3.56786e22 0.847787 0.423894 0.905712i \(-0.360663\pi\)
0.423894 + 0.905712i \(0.360663\pi\)
\(674\) 5.58667e22 1.31182
\(675\) 4.28187e22 0.993582
\(676\) 4.36087e22 1.00000
\(677\) −5.69044e22 −1.28954 −0.644772 0.764375i \(-0.723048\pi\)
−0.644772 + 0.764375i \(0.723048\pi\)
\(678\) 0 0
\(679\) −1.01827e22 −0.225374
\(680\) 0 0
\(681\) 7.36825e22 1.59290
\(682\) −8.08555e22 −1.72757
\(683\) 1.54844e22 0.326986 0.163493 0.986545i \(-0.447724\pi\)
0.163493 + 0.986545i \(0.447724\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.92925e23 −3.93365
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) −5.07934e22 −0.965959
\(693\) 1.70944e23 3.21357
\(694\) 3.63059e22 0.674686
\(695\) 0 0
\(696\) 4.89632e22 0.889192
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.14175e23 −1.98055
\(701\) −1.11904e23 −1.91912 −0.959558 0.281510i \(-0.909165\pi\)
−0.959558 + 0.281510i \(0.909165\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 9.72721e22 1.61216
\(705\) 0 0
\(706\) 0 0
\(707\) 2.32005e23 3.71656
\(708\) 9.82799e22 1.55668
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) −1.29432e23 −1.98192
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −1.05519e23 −1.52766
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 5.78577e21 0.0801126
\(721\) 2.69438e23 3.68958
\(722\) −7.38410e22 −1.00000
\(723\) −7.60549e22 −1.01864
\(724\) 0 0
\(725\) −6.74378e22 −0.883485
\(726\) 1.23411e23 1.59905
\(727\) 1.29372e23 1.65793 0.828964 0.559302i \(-0.188931\pi\)
0.828964 + 0.559302i \(0.188931\pi\)
\(728\) 0 0
\(729\) 7.97664e22 1.00000
\(730\) 1.21589e22 0.150769
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 7.79017e22 0.924652
\(735\) −2.02886e22 −0.238207
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −2.79713e23 −3.04426
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 1.00603e23 1.07159
\(745\) 4.30538e21 0.0453692
\(746\) 0 0
\(747\) −6.43813e22 −0.664042
\(748\) 0 0
\(749\) 3.89396e23 3.93130
\(750\) −1.59891e22 −0.159711
\(751\) −1.98097e23 −1.95775 −0.978876 0.204455i \(-0.934458\pi\)
−0.978876 + 0.204455i \(0.934458\pi\)
\(752\) 0 0
\(753\) −1.99249e23 −1.92768
\(754\) 0 0
\(755\) 4.46798e21 0.0423190
\(756\) −2.12694e23 −1.99334
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) −2.12433e23 −1.86889
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −1.21029e23 −1.00000
\(769\) 1.15450e22 0.0944023 0.0472011 0.998885i \(-0.484970\pi\)
0.0472011 + 0.998885i \(0.484970\pi\)
\(770\) −3.18138e22 −0.257448
\(771\) 0 0
\(772\) 2.19352e23 1.73862
\(773\) −2.28634e23 −1.79351 −0.896756 0.442526i \(-0.854083\pi\)
−0.896756 + 0.442526i \(0.854083\pi\)
\(774\) 0 0
\(775\) −1.38562e23 −1.06471
\(776\) 1.48668e22 0.113063
\(777\) 0 0
\(778\) −1.05255e23 −0.784161
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −1.25629e23 −0.889192
\(784\) 4.24406e23 2.97340
\(785\) 0 0
\(786\) 2.20761e23 1.51545
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 1.66351e23 1.11896
\(789\) 0 0
\(790\) 2.40881e22 0.158777
\(791\) 0 0
\(792\) −2.49579e23 −1.61216
\(793\) 0 0
\(794\) 0 0
\(795\) −1.95226e22 −0.122349
\(796\) −1.41313e23 −0.876754
\(797\) −8.88055e22 −0.545473 −0.272736 0.962089i \(-0.587929\pi\)
−0.272736 + 0.962089i \(0.587929\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 1.66695e23 0.993582
\(801\) 0 0
\(802\) 0 0
\(803\) −5.24497e23 −3.03402
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.55034e23 0.861863
\(808\) −3.38728e23 −1.86449
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) −1.48450e22 −0.0801126
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 3.34985e23 1.77246
\(813\) −2.49710e23 −1.30831
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 2.62908e23 1.31153
\(819\) 0 0
\(820\) 0 0
\(821\) 4.02807e23 1.95142 0.975712 0.219057i \(-0.0702980\pi\)
0.975712 + 0.219057i \(0.0702980\pi\)
\(822\) 0 0
\(823\) −2.85629e23 −1.35707 −0.678536 0.734567i \(-0.737385\pi\)
−0.678536 + 0.734567i \(0.737385\pi\)
\(824\) −3.93381e23 −1.85095
\(825\) 3.43750e23 1.60181
\(826\) 6.72389e23 3.10299
\(827\) 4.25608e23 1.94521 0.972603 0.232473i \(-0.0746816\pi\)
0.972603 + 0.232473i \(0.0746816\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 1.19818e22 0.0531981
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.58126e23 −1.07159
\(838\) −2.76988e23 −1.13896
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 3.95837e22 0.159692
\(841\) −5.23861e22 −0.209338
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.08235e22 0.0801126
\(846\) 0 0
\(847\) 8.44324e23 3.18744
\(848\) 4.08383e23 1.52722
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −5.68520e23 −1.97222
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 3.10535e23 1.00000
\(865\) −2.42543e22 −0.0773855
\(866\) −4.43611e23 −1.40236
\(867\) −3.19266e23 −1.00000
\(868\) 6.88283e23 2.13604
\(869\) −1.03908e24 −3.19516
\(870\) 2.33803e22 0.0712355
\(871\) 0 0
\(872\) 0 0
\(873\) −3.81449e22 −0.113063
\(874\) 0 0
\(875\) −1.09391e23 −0.318358
\(876\) 6.52597e23 1.88197
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 5.96828e23 1.69003
\(879\) 6.14814e23 1.72517
\(880\) 4.64482e22 0.129154
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −1.08894e24 −2.97340
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 4.69295e22 0.124710
\(886\) 5.41105e23 1.42499
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −1.45338e24 −3.72533
\(890\) 0 0
\(891\) 6.40366e23 1.61216
\(892\) −2.95715e23 −0.737826
\(893\) 0 0
\(894\) 2.31079e23 0.566318
\(895\) −5.03861e22 −0.122385
\(896\) −8.28028e23 −1.99334
\(897\) 0 0
\(898\) 0 0
\(899\) 4.06538e23 0.952847
\(900\) −4.27704e23 −0.993582
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 2.39806e23 0.528244
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −7.35994e23 −1.59290
\(909\) 8.69103e23 1.86449
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) −5.16855e23 −1.07054
\(914\) −2.27901e23 −0.467925
\(915\) 0 0
\(916\) 0 0
\(917\) 1.51035e24 3.02081
\(918\) 0 0
\(919\) −9.98466e23 −1.96250 −0.981249 0.192743i \(-0.938262\pi\)
−0.981249 + 0.192743i \(0.938262\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.94021e23 0.371536
\(923\) 0 0
\(924\) −1.70751e24 −3.21357
\(925\) 0 0
\(926\) 6.24856e23 1.15583
\(927\) 1.00933e24 1.85095
\(928\) −4.89079e23 −0.889192
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 4.80388e22 0.0858478
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 1.10157e24 1.90211
\(935\) 0 0
\(936\) 0 0
\(937\) 5.70484e23 0.960122 0.480061 0.877235i \(-0.340614\pi\)
0.480061 + 0.877235i \(0.340614\pi\)
\(938\) 0 0
\(939\) 2.67587e23 0.442731
\(940\) 0 0
\(941\) 3.31911e23 0.539889 0.269944 0.962876i \(-0.412995\pi\)
0.269944 + 0.962876i \(0.412995\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −9.81691e23 −1.55668
\(945\) −1.01563e23 −0.159692
\(946\) 0 0
\(947\) −1.26885e24 −1.96159 −0.980797 0.195032i \(-0.937519\pi\)
−0.980797 + 0.195032i \(0.937519\pi\)
\(948\) 1.29286e24 1.98192
\(949\) 0 0
\(950\) 0 0
\(951\) −3.61551e23 −0.540412
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) −1.04782e24 −1.52722
\(955\) 0 0
\(956\) 0 0
\(957\) −1.00855e24 −1.43352
\(958\) 0 0
\(959\) 0 0
\(960\) −5.77924e22 −0.0801126
\(961\) 1.07878e23 0.148301
\(962\) 0 0
\(963\) 1.45870e24 1.97222
\(964\) 7.59691e23 1.01864
\(965\) 1.04743e23 0.139285
\(966\) 0 0
\(967\) 4.65255e23 0.608526 0.304263 0.952588i \(-0.401590\pi\)
0.304263 + 0.952588i \(0.401590\pi\)
\(968\) −1.23272e24 −1.59905
\(969\) 0 0
\(970\) 7.09900e21 0.00905781
\(971\) −9.95001e23 −1.25913 −0.629563 0.776949i \(-0.716766\pi\)
−0.629563 + 0.776949i \(0.716766\pi\)
\(972\) −7.96765e23 −1.00000
\(973\) 0 0
\(974\) −1.21223e24 −1.49663
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 2.02658e23 0.238207
\(981\) 0 0
\(982\) −1.14012e24 −1.31843
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 7.94339e22 0.0896430
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −1.19176e23 −0.129154
\(991\) 1.84911e24 1.98781 0.993904 0.110245i \(-0.0351635\pi\)
0.993904 + 0.110245i \(0.0351635\pi\)
\(992\) −1.00490e24 −1.07159
\(993\) 0 0
\(994\) 0 0
\(995\) −6.74782e22 −0.0702390
\(996\) 6.43087e23 0.664042
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 24.17.h.a.5.1 1
3.2 odd 2 24.17.h.b.5.1 yes 1
4.3 odd 2 96.17.h.b.17.1 1
8.3 odd 2 96.17.h.a.17.1 1
8.5 even 2 24.17.h.b.5.1 yes 1
12.11 even 2 96.17.h.a.17.1 1
24.5 odd 2 CM 24.17.h.a.5.1 1
24.11 even 2 96.17.h.b.17.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
24.17.h.a.5.1 1 1.1 even 1 trivial
24.17.h.a.5.1 1 24.5 odd 2 CM
24.17.h.b.5.1 yes 1 3.2 odd 2
24.17.h.b.5.1 yes 1 8.5 even 2
96.17.h.a.17.1 1 8.3 odd 2
96.17.h.a.17.1 1 12.11 even 2
96.17.h.b.17.1 1 4.3 odd 2
96.17.h.b.17.1 1 24.11 even 2