Properties

Label 24.13
Level 24
Weight 13
Dimension 82
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 416
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 24 = 2^{3} \cdot 3 \)
Weight: \( k \) = \( 13 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(416\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{13}(\Gamma_1(24))\).

Total New Old
Modular forms 204 86 118
Cusp forms 180 82 98
Eisenstein series 24 4 20

Trace form

\( 82 q + 90 q^{2} - 460 q^{3} - 3308 q^{4} + 80482 q^{6} - 198844 q^{7} - 308340 q^{8} + 4091954 q^{9} - 1326412 q^{10} + 5336640 q^{11} - 5856800 q^{12} - 3855720 q^{13} - 4099932 q^{14} - 5824068 q^{15}+ \cdots + 192147032320 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{13}^{\mathrm{new}}(\Gamma_1(24))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
24.13.b \(\chi_{24}(19, \cdot)\) 24.13.b.a 24 1
24.13.e \(\chi_{24}(17, \cdot)\) 24.13.e.a 12 1
24.13.g \(\chi_{24}(7, \cdot)\) None 0 1
24.13.h \(\chi_{24}(5, \cdot)\) 24.13.h.a 1 1
24.13.h.b 1
24.13.h.c 44

Decomposition of \(S_{13}^{\mathrm{old}}(\Gamma_1(24))\) into lower level spaces

\( S_{13}^{\mathrm{old}}(\Gamma_1(24)) \cong \) \(S_{13}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{13}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{13}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{13}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{13}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{13}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{13}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 2}\)