Properties

Label 2394.4.a.s
Level $2394$
Weight $4$
Character orbit 2394.a
Self dual yes
Analytic conductor $141.251$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2394,4,Mod(1,2394)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2394.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2394, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2394 = 2 \cdot 3^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2394.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,0,16,-12,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.250572554\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 94x^{2} + 2x + 1632 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3 \)
Twist minimal: no (minimal twist has level 798)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + (\beta_1 - 3) q^{5} + 7 q^{7} + 8 q^{8} + (2 \beta_1 - 6) q^{10} + (\beta_{3} - 14) q^{11} + ( - 3 \beta_{2} - 2 \beta_1 - 13) q^{13} + 14 q^{14} + 16 q^{16} + (\beta_{3} - \beta_{2} + 3 \beta_1 - 26) q^{17}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 16 q^{4} - 12 q^{5} + 28 q^{7} + 32 q^{8} - 24 q^{10} - 54 q^{11} - 46 q^{13} + 56 q^{14} + 64 q^{16} - 100 q^{17} + 76 q^{19} - 48 q^{20} - 108 q^{22} - 274 q^{23} + 300 q^{25} - 92 q^{26}+ \cdots + 392 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 94x^{2} + 2x + 1632 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 6\nu^{2} - 52\nu + 171 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 12\nu^{2} + 34\nu - 450 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 3\beta _1 + 96 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} + 6\beta_{2} + 35\beta _1 + 143 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6.61955
−5.64838
4.44228
9.82565
2.00000 0 4.00000 −17.2391 0 7.00000 8.00000 0 −34.4782
1.2 2.00000 0 4.00000 −15.2968 0 7.00000 8.00000 0 −30.5935
1.3 2.00000 0 4.00000 4.88456 0 7.00000 8.00000 0 9.76913
1.4 2.00000 0 4.00000 15.6513 0 7.00000 8.00000 0 31.3026
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2394.4.a.s 4
3.b odd 2 1 798.4.a.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
798.4.a.l 4 3.b odd 2 1
2394.4.a.s 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2394))\):

\( T_{5}^{4} + 12T_{5}^{3} - 328T_{5}^{2} - 2928T_{5} + 20160 \) Copy content Toggle raw display
\( T_{11}^{4} + 54T_{11}^{3} - 2092T_{11}^{2} - 70104T_{11} + 1471968 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 12 T^{3} + \cdots + 20160 \) Copy content Toggle raw display
$7$ \( (T - 7)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 54 T^{3} + \cdots + 1471968 \) Copy content Toggle raw display
$13$ \( T^{4} + 46 T^{3} + \cdots + 21426720 \) Copy content Toggle raw display
$17$ \( T^{4} + 100 T^{3} + \cdots - 1254528 \) Copy content Toggle raw display
$19$ \( (T - 19)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 274 T^{3} + \cdots + 10091520 \) Copy content Toggle raw display
$29$ \( T^{4} - 214 T^{3} + \cdots + 171999072 \) Copy content Toggle raw display
$31$ \( T^{4} - 228 T^{3} + \cdots - 21174272 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 16893135184 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 1194859152 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 5099307008 \) Copy content Toggle raw display
$47$ \( T^{4} - 506 T^{3} + \cdots - 33188832 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 8354809152 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 10368781056 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 2128970256 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 8139548928 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 19071884160 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 148034992848 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 71154034176 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 23299504128 \) Copy content Toggle raw display
$89$ \( T^{4} - 1316 T^{3} + \cdots - 344802960 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 28102895808 \) Copy content Toggle raw display
show more
show less