Properties

Label 2380.2.q
Level $2380$
Weight $2$
Character orbit 2380.q
Rep. character $\chi_{2380}(681,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $88$
Newform subspaces $8$
Sturm bound $864$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(864\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2380, [\chi])\).

Total New Old
Modular forms 888 88 800
Cusp forms 840 88 752
Eisenstein series 48 0 48

Trace form

\( 88 q - 4 q^{3} - 4 q^{5} - 12 q^{7} - 44 q^{9} + 4 q^{11} - 8 q^{17} + 16 q^{19} + 4 q^{21} - 44 q^{25} + 32 q^{27} - 8 q^{29} + 12 q^{31} + 8 q^{33} - 4 q^{35} + 16 q^{37} + 20 q^{39} - 16 q^{41} - 56 q^{43}+ \cdots + 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2380, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2380.2.q.a 2380.q 7.c $2$ $19.004$ \(\Q(\sqrt{-3}) \) None 2380.2.q.a \(0\) \(-1\) \(-1\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}-\zeta_{6}q^{5}+(2-3\zeta_{6})q^{7}+\cdots\)
2380.2.q.b 2380.q 7.c $2$ $19.004$ \(\Q(\sqrt{-3}) \) None 2380.2.q.b \(0\) \(-1\) \(1\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{3}+\zeta_{6}q^{5}+(2+\zeta_{6})q^{7}+\cdots\)
2380.2.q.c 2380.q 7.c $4$ $19.004$ \(\Q(\sqrt{-3}, \sqrt{-7})\) None 2380.2.q.c \(0\) \(-1\) \(2\) \(-10\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{3}-\beta _{1}q^{5}+(-3-\beta _{1})q^{7}+(2\beta _{1}+\cdots)q^{9}+\cdots\)
2380.2.q.d 2380.q 7.c $4$ $19.004$ \(\Q(\sqrt{-3}, \sqrt{5})\) None 2380.2.q.d \(0\) \(1\) \(2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{3}-\beta _{3}q^{5}+(-1-3\beta _{3})q^{7}+\cdots\)
2380.2.q.e 2380.q 7.c $6$ $19.004$ 6.0.2101707.2 None 2380.2.q.e \(0\) \(0\) \(3\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{2}+\beta _{4})q^{3}+\beta _{3}q^{5}+(1-3\beta _{3}+\cdots)q^{7}+\cdots\)
2380.2.q.f 2380.q 7.c $18$ $19.004$ \(\mathbb{Q}[x]/(x^{18} + \cdots)\) None 2380.2.q.f \(0\) \(0\) \(-9\) \(-3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{4})q^{3}-\beta _{5}q^{5}-\beta _{6}q^{7}+\cdots\)
2380.2.q.g 2380.q 7.c $24$ $19.004$ None 2380.2.q.g \(0\) \(-1\) \(12\) \(-4\) $\mathrm{SU}(2)[C_{3}]$
2380.2.q.h 2380.q 7.c $28$ $19.004$ None 2380.2.q.h \(0\) \(-1\) \(-14\) \(0\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(2380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(595, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1190, [\chi])\)\(^{\oplus 2}\)