Properties

Label 2380.2.l
Level $2380$
Weight $2$
Character orbit 2380.l
Rep. character $\chi_{2380}(2211,\cdot)$
Character field $\Q$
Dimension $256$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.l (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2380, [\chi])\).

Total New Old
Modular forms 440 256 184
Cusp forms 424 256 168
Eisenstein series 16 0 16

Trace form

\( 256 q + 4 q^{2} - 4 q^{4} + 4 q^{8} + 256 q^{9} - 20 q^{16} + 20 q^{18} + 24 q^{21} - 16 q^{22} - 256 q^{25} + 16 q^{29} + 4 q^{32} + 60 q^{36} + 64 q^{37} + 4 q^{42} + 88 q^{44} - 16 q^{46} - 56 q^{49}+ \cdots - 80 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 2}\)