Defining parameters
Level: | \( N \) | \(=\) | \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2380.ey (of order \(48\) and degree \(16\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 595 \) |
Character field: | \(\Q(\zeta_{48})\) | ||
Sturm bound: | \(864\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2380, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7104 | 1152 | 5952 |
Cusp forms | 6720 | 1152 | 5568 |
Eisenstein series | 384 | 0 | 384 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2380, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2380, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(595, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1190, [\chi])\)\(^{\oplus 2}\)