Properties

Label 2380.2.ey
Level $2380$
Weight $2$
Character orbit 2380.ey
Rep. character $\chi_{2380}(177,\cdot)$
Character field $\Q(\zeta_{48})$
Dimension $1152$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.ey (of order \(48\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 595 \)
Character field: \(\Q(\zeta_{48})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2380, [\chi])\).

Total New Old
Modular forms 7104 1152 5952
Cusp forms 6720 1152 5568
Eisenstein series 384 0 384

Trace form

\( 1152 q - 48 q^{15} + 8 q^{25} + 96 q^{27} - 32 q^{37} + 64 q^{53} - 32 q^{55} + 16 q^{59} + 48 q^{63} + 32 q^{71} - 40 q^{73} + 112 q^{75} - 16 q^{77} + 48 q^{81} + 32 q^{83} - 48 q^{85} - 48 q^{87} - 24 q^{93}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(595, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1190, [\chi])\)\(^{\oplus 2}\)