Properties

Label 2380.2.eb
Level $2380$
Weight $2$
Character orbit 2380.eb
Rep. character $\chi_{2380}(99,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $2592$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.eb (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 340 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2380, [\chi])\).

Total New Old
Modular forms 3520 2592 928
Cusp forms 3392 2592 800
Eisenstein series 128 0 128

Trace form

\( 2592 q + 32 q^{24} + 128 q^{34} - 128 q^{36} - 32 q^{46} - 208 q^{60} + 208 q^{65} - 112 q^{80} + 16 q^{85} + 160 q^{86} - 240 q^{90} + 608 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)