Properties

Label 2380.2.dz
Level 23802380
Weight 22
Character orbit 2380.dz
Rep. character χ2380(71,)\chi_{2380}(71,\cdot)
Character field Q(ζ16)\Q(\zeta_{16})
Dimension 17281728
Sturm bound 864864

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 2380=225717 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2380.dz (of order 1616 and degree 88)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 68 68
Character field: Q(ζ16)\Q(\zeta_{16})
Sturm bound: 864864

Dimensions

The following table gives the dimensions of various subspaces of M2(2380,[χ])M_{2}(2380, [\chi]).

Total New Old
Modular forms 3520 1728 1792
Cusp forms 3392 1728 1664
Eisenstein series 128 0 128

Trace form

1728q+32q24+160q32+128q34+128q36+160q38+32q46+320q57192q64416q66416q72192q74+320q81+256q88+224q92+O(q100) 1728 q + 32 q^{24} + 160 q^{32} + 128 q^{34} + 128 q^{36} + 160 q^{38} + 32 q^{46} + 320 q^{57} - 192 q^{64} - 416 q^{66} - 416 q^{72} - 192 q^{74} + 320 q^{81} + 256 q^{88} + 224 q^{92}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(2380,[χ])S_{2}^{\mathrm{new}}(2380, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(2380,[χ])S_{2}^{\mathrm{old}}(2380, [\chi]) into lower level spaces

S2old(2380,[χ]) S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq S2new(68,[χ])S_{2}^{\mathrm{new}}(68, [\chi])4^{\oplus 4}\oplusS2new(340,[χ])S_{2}^{\mathrm{new}}(340, [\chi])2^{\oplus 2}\oplusS2new(476,[χ])S_{2}^{\mathrm{new}}(476, [\chi])2^{\oplus 2}