Properties

Label 2380.2.dz
Level $2380$
Weight $2$
Character orbit 2380.dz
Rep. character $\chi_{2380}(71,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $1728$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.dz (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 68 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2380, [\chi])\).

Total New Old
Modular forms 3520 1728 1792
Cusp forms 3392 1728 1664
Eisenstein series 128 0 128

Trace form

\( 1728 q + 32 q^{24} + 160 q^{32} + 128 q^{34} + 128 q^{36} + 160 q^{38} + 32 q^{46} + 320 q^{57} - 192 q^{64} - 416 q^{66} - 416 q^{72} - 192 q^{74} + 320 q^{81} + 256 q^{88} + 224 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(476, [\chi])\)\(^{\oplus 2}\)