Properties

Label 2380.2.du
Level $2380$
Weight $2$
Character orbit 2380.du
Rep. character $\chi_{2380}(57,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $432$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.du (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2380, [\chi])\).

Total New Old
Modular forms 3552 432 3120
Cusp forms 3360 432 2928
Eisenstein series 192 0 192

Trace form

\( 432 q + 64 q^{31} - 32 q^{33} - 32 q^{37} + 64 q^{39} + 80 q^{41} - 160 q^{47} + 16 q^{53} - 16 q^{57} - 192 q^{59} + 64 q^{67} - 96 q^{73} + 64 q^{75} + 32 q^{77} + 32 q^{79} + 48 q^{81} + 48 q^{83} + 32 q^{85}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(595, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1190, [\chi])\)\(^{\oplus 2}\)