Properties

Label 2380.2.cy
Level $2380$
Weight $2$
Character orbit 2380.cy
Rep. character $\chi_{2380}(817,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $256$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.cy (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2380, [\chi])\).

Total New Old
Modular forms 1776 256 1520
Cusp forms 1680 256 1424
Eisenstein series 96 0 96

Trace form

\( 256 q - 8 q^{7} + 8 q^{11} + 16 q^{15} + 8 q^{21} + 24 q^{23} + 84 q^{33} + 24 q^{35} + 12 q^{37} + 96 q^{45} - 12 q^{53} - 32 q^{57} - 120 q^{61} - 44 q^{63} - 52 q^{65} - 96 q^{75} - 8 q^{77} + 112 q^{81}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(595, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1190, [\chi])\)\(^{\oplus 2}\)