Defining parameters
Level: | \( N \) | \(=\) | \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2380.cs (of order \(8\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 85 \) |
Character field: | \(\Q(\zeta_{8})\) | ||
Sturm bound: | \(864\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2380, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1776 | 208 | 1568 |
Cusp forms | 1680 | 208 | 1472 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2380, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(2380, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(595, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1190, [\chi])\)\(^{\oplus 2}\)