Properties

Label 2380.2.cs
Level $2380$
Weight $2$
Character orbit 2380.cs
Rep. character $\chi_{2380}(729,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $208$
Sturm bound $864$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2380.cs (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(864\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2380, [\chi])\).

Total New Old
Modular forms 1776 208 1568
Cusp forms 1680 208 1472
Eisenstein series 96 0 96

Trace form

\( 208 q + 24 q^{25} + 48 q^{29} - 32 q^{31} + 56 q^{39} - 48 q^{41} + 40 q^{45} - 8 q^{51} - 128 q^{59} - 8 q^{65} + 32 q^{69} + 32 q^{75} + 48 q^{79} + 56 q^{85} + 24 q^{91} - 64 q^{95} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2380, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2380, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2380, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(595, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1190, [\chi])\)\(^{\oplus 2}\)