Properties

Label 2380.1.bi.c.1427.2
Level $2380$
Weight $1$
Character 2380.1427
Analytic conductor $1.188$
Analytic rank $0$
Dimension $16$
Projective image $D_{20}$
CM discriminant -119
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2380,1,Mod(1427,2380)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2380.1427"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2380, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2, 2])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 2380 = 2^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2380.bi (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.18777473007\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{40})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{20}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{20} - \cdots)\)

Embedding invariants

Embedding label 1427.2
Root \(0.156434 - 0.987688i\) of defining polynomial
Character \(\chi\) \(=\) 2380.1427
Dual form 2380.1.bi.c.1903.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.951057 - 0.309017i) q^{2} +(1.34500 + 1.34500i) q^{3} +(0.809017 + 0.587785i) q^{4} +(0.156434 + 0.987688i) q^{5} +(-0.863541 - 1.69480i) q^{6} +(0.707107 - 0.707107i) q^{7} +(-0.587785 - 0.809017i) q^{8} +2.61803i q^{9} +(0.156434 - 0.987688i) q^{10} +(0.297556 + 1.87869i) q^{12} +(-0.891007 + 0.453990i) q^{14} +(-1.11803 + 1.53884i) q^{15} +(0.309017 + 0.951057i) q^{16} +(-0.707107 - 0.707107i) q^{17} +(0.809017 - 2.48990i) q^{18} +(-0.453990 + 0.891007i) q^{20} +1.90211 q^{21} +(0.297556 - 1.87869i) q^{24} +(-0.951057 + 0.309017i) q^{25} +(-2.17625 + 2.17625i) q^{27} +(0.987688 - 0.156434i) q^{28} +(1.53884 - 1.11803i) q^{30} +0.312869i q^{31} -1.00000i q^{32} +(0.453990 + 0.891007i) q^{34} +(0.809017 + 0.587785i) q^{35} +(-1.53884 + 2.11803i) q^{36} +(0.707107 - 0.707107i) q^{40} -1.78201 q^{41} +(-1.80902 - 0.587785i) q^{42} +(1.26007 + 1.26007i) q^{43} +(-2.58580 + 0.409551i) q^{45} +(-0.863541 + 1.69480i) q^{48} -1.00000i q^{49} +1.00000 q^{50} -1.90211i q^{51} +(1.39680 - 1.39680i) q^{53} +(2.74224 - 1.39724i) q^{54} +(-0.987688 - 0.156434i) q^{56} +(-1.80902 + 0.587785i) q^{60} +0.907981 q^{61} +(0.0966818 - 0.297556i) q^{62} +(1.85123 + 1.85123i) q^{63} +(-0.309017 + 0.951057i) q^{64} +(-0.221232 + 0.221232i) q^{67} +(-0.156434 - 0.987688i) q^{68} +(-0.587785 - 0.809017i) q^{70} +(2.11803 - 1.53884i) q^{72} +(1.34500 - 1.34500i) q^{73} +(-1.69480 - 0.863541i) q^{75} +(-0.891007 + 0.453990i) q^{80} -3.23607 q^{81} +(1.69480 + 0.550672i) q^{82} +(1.53884 + 1.11803i) q^{84} +(0.587785 - 0.809017i) q^{85} +(-0.809017 - 1.58779i) q^{86} +(2.58580 + 0.409551i) q^{90} +(-0.420808 + 0.420808i) q^{93} +(1.34500 - 1.34500i) q^{96} +(-0.831254 - 0.831254i) q^{97} +(-0.309017 + 0.951057i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 4 q^{16} + 4 q^{18} + 4 q^{35} - 20 q^{42} - 4 q^{43} + 16 q^{50} + 4 q^{53} - 20 q^{60} + 4 q^{64} - 4 q^{67} + 16 q^{72} - 16 q^{81} - 4 q^{86} + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2380\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(1191\) \(1261\) \(1361\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.951057 0.309017i −0.951057 0.309017i
\(3\) 1.34500 + 1.34500i 1.34500 + 1.34500i 0.891007 + 0.453990i \(0.150000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(4\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(5\) 0.156434 + 0.987688i 0.156434 + 0.987688i
\(6\) −0.863541 1.69480i −0.863541 1.69480i
\(7\) 0.707107 0.707107i 0.707107 0.707107i
\(8\) −0.587785 0.809017i −0.587785 0.809017i
\(9\) 2.61803i 2.61803i
\(10\) 0.156434 0.987688i 0.156434 0.987688i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0.297556 + 1.87869i 0.297556 + 1.87869i
\(13\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) −0.891007 + 0.453990i −0.891007 + 0.453990i
\(15\) −1.11803 + 1.53884i −1.11803 + 1.53884i
\(16\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(17\) −0.707107 0.707107i −0.707107 0.707107i
\(18\) 0.809017 2.48990i 0.809017 2.48990i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) −0.453990 + 0.891007i −0.453990 + 0.891007i
\(21\) 1.90211 1.90211
\(22\) 0 0
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0.297556 1.87869i 0.297556 1.87869i
\(25\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(26\) 0 0
\(27\) −2.17625 + 2.17625i −2.17625 + 2.17625i
\(28\) 0.987688 0.156434i 0.987688 0.156434i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 1.53884 1.11803i 1.53884 1.11803i
\(31\) 0.312869i 0.312869i 0.987688 + 0.156434i \(0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(32\) 1.00000i 1.00000i
\(33\) 0 0
\(34\) 0.453990 + 0.891007i 0.453990 + 0.891007i
\(35\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(36\) −1.53884 + 2.11803i −1.53884 + 2.11803i
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0.707107 0.707107i 0.707107 0.707107i
\(41\) −1.78201 −1.78201 −0.891007 0.453990i \(-0.850000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(42\) −1.80902 0.587785i −1.80902 0.587785i
\(43\) 1.26007 + 1.26007i 1.26007 + 1.26007i 0.951057 + 0.309017i \(0.100000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(44\) 0 0
\(45\) −2.58580 + 0.409551i −2.58580 + 0.409551i
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) −0.863541 + 1.69480i −0.863541 + 1.69480i
\(49\) 1.00000i 1.00000i
\(50\) 1.00000 1.00000
\(51\) 1.90211i 1.90211i
\(52\) 0 0
\(53\) 1.39680 1.39680i 1.39680 1.39680i 0.587785 0.809017i \(-0.300000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(54\) 2.74224 1.39724i 2.74224 1.39724i
\(55\) 0 0
\(56\) −0.987688 0.156434i −0.987688 0.156434i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −1.80902 + 0.587785i −1.80902 + 0.587785i
\(61\) 0.907981 0.907981 0.453990 0.891007i \(-0.350000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(62\) 0.0966818 0.297556i 0.0966818 0.297556i
\(63\) 1.85123 + 1.85123i 1.85123 + 1.85123i
\(64\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(65\) 0 0
\(66\) 0 0
\(67\) −0.221232 + 0.221232i −0.221232 + 0.221232i −0.809017 0.587785i \(-0.800000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(68\) −0.156434 0.987688i −0.156434 0.987688i
\(69\) 0 0
\(70\) −0.587785 0.809017i −0.587785 0.809017i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 2.11803 1.53884i 2.11803 1.53884i
\(73\) 1.34500 1.34500i 1.34500 1.34500i 0.453990 0.891007i \(-0.350000\pi\)
0.891007 0.453990i \(-0.150000\pi\)
\(74\) 0 0
\(75\) −1.69480 0.863541i −1.69480 0.863541i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) −0.891007 + 0.453990i −0.891007 + 0.453990i
\(81\) −3.23607 −3.23607
\(82\) 1.69480 + 0.550672i 1.69480 + 0.550672i
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 1.53884 + 1.11803i 1.53884 + 1.11803i
\(85\) 0.587785 0.809017i 0.587785 0.809017i
\(86\) −0.809017 1.58779i −0.809017 1.58779i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 2.58580 + 0.409551i 2.58580 + 0.409551i
\(91\) 0 0
\(92\) 0 0
\(93\) −0.420808 + 0.420808i −0.420808 + 0.420808i
\(94\) 0 0
\(95\) 0 0
\(96\) 1.34500 1.34500i 1.34500 1.34500i
\(97\) −0.831254 0.831254i −0.831254 0.831254i 0.156434 0.987688i \(-0.450000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(98\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(99\) 0 0
\(100\) −0.951057 0.309017i −0.951057 0.309017i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −0.587785 + 1.80902i −0.587785 + 1.80902i
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 0 0
\(105\) 0.297556 + 1.87869i 0.297556 + 1.87869i
\(106\) −1.76007 + 0.896802i −1.76007 + 0.896802i
\(107\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) −3.03979 + 0.481456i −3.03979 + 0.481456i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(113\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.00000 −1.00000
\(120\) 1.90211 1.90211
\(121\) −1.00000 −1.00000
\(122\) −0.863541 0.280582i −0.863541 0.280582i
\(123\) −2.39680 2.39680i −2.39680 2.39680i
\(124\) −0.183900 + 0.253116i −0.183900 + 0.253116i
\(125\) −0.453990 0.891007i −0.453990 0.891007i
\(126\) −1.18856 2.33269i −1.18856 2.33269i
\(127\) 1.39680 1.39680i 1.39680 1.39680i 0.587785 0.809017i \(-0.300000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(128\) 0.587785 0.809017i 0.587785 0.809017i
\(129\) 3.38959i 3.38959i
\(130\) 0 0
\(131\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.278768 0.142040i 0.278768 0.142040i
\(135\) −2.48990 1.80902i −2.48990 1.80902i
\(136\) −0.156434 + 0.987688i −0.156434 + 0.987688i
\(137\) −0.642040 0.642040i −0.642040 0.642040i 0.309017 0.951057i \(-0.400000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(138\) 0 0
\(139\) −1.97538 −1.97538 −0.987688 0.156434i \(-0.950000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(140\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −2.48990 + 0.809017i −2.48990 + 0.809017i
\(145\) 0 0
\(146\) −1.69480 + 0.863541i −1.69480 + 0.863541i
\(147\) 1.34500 1.34500i 1.34500 1.34500i
\(148\) 0 0
\(149\) 0.618034i 0.618034i −0.951057 0.309017i \(-0.900000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(150\) 1.34500 + 1.34500i 1.34500 + 1.34500i
\(151\) 0.618034i 0.618034i −0.951057 0.309017i \(-0.900000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(152\) 0 0
\(153\) 1.85123 1.85123i 1.85123 1.85123i
\(154\) 0 0
\(155\) −0.309017 + 0.0489435i −0.309017 + 0.0489435i
\(156\) 0 0
\(157\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 3.75739 3.75739
\(160\) 0.987688 0.156434i 0.987688 0.156434i
\(161\) 0 0
\(162\) 3.07768 + 1.00000i 3.07768 + 1.00000i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) −1.44168 1.04744i −1.44168 1.04744i
\(165\) 0 0
\(166\) 0 0
\(167\) 0.437016 0.437016i 0.437016 0.437016i −0.453990 0.891007i \(-0.650000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(168\) −1.11803 1.53884i −1.11803 1.53884i
\(169\) 1.00000i 1.00000i
\(170\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(171\) 0 0
\(172\) 0.278768 + 1.76007i 0.278768 + 1.76007i
\(173\) −1.34500 + 1.34500i −1.34500 + 1.34500i −0.453990 + 0.891007i \(0.650000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(174\) 0 0
\(175\) −0.453990 + 0.891007i −0.453990 + 0.891007i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(180\) −2.33269 1.18856i −2.33269 1.18856i
\(181\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(182\) 0 0
\(183\) 1.22123 + 1.22123i 1.22123 + 1.22123i
\(184\) 0 0
\(185\) 0 0
\(186\) 0.530249 0.270175i 0.530249 0.270175i
\(187\) 0 0
\(188\) 0 0
\(189\) 3.07768i 3.07768i
\(190\) 0 0
\(191\) 1.61803i 1.61803i 0.587785 + 0.809017i \(0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(192\) −1.69480 + 0.863541i −1.69480 + 0.863541i
\(193\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 0.533698 + 1.04744i 0.533698 + 1.04744i
\(195\) 0 0
\(196\) 0.587785 0.809017i 0.587785 0.809017i
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) −0.907981 −0.907981 −0.453990 0.891007i \(-0.650000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(200\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(201\) −0.595112 −0.595112
\(202\) 0 0
\(203\) 0 0
\(204\) 1.11803 1.53884i 1.11803 1.53884i
\(205\) −0.278768 1.76007i −0.278768 1.76007i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0.297556 1.87869i 0.297556 1.87869i
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 1.95106 0.309017i 1.95106 0.309017i
\(213\) 0 0
\(214\) 0 0
\(215\) −1.04744 + 1.44168i −1.04744 + 1.44168i
\(216\) 3.03979 + 0.481456i 3.03979 + 0.481456i
\(217\) 0.221232 + 0.221232i 0.221232 + 0.221232i
\(218\) 0 0
\(219\) 3.61803 3.61803
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) −0.707107 0.707107i −0.707107 0.707107i
\(225\) −0.809017 2.48990i −0.809017 2.48990i
\(226\) 0 0
\(227\) 1.14412 1.14412i 1.14412 1.14412i 0.156434 0.987688i \(-0.450000\pi\)
0.987688 0.156434i \(-0.0500000\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(239\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(240\) −1.80902 0.587785i −1.80902 0.587785i
\(241\) −0.312869 −0.312869 −0.156434 0.987688i \(-0.550000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(242\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(243\) −2.17625 2.17625i −2.17625 2.17625i
\(244\) 0.734572 + 0.533698i 0.734572 + 0.533698i
\(245\) 0.987688 0.156434i 0.987688 0.156434i
\(246\) 1.53884 + 3.02015i 1.53884 + 3.02015i
\(247\) 0 0
\(248\) 0.253116 0.183900i 0.253116 0.183900i
\(249\) 0 0
\(250\) 0.156434 + 0.987688i 0.156434 + 0.987688i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0.409551 + 2.58580i 0.409551 + 2.58580i
\(253\) 0 0
\(254\) −1.76007 + 0.896802i −1.76007 + 0.896802i
\(255\) 1.87869 0.297556i 1.87869 0.297556i
\(256\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(257\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(258\) 1.04744 3.22369i 1.04744 3.22369i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0.437016 1.34500i 0.437016 1.34500i
\(263\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 1.59811 + 1.16110i 1.59811 + 1.16110i
\(266\) 0 0
\(267\) 0 0
\(268\) −0.309017 + 0.0489435i −0.309017 + 0.0489435i
\(269\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(270\) 1.80902 + 2.48990i 1.80902 + 2.48990i
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0.453990 0.891007i 0.453990 0.891007i
\(273\) 0 0
\(274\) 0.412215 + 0.809017i 0.412215 + 0.809017i
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(278\) 1.87869 + 0.610425i 1.87869 + 0.610425i
\(279\) −0.819101 −0.819101
\(280\) 1.00000i 1.00000i
\(281\) −1.17557 −1.17557 −0.587785 0.809017i \(-0.700000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(282\) 0 0
\(283\) −1.14412 1.14412i −1.14412 1.14412i −0.987688 0.156434i \(-0.950000\pi\)
−0.156434 0.987688i \(-0.550000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.26007 + 1.26007i −1.26007 + 1.26007i
\(288\) 2.61803 2.61803
\(289\) 1.00000i 1.00000i
\(290\) 0 0
\(291\) 2.23607i 2.23607i
\(292\) 1.87869 0.297556i 1.87869 0.297556i
\(293\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) −1.69480 + 0.863541i −1.69480 + 0.863541i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(299\) 0 0
\(300\) −0.863541 1.69480i −0.863541 1.69480i
\(301\) 1.78201 1.78201
\(302\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(303\) 0 0
\(304\) 0 0
\(305\) 0.142040 + 0.896802i 0.142040 + 0.896802i
\(306\) −2.33269 + 1.18856i −2.33269 + 1.18856i
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.309017 + 0.0489435i 0.309017 + 0.0489435i
\(311\) 1.97538i 1.97538i 0.156434 + 0.987688i \(0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(312\) 0 0
\(313\) −1.14412 + 1.14412i −1.14412 + 1.14412i −0.156434 + 0.987688i \(0.550000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(314\) 0 0
\(315\) −1.53884 + 2.11803i −1.53884 + 2.11803i
\(316\) 0 0
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) −3.57349 1.16110i −3.57349 1.16110i
\(319\) 0 0
\(320\) −0.987688 0.156434i −0.987688 0.156434i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −2.61803 1.90211i −2.61803 1.90211i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 1.04744 + 1.44168i 1.04744 + 1.44168i
\(329\) 0 0
\(330\) 0 0
\(331\) 1.17557i 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −0.550672 + 0.280582i −0.550672 + 0.280582i
\(335\) −0.253116 0.183900i −0.253116 0.183900i
\(336\) 0.587785 + 1.80902i 0.587785 + 1.80902i
\(337\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(338\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(339\) 0 0
\(340\) 0.951057 0.309017i 0.951057 0.309017i
\(341\) 0 0
\(342\) 0 0
\(343\) −0.707107 0.707107i −0.707107 0.707107i
\(344\) 0.278768 1.76007i 0.278768 1.76007i
\(345\) 0 0
\(346\) 1.69480 0.863541i 1.69480 0.863541i
\(347\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0.707107 0.707107i 0.707107 0.707107i
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −1.34500 1.34500i −1.34500 1.34500i
\(358\) −0.587785 0.190983i −0.587785 0.190983i
\(359\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(360\) 1.85123 + 1.85123i 1.85123 + 1.85123i
\(361\) 1.00000 1.00000
\(362\) −1.34500 0.437016i −1.34500 0.437016i
\(363\) −1.34500 1.34500i −1.34500 1.34500i
\(364\) 0 0
\(365\) 1.53884 + 1.11803i 1.53884 + 1.11803i
\(366\) −0.784079 1.53884i −0.784079 1.53884i
\(367\) −0.437016 + 0.437016i −0.437016 + 0.437016i −0.891007 0.453990i \(-0.850000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(368\) 0 0
\(369\) 4.66537i 4.66537i
\(370\) 0 0
\(371\) 1.97538i 1.97538i
\(372\) −0.587785 + 0.0930960i −0.587785 + 0.0930960i
\(373\) 1.26007 1.26007i 1.26007 1.26007i 0.309017 0.951057i \(-0.400000\pi\)
0.951057 0.309017i \(-0.100000\pi\)
\(374\) 0 0
\(375\) 0.587785 1.80902i 0.587785 1.80902i
\(376\) 0 0
\(377\) 0 0
\(378\) 0.951057 2.92705i 0.951057 2.92705i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 3.75739 3.75739
\(382\) 0.500000 1.53884i 0.500000 1.53884i
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 1.87869 0.297556i 1.87869 0.297556i
\(385\) 0 0
\(386\) 0 0
\(387\) −3.29892 + 3.29892i −3.29892 + 3.29892i
\(388\) −0.183900 1.16110i −0.183900 1.16110i
\(389\) 1.17557i 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(393\) −1.90211 + 1.90211i −1.90211 + 1.90211i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.14412 1.14412i −1.14412 1.14412i −0.987688 0.156434i \(-0.950000\pi\)
−0.156434 0.987688i \(-0.550000\pi\)
\(398\) 0.863541 + 0.280582i 0.863541 + 0.280582i
\(399\) 0 0
\(400\) −0.587785 0.809017i −0.587785 0.809017i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0.565985 + 0.183900i 0.565985 + 0.183900i
\(403\) 0 0
\(404\) 0 0
\(405\) −0.506233 3.19623i −0.506233 3.19623i
\(406\) 0 0
\(407\) 0 0
\(408\) −1.53884 + 1.11803i −1.53884 + 1.11803i
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) −0.278768 + 1.76007i −0.278768 + 1.76007i
\(411\) 1.72708i 1.72708i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −2.65688 2.65688i −2.65688 2.65688i
\(418\) 0 0
\(419\) 0.312869 0.312869 0.156434 0.987688i \(-0.450000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(420\) −0.863541 + 1.69480i −0.863541 + 1.69480i
\(421\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −1.95106 0.309017i −1.95106 0.309017i
\(425\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(426\) 0 0
\(427\) 0.642040 0.642040i 0.642040 0.642040i
\(428\) 0 0
\(429\) 0 0
\(430\) 1.44168 1.04744i 1.44168 1.04744i
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) −2.74224 1.39724i −2.74224 1.39724i
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) −0.142040 0.278768i −0.142040 0.278768i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) −3.44095 1.11803i −3.44095 1.11803i
\(439\) −1.78201 −1.78201 −0.891007 0.453990i \(-0.850000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(440\) 0 0
\(441\) 2.61803 2.61803
\(442\) 0 0
\(443\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0.831254 0.831254i 0.831254 0.831254i
\(448\) 0.453990 + 0.891007i 0.453990 + 0.891007i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 2.61803i 2.61803i
\(451\) 0 0
\(452\) 0 0
\(453\) 0.831254 0.831254i 0.831254 0.831254i
\(454\) −1.44168 + 0.734572i −1.44168 + 0.734572i
\(455\) 0 0
\(456\) 0 0
\(457\) 1.39680 + 1.39680i 1.39680 + 1.39680i 0.809017 + 0.587785i \(0.200000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(458\) 0 0
\(459\) 3.07768 3.07768
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) −0.642040 0.642040i −0.642040 0.642040i 0.309017 0.951057i \(-0.400000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(464\) 0 0
\(465\) −0.481456 0.349798i −0.481456 0.349798i
\(466\) 0 0
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) 0.312869i 0.312869i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) −0.809017 0.587785i −0.809017 0.587785i
\(477\) 3.65688 + 3.65688i 3.65688 + 3.65688i
\(478\) −1.80902 0.587785i −1.80902 0.587785i
\(479\) −1.78201 −1.78201 −0.891007 0.453990i \(-0.850000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(480\) 1.53884 + 1.11803i 1.53884 + 1.11803i
\(481\) 0 0
\(482\) 0.297556 + 0.0966818i 0.297556 + 0.0966818i
\(483\) 0 0
\(484\) −0.809017 0.587785i −0.809017 0.587785i
\(485\) 0.690983 0.951057i 0.690983 0.951057i
\(486\) 1.39724 + 2.74224i 1.39724 + 2.74224i
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) −0.533698 0.734572i −0.533698 0.734572i
\(489\) 0 0
\(490\) −0.987688 0.156434i −0.987688 0.156434i
\(491\) 1.17557i 1.17557i −0.809017 0.587785i \(-0.800000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(492\) −0.530249 3.34786i −0.530249 3.34786i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.297556 + 0.0966818i −0.297556 + 0.0966818i
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0.156434 0.987688i 0.156434 0.987688i
\(501\) 1.17557 1.17557
\(502\) 0 0
\(503\) 0.831254 + 0.831254i 0.831254 + 0.831254i 0.987688 0.156434i \(-0.0500000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(504\) 0.409551 2.58580i 0.409551 2.58580i
\(505\) 0 0
\(506\) 0 0
\(507\) 1.34500 1.34500i 1.34500 1.34500i
\(508\) 1.95106 0.309017i 1.95106 0.309017i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) −1.87869 0.297556i −1.87869 0.297556i
\(511\) 1.90211i 1.90211i
\(512\) 0.951057 0.309017i 0.951057 0.309017i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) −1.99235 + 2.74224i −1.99235 + 2.74224i
\(517\) 0 0
\(518\) 0 0
\(519\) −3.61803 −3.61803
\(520\) 0 0
\(521\) −0.907981 −0.907981 −0.453990 0.891007i \(-0.650000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(522\) 0 0
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) −0.831254 + 1.14412i −0.831254 + 1.14412i
\(525\) −1.80902 + 0.587785i −1.80902 + 0.587785i
\(526\) −0.642040 1.26007i −0.642040 1.26007i
\(527\) 0.221232 0.221232i 0.221232 0.221232i
\(528\) 0 0
\(529\) 1.00000i 1.00000i
\(530\) −1.16110 1.59811i −1.16110 1.59811i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0.309017 + 0.0489435i 0.309017 + 0.0489435i
\(537\) 0.831254 + 0.831254i 0.831254 + 0.831254i
\(538\) −0.437016 + 1.34500i −0.437016 + 1.34500i
\(539\) 0 0
\(540\) −0.951057 2.92705i −0.951057 2.92705i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 1.90211 + 1.90211i 1.90211 + 1.90211i
\(544\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) −0.142040 0.896802i −0.142040 0.896802i
\(549\) 2.37713i 2.37713i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −1.59811 1.16110i −1.59811 1.16110i
\(557\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(558\) 0.779012 + 0.253116i 0.779012 + 0.253116i
\(559\) 0 0
\(560\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(561\) 0 0
\(562\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(563\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0.734572 + 1.44168i 0.734572 + 1.44168i
\(567\) −2.28825 + 2.28825i −2.28825 + 2.28825i
\(568\) 0 0
\(569\) 1.90211i 1.90211i 0.309017 + 0.951057i \(0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) −2.17625 + 2.17625i −2.17625 + 2.17625i
\(574\) 1.58779 0.809017i 1.58779 0.809017i
\(575\) 0 0
\(576\) −2.48990 0.809017i −2.48990 0.809017i
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) 0.309017 0.951057i 0.309017 0.951057i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) −0.690983 + 2.12663i −0.690983 + 2.12663i
\(583\) 0 0
\(584\) −1.87869 0.297556i −1.87869 0.297556i
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 1.87869 0.297556i 1.87869 0.297556i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) −0.156434 0.987688i −0.156434 0.987688i
\(596\) 0.363271 0.500000i 0.363271 0.500000i
\(597\) −1.22123 1.22123i −1.22123 1.22123i
\(598\) 0 0
\(599\) 0.618034 0.618034 0.309017 0.951057i \(-0.400000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(600\) 0.297556 + 1.87869i 0.297556 + 1.87869i
\(601\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(602\) −1.69480 0.550672i −1.69480 0.550672i
\(603\) −0.579192 0.579192i −0.579192 0.579192i
\(604\) 0.363271 0.500000i 0.363271 0.500000i
\(605\) −0.156434 0.987688i −0.156434 0.987688i
\(606\) 0 0
\(607\) 0.831254 0.831254i 0.831254 0.831254i −0.156434 0.987688i \(-0.550000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0.142040 0.896802i 0.142040 0.896802i
\(611\) 0 0
\(612\) 2.58580 0.409551i 2.58580 0.409551i
\(613\) −0.221232 + 0.221232i −0.221232 + 0.221232i −0.809017 0.587785i \(-0.800000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(614\) 0 0
\(615\) 1.99235 2.74224i 1.99235 2.74224i
\(616\) 0 0
\(617\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(618\) 0 0
\(619\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(620\) −0.278768 0.142040i −0.278768 0.142040i
\(621\) 0 0
\(622\) 0.610425 1.87869i 0.610425 1.87869i
\(623\) 0 0
\(624\) 0 0
\(625\) 0.809017 0.587785i 0.809017 0.587785i
\(626\) 1.44168 0.734572i 1.44168 0.734572i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 2.11803 1.53884i 2.11803 1.53884i
\(631\) 1.17557i 1.17557i 0.809017 + 0.587785i \(0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.59811 + 1.16110i 1.59811 + 1.16110i
\(636\) 3.03979 + 2.20854i 3.03979 + 2.20854i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0.437016 + 0.437016i 0.437016 + 0.437016i 0.891007 0.453990i \(-0.150000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(644\) 0 0
\(645\) −3.34786 + 0.530249i −3.34786 + 0.530249i
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) 1.90211 + 2.61803i 1.90211 + 2.61803i
\(649\) 0 0
\(650\) 0 0
\(651\) 0.595112i 0.595112i
\(652\) 0 0
\(653\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) −1.39680 + 0.221232i −1.39680 + 0.221232i
\(656\) −0.550672 1.69480i −0.550672 1.69480i
\(657\) 3.52125 + 3.52125i 3.52125 + 3.52125i
\(658\) 0 0
\(659\) −1.61803 −1.61803 −0.809017 0.587785i \(-0.800000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0.363271 1.11803i 0.363271 1.11803i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.610425 0.0966818i 0.610425 0.0966818i
\(669\) 0 0
\(670\) 0.183900 + 0.253116i 0.183900 + 0.253116i
\(671\) 0 0
\(672\) 1.90211i 1.90211i
\(673\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(674\) 0 0
\(675\) 1.39724 2.74224i 1.39724 2.74224i
\(676\) 0.587785 0.809017i 0.587785 0.809017i
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) −1.17557 −1.17557
\(680\) −1.00000 −1.00000
\(681\) 3.07768 3.07768
\(682\) 0 0
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 0 0
\(685\) 0.533698 0.734572i 0.533698 0.734572i
\(686\) 0.453990 + 0.891007i 0.453990 + 0.891007i
\(687\) 0 0
\(688\) −0.809017 + 1.58779i −0.809017 + 1.58779i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.78201i 1.78201i 0.453990 + 0.891007i \(0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(692\) −1.87869 + 0.297556i −1.87869 + 0.297556i
\(693\) 0 0
\(694\) 0 0
\(695\) −0.309017 1.95106i −0.309017 1.95106i
\(696\) 0 0
\(697\) 1.26007 + 1.26007i 1.26007 + 1.26007i
\(698\) 0 0
\(699\) 0 0
\(700\) −0.891007 + 0.453990i −0.891007 + 0.453990i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0.863541 + 1.69480i 0.863541 + 1.69480i
\(715\) 0 0
\(716\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(717\) 2.55834 + 2.55834i 2.55834 + 2.55834i
\(718\) −1.11803 0.363271i −1.11803 0.363271i
\(719\) 0.907981 0.907981 0.453990 0.891007i \(-0.350000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(720\) −1.18856 2.33269i −1.18856 2.33269i
\(721\) 0 0
\(722\) −0.951057 0.309017i −0.951057 0.309017i
\(723\) −0.420808 0.420808i −0.420808 0.420808i
\(724\) 1.14412 + 0.831254i 1.14412 + 0.831254i
\(725\) 0 0
\(726\) 0.863541 + 1.69480i 0.863541 + 1.69480i
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 2.61803i 2.61803i
\(730\) −1.11803 1.53884i −1.11803 1.53884i
\(731\) 1.78201i 1.78201i
\(732\) 0.270175 + 1.70582i 0.270175 + 1.70582i
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) 0.550672 0.280582i 0.550672 0.280582i
\(735\) 1.53884 + 1.11803i 1.53884 + 1.11803i
\(736\) 0 0
\(737\) 0 0
\(738\) −1.44168 + 4.43703i −1.44168 + 4.43703i
\(739\) −0.618034 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.610425 + 1.87869i −0.610425 + 1.87869i
\(743\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(744\) 0.587785 + 0.0930960i 0.587785 + 0.0930960i
\(745\) 0.610425 0.0966818i 0.610425 0.0966818i
\(746\) −1.58779 + 0.809017i −1.58779 + 0.809017i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −1.11803 + 1.53884i −1.11803 + 1.53884i
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.610425 0.0966818i 0.610425 0.0966818i
\(756\) −1.80902 + 2.48990i −1.80902 + 2.48990i
\(757\) 0.642040 + 0.642040i 0.642040 + 0.642040i 0.951057 0.309017i \(-0.100000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) −3.57349 1.16110i −3.57349 1.16110i
\(763\) 0 0
\(764\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(765\) 2.11803 + 1.53884i 2.11803 + 1.53884i
\(766\) 0 0
\(767\) 0 0
\(768\) −1.87869 0.297556i −1.87869 0.297556i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 4.15688 2.11803i 4.15688 2.11803i
\(775\) −0.0966818 0.297556i −0.0966818 0.297556i
\(776\) −0.183900 + 1.16110i −0.183900 + 1.16110i
\(777\) 0 0
\(778\) −0.363271 + 1.11803i −0.363271 + 1.11803i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.951057 0.309017i 0.951057 0.309017i
\(785\) 0 0
\(786\) 2.39680 1.22123i 2.39680 1.22123i
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) 0 0
\(789\) 2.68999i 2.68999i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0.734572 + 1.44168i 0.734572 + 1.44168i
\(795\) 0.587785 + 3.71113i 0.587785 + 3.71113i
\(796\) −0.734572 0.533698i −0.734572 0.533698i
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −0.481456 0.349798i −0.481456 0.349798i
\(805\) 0 0
\(806\) 0 0
\(807\) 1.90211 1.90211i 1.90211 1.90211i
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) −0.506233 + 3.19623i −0.506233 + 3.19623i
\(811\) 0.907981i 0.907981i −0.891007 0.453990i \(-0.850000\pi\)
0.891007 0.453990i \(-0.150000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 1.80902 0.587785i 1.80902 0.587785i
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0.809017 1.58779i 0.809017 1.58779i
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) −0.533698 + 1.64255i −0.533698 + 1.64255i
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(834\) 1.70582 + 3.34786i 1.70582 + 3.34786i
\(835\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(836\) 0 0
\(837\) −0.680881 0.680881i −0.680881 0.680881i
\(838\) −0.297556 0.0966818i −0.297556 0.0966818i
\(839\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(840\) 1.34500 1.34500i 1.34500 1.34500i
\(841\) −1.00000 −1.00000
\(842\) 0.587785 + 0.190983i 0.587785 + 0.190983i
\(843\) −1.58114 1.58114i −1.58114 1.58114i
\(844\) 0 0
\(845\) 0.987688 0.156434i 0.987688 0.156434i
\(846\) 0 0
\(847\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(848\) 1.76007 + 0.896802i 1.76007 + 0.896802i
\(849\) 3.07768i 3.07768i
\(850\) −0.707107 0.707107i −0.707107 0.707107i
\(851\) 0 0
\(852\) 0 0
\(853\) −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i \(0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(854\) −0.809017 + 0.412215i −0.809017 + 0.412215i
\(855\) 0 0
\(856\) 0 0
\(857\) −1.14412 1.14412i −1.14412 1.14412i −0.987688 0.156434i \(-0.950000\pi\)
−0.156434 0.987688i \(-0.550000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) −1.69480 + 0.550672i −1.69480 + 0.550672i
\(861\) −3.38959 −3.38959
\(862\) 0 0
\(863\) −1.39680 1.39680i −1.39680 1.39680i −0.809017 0.587785i \(-0.800000\pi\)
−0.587785 0.809017i \(-0.700000\pi\)
\(864\) 2.17625 + 2.17625i 2.17625 + 2.17625i
\(865\) −1.53884 1.11803i −1.53884 1.11803i
\(866\) 0 0
\(867\) −1.34500 + 1.34500i −1.34500 + 1.34500i
\(868\) 0.0489435 + 0.309017i 0.0489435 + 0.309017i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 2.17625 2.17625i 2.17625 2.17625i
\(874\) 0 0
\(875\) −0.951057 0.309017i −0.951057 0.309017i
\(876\) 2.92705 + 2.12663i 2.92705 + 2.12663i
\(877\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(878\) 1.69480 + 0.550672i 1.69480 + 0.550672i
\(879\) 0 0
\(880\) 0 0
\(881\) 1.97538 1.97538 0.987688 0.156434i \(-0.0500000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(882\) −2.48990 0.809017i −2.48990 0.809017i
\(883\) 1.39680 + 1.39680i 1.39680 + 1.39680i 0.809017 + 0.587785i \(0.200000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0.642040 + 1.26007i 0.642040 + 1.26007i
\(887\) −1.14412 + 1.14412i −1.14412 + 1.14412i −0.156434 + 0.987688i \(0.550000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(888\) 0 0
\(889\) 1.97538i 1.97538i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −1.04744 + 0.533698i −1.04744 + 0.533698i
\(895\) 0.0966818 + 0.610425i 0.0966818 + 0.610425i
\(896\) −0.156434 0.987688i −0.156434 0.987688i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.809017 2.48990i 0.809017 2.48990i
\(901\) −1.97538 −1.97538
\(902\) 0 0
\(903\) 2.39680 + 2.39680i 2.39680 + 2.39680i
\(904\) 0 0
\(905\) 0.221232 + 1.39680i 0.221232 + 1.39680i
\(906\) −1.04744 + 0.533698i −1.04744 + 0.533698i
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 1.59811 0.253116i 1.59811 0.253116i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −0.896802 1.76007i −0.896802 1.76007i
\(915\) −1.01515 + 1.39724i −1.01515 + 1.39724i
\(916\) 0 0
\(917\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(918\) −2.92705 0.951057i −2.92705 0.951057i
\(919\) −1.90211 −1.90211 −0.951057 0.309017i \(-0.900000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0.412215 + 0.809017i 0.412215 + 0.809017i
\(927\) 0 0
\(928\) 0 0
\(929\) 0.312869i 0.312869i −0.987688 0.156434i \(-0.950000\pi\)
0.987688 0.156434i \(-0.0500000\pi\)
\(930\) 0.349798 + 0.481456i 0.349798 + 0.481456i
\(931\) 0 0
\(932\) 0 0
\(933\) −2.65688 + 2.65688i −2.65688 + 2.65688i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(938\) 0.0966818 0.297556i 0.0966818 0.297556i
\(939\) −3.07768 −3.07768
\(940\) 0 0
\(941\) 0.907981 0.907981 0.453990 0.891007i \(-0.350000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −3.03979 + 0.481456i −3.03979 + 0.481456i
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(953\) 0.221232 0.221232i 0.221232 0.221232i −0.587785 0.809017i \(-0.700000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(954\) −2.34786 4.60793i −2.34786 4.60793i
\(955\) −1.59811 + 0.253116i −1.59811 + 0.253116i
\(956\) 1.53884 + 1.11803i 1.53884 + 1.11803i
\(957\) 0 0
\(958\) 1.69480 + 0.550672i 1.69480 + 0.550672i
\(959\) −0.907981 −0.907981
\(960\) −1.11803 1.53884i −1.11803 1.53884i
\(961\) 0.902113 0.902113
\(962\) 0 0
\(963\) 0 0
\(964\) −0.253116 0.183900i −0.253116 0.183900i
\(965\) 0 0
\(966\) 0 0
\(967\) −0.642040 + 0.642040i −0.642040 + 0.642040i −0.951057 0.309017i \(-0.900000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(968\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(969\) 0 0
\(970\) −0.951057 + 0.690983i −0.951057 + 0.690983i
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) −0.481456 3.03979i −0.481456 3.03979i
\(973\) −1.39680 + 1.39680i −1.39680 + 1.39680i
\(974\) 0 0
\(975\) 0 0
\(976\) 0.280582 + 0.863541i 0.280582 + 0.863541i
\(977\) −0.221232 0.221232i −0.221232 0.221232i 0.587785 0.809017i \(-0.300000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(981\) 0 0
\(982\) −0.363271 + 1.11803i −0.363271 + 1.11803i
\(983\) 0.831254 + 0.831254i 0.831254 + 0.831254i 0.987688 0.156434i \(-0.0500000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(984\) −0.530249 + 3.34786i −0.530249 + 3.34786i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0.312869 0.312869
\(993\) −1.58114 + 1.58114i −1.58114 + 1.58114i
\(994\) 0 0
\(995\) −0.142040 0.896802i −0.142040 0.896802i
\(996\) 0 0
\(997\) −0.437016 0.437016i −0.437016 0.437016i 0.453990 0.891007i \(-0.350000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2380.1.bi.c.1427.2 yes 16
4.3 odd 2 2380.1.bi.d.1427.1 yes 16
5.3 odd 4 2380.1.bi.d.1903.3 yes 16
7.6 odd 2 inner 2380.1.bi.c.1427.1 16
17.16 even 2 inner 2380.1.bi.c.1427.1 16
20.3 even 4 inner 2380.1.bi.c.1903.2 yes 16
28.27 even 2 2380.1.bi.d.1427.2 yes 16
35.13 even 4 2380.1.bi.d.1903.4 yes 16
68.67 odd 2 2380.1.bi.d.1427.2 yes 16
85.33 odd 4 2380.1.bi.d.1903.4 yes 16
119.118 odd 2 CM 2380.1.bi.c.1427.2 yes 16
140.83 odd 4 inner 2380.1.bi.c.1903.1 yes 16
340.203 even 4 inner 2380.1.bi.c.1903.1 yes 16
476.475 even 2 2380.1.bi.d.1427.1 yes 16
595.118 even 4 2380.1.bi.d.1903.3 yes 16
2380.1903 odd 4 inner 2380.1.bi.c.1903.2 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2380.1.bi.c.1427.1 16 7.6 odd 2 inner
2380.1.bi.c.1427.1 16 17.16 even 2 inner
2380.1.bi.c.1427.2 yes 16 1.1 even 1 trivial
2380.1.bi.c.1427.2 yes 16 119.118 odd 2 CM
2380.1.bi.c.1903.1 yes 16 140.83 odd 4 inner
2380.1.bi.c.1903.1 yes 16 340.203 even 4 inner
2380.1.bi.c.1903.2 yes 16 20.3 even 4 inner
2380.1.bi.c.1903.2 yes 16 2380.1903 odd 4 inner
2380.1.bi.d.1427.1 yes 16 4.3 odd 2
2380.1.bi.d.1427.1 yes 16 476.475 even 2
2380.1.bi.d.1427.2 yes 16 28.27 even 2
2380.1.bi.d.1427.2 yes 16 68.67 odd 2
2380.1.bi.d.1903.3 yes 16 5.3 odd 4
2380.1.bi.d.1903.3 yes 16 595.118 even 4
2380.1.bi.d.1903.4 yes 16 35.13 even 4
2380.1.bi.d.1903.4 yes 16 85.33 odd 4