Properties

Label 2368.2.g.m.961.4
Level $2368$
Weight $2$
Character 2368.961
Analytic conductor $18.909$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2368,2,Mod(961,2368)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2368.961"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2368, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2368 = 2^{6} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2368.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-6,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.9085751986\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2992527616.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 13x^{6} + 52x^{4} + 61x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 1184)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.4
Root \(2.48425i\) of defining polynomial
Character \(\chi\) \(=\) 2368.961
Dual form 2368.2.g.m.961.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.91023 q^{3} +0.910233i q^{5} +3.26124 q^{7} +0.648991 q^{9} -2.79702 q^{11} -1.79702i q^{13} -1.73876i q^{15} +4.96849i q^{17} -2.96849i q^{19} -6.22973 q^{21} +1.35101i q^{23} +4.17148 q^{25} +4.49098 q^{27} +5.69396i q^{29} -6.05826i q^{31} +5.34295 q^{33} +2.96849i q^{35} +(-0.113218 + 6.08171i) q^{37} +3.43272i q^{39} -1.05826 q^{41} -0.851975i q^{43} +0.590733i q^{45} -2.91829 q^{47} +3.63570 q^{49} -9.49098i q^{51} -5.70725 q^{53} -2.54594i q^{55} +5.67051i q^{57} +0.342951i q^{59} +2.28469i q^{61} +2.11652 q^{63} +1.63570 q^{65} +3.35624 q^{67} -2.58074i q^{69} -9.19822 q^{71} +15.9289 q^{73} -7.96849 q^{75} -9.12175 q^{77} -9.06842i q^{79} -10.5258 q^{81} +6.73876 q^{83} -4.52249 q^{85} -10.8768i q^{87} +4.26647i q^{89} -5.86050i q^{91} +11.5727i q^{93} +2.70202 q^{95} +10.6390i q^{97} -1.81524 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{3} + 12 q^{7} + 10 q^{9} - 2 q^{11} + 8 q^{21} + 10 q^{25} - 36 q^{27} - 4 q^{33} - 12 q^{37} + 26 q^{41} - 56 q^{47} + 12 q^{49} - 16 q^{53} - 52 q^{63} - 4 q^{65} + 2 q^{67} + 28 q^{71} - 2 q^{73}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2368\mathbb{Z}\right)^\times\).

\(n\) \(705\) \(1407\) \(1925\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.91023 −1.10287 −0.551437 0.834217i \(-0.685920\pi\)
−0.551437 + 0.834217i \(0.685920\pi\)
\(4\) 0 0
\(5\) 0.910233i 0.407069i 0.979068 + 0.203534i \(0.0652428\pi\)
−0.979068 + 0.203534i \(0.934757\pi\)
\(6\) 0 0
\(7\) 3.26124 1.23263 0.616317 0.787498i \(-0.288624\pi\)
0.616317 + 0.787498i \(0.288624\pi\)
\(8\) 0 0
\(9\) 0.648991 0.216330
\(10\) 0 0
\(11\) −2.79702 −0.843332 −0.421666 0.906751i \(-0.638554\pi\)
−0.421666 + 0.906751i \(0.638554\pi\)
\(12\) 0 0
\(13\) 1.79702i 0.498402i −0.968452 0.249201i \(-0.919832\pi\)
0.968452 0.249201i \(-0.0801680\pi\)
\(14\) 0 0
\(15\) 1.73876i 0.448945i
\(16\) 0 0
\(17\) 4.96849i 1.20504i 0.798105 + 0.602518i \(0.205836\pi\)
−0.798105 + 0.602518i \(0.794164\pi\)
\(18\) 0 0
\(19\) 2.96849i 0.681019i −0.940241 0.340509i \(-0.889401\pi\)
0.940241 0.340509i \(-0.110599\pi\)
\(20\) 0 0
\(21\) −6.22973 −1.35944
\(22\) 0 0
\(23\) 1.35101i 0.281705i 0.990031 + 0.140852i \(0.0449843\pi\)
−0.990031 + 0.140852i \(0.955016\pi\)
\(24\) 0 0
\(25\) 4.17148 0.834295
\(26\) 0 0
\(27\) 4.49098 0.864289
\(28\) 0 0
\(29\) 5.69396i 1.05734i 0.848827 + 0.528671i \(0.177309\pi\)
−0.848827 + 0.528671i \(0.822691\pi\)
\(30\) 0 0
\(31\) 6.05826i 1.08810i −0.839054 0.544048i \(-0.816891\pi\)
0.839054 0.544048i \(-0.183109\pi\)
\(32\) 0 0
\(33\) 5.34295 0.930088
\(34\) 0 0
\(35\) 2.96849i 0.501767i
\(36\) 0 0
\(37\) −0.113218 + 6.08171i −0.0186129 + 0.999827i
\(38\) 0 0
\(39\) 3.43272i 0.549675i
\(40\) 0 0
\(41\) −1.05826 −0.165272 −0.0826361 0.996580i \(-0.526334\pi\)
−0.0826361 + 0.996580i \(0.526334\pi\)
\(42\) 0 0
\(43\) 0.851975i 0.129925i −0.997888 0.0649625i \(-0.979307\pi\)
0.997888 0.0649625i \(-0.0206928\pi\)
\(44\) 0 0
\(45\) 0.590733i 0.0880612i
\(46\) 0 0
\(47\) −2.91829 −0.425677 −0.212838 0.977087i \(-0.568271\pi\)
−0.212838 + 0.977087i \(0.568271\pi\)
\(48\) 0 0
\(49\) 3.63570 0.519386
\(50\) 0 0
\(51\) 9.49098i 1.32900i
\(52\) 0 0
\(53\) −5.70725 −0.783951 −0.391975 0.919976i \(-0.628208\pi\)
−0.391975 + 0.919976i \(0.628208\pi\)
\(54\) 0 0
\(55\) 2.54594i 0.343294i
\(56\) 0 0
\(57\) 5.67051i 0.751077i
\(58\) 0 0
\(59\) 0.342951i 0.0446485i 0.999751 + 0.0223242i \(0.00710661\pi\)
−0.999751 + 0.0223242i \(0.992893\pi\)
\(60\) 0 0
\(61\) 2.28469i 0.292525i 0.989246 + 0.146263i \(0.0467244\pi\)
−0.989246 + 0.146263i \(0.953276\pi\)
\(62\) 0 0
\(63\) 2.11652 0.266656
\(64\) 0 0
\(65\) 1.63570 0.202884
\(66\) 0 0
\(67\) 3.35624 0.410030 0.205015 0.978759i \(-0.434276\pi\)
0.205015 + 0.978759i \(0.434276\pi\)
\(68\) 0 0
\(69\) 2.58074i 0.310685i
\(70\) 0 0
\(71\) −9.19822 −1.09163 −0.545814 0.837906i \(-0.683780\pi\)
−0.545814 + 0.837906i \(0.683780\pi\)
\(72\) 0 0
\(73\) 15.9289 1.86434 0.932170 0.362021i \(-0.117913\pi\)
0.932170 + 0.362021i \(0.117913\pi\)
\(74\) 0 0
\(75\) −7.96849 −0.920122
\(76\) 0 0
\(77\) −9.12175 −1.03952
\(78\) 0 0
\(79\) 9.06842i 1.02028i −0.860092 0.510139i \(-0.829594\pi\)
0.860092 0.510139i \(-0.170406\pi\)
\(80\) 0 0
\(81\) −10.5258 −1.16953
\(82\) 0 0
\(83\) 6.73876 0.739675 0.369837 0.929097i \(-0.379413\pi\)
0.369837 + 0.929097i \(0.379413\pi\)
\(84\) 0 0
\(85\) −4.52249 −0.490532
\(86\) 0 0
\(87\) 10.8768i 1.16611i
\(88\) 0 0
\(89\) 4.26647i 0.452245i 0.974099 + 0.226123i \(0.0726050\pi\)
−0.974099 + 0.226123i \(0.927395\pi\)
\(90\) 0 0
\(91\) 5.86050i 0.614348i
\(92\) 0 0
\(93\) 11.5727i 1.20003i
\(94\) 0 0
\(95\) 2.70202 0.277221
\(96\) 0 0
\(97\) 10.6390i 1.08023i 0.841592 + 0.540113i \(0.181619\pi\)
−0.841592 + 0.540113i \(0.818381\pi\)
\(98\) 0 0
\(99\) −1.81524 −0.182438
\(100\) 0 0
\(101\) 2.45617 0.244398 0.122199 0.992506i \(-0.461005\pi\)
0.122199 + 0.992506i \(0.461005\pi\)
\(102\) 0 0
\(103\) 17.2532i 1.70001i 0.526777 + 0.850003i \(0.323400\pi\)
−0.526777 + 0.850003i \(0.676600\pi\)
\(104\) 0 0
\(105\) 5.67051i 0.553385i
\(106\) 0 0
\(107\) 10.7655 1.04074 0.520370 0.853941i \(-0.325794\pi\)
0.520370 + 0.853941i \(0.325794\pi\)
\(108\) 0 0
\(109\) 13.3114i 1.27500i 0.770448 + 0.637502i \(0.220032\pi\)
−0.770448 + 0.637502i \(0.779968\pi\)
\(110\) 0 0
\(111\) 0.216272 11.6175i 0.0205277 1.10268i
\(112\) 0 0
\(113\) 17.2350i 1.62133i 0.585511 + 0.810664i \(0.300894\pi\)
−0.585511 + 0.810664i \(0.699106\pi\)
\(114\) 0 0
\(115\) −1.22973 −0.114673
\(116\) 0 0
\(117\) 1.16625i 0.107819i
\(118\) 0 0
\(119\) 16.2035i 1.48537i
\(120\) 0 0
\(121\) −3.17671 −0.288791
\(122\) 0 0
\(123\) 2.02152 0.182274
\(124\) 0 0
\(125\) 8.34818i 0.746684i
\(126\) 0 0
\(127\) −12.6757 −1.12479 −0.562395 0.826869i \(-0.690120\pi\)
−0.562395 + 0.826869i \(0.690120\pi\)
\(128\) 0 0
\(129\) 1.62747i 0.143291i
\(130\) 0 0
\(131\) 14.7421i 1.28802i 0.765017 + 0.644010i \(0.222730\pi\)
−0.765017 + 0.644010i \(0.777270\pi\)
\(132\) 0 0
\(133\) 9.68097i 0.839446i
\(134\) 0 0
\(135\) 4.08784i 0.351825i
\(136\) 0 0
\(137\) −10.9237 −0.933274 −0.466637 0.884449i \(-0.654535\pi\)
−0.466637 + 0.884449i \(0.654535\pi\)
\(138\) 0 0
\(139\) −1.10846 −0.0940181 −0.0470091 0.998894i \(-0.514969\pi\)
−0.0470091 + 0.998894i \(0.514969\pi\)
\(140\) 0 0
\(141\) 5.57462 0.469467
\(142\) 0 0
\(143\) 5.02628i 0.420319i
\(144\) 0 0
\(145\) −5.18283 −0.430411
\(146\) 0 0
\(147\) −6.94504 −0.572817
\(148\) 0 0
\(149\) 3.93368 0.322260 0.161130 0.986933i \(-0.448486\pi\)
0.161130 + 0.986933i \(0.448486\pi\)
\(150\) 0 0
\(151\) 2.54906 0.207440 0.103720 0.994607i \(-0.466925\pi\)
0.103720 + 0.994607i \(0.466925\pi\)
\(152\) 0 0
\(153\) 3.22450i 0.260686i
\(154\) 0 0
\(155\) 5.51443 0.442929
\(156\) 0 0
\(157\) −11.4647 −0.914982 −0.457491 0.889214i \(-0.651252\pi\)
−0.457491 + 0.889214i \(0.651252\pi\)
\(158\) 0 0
\(159\) 10.9022 0.864599
\(160\) 0 0
\(161\) 4.40597i 0.347239i
\(162\) 0 0
\(163\) 20.0239i 1.56839i 0.620512 + 0.784197i \(0.286925\pi\)
−0.620512 + 0.784197i \(0.713075\pi\)
\(164\) 0 0
\(165\) 4.86333i 0.378610i
\(166\) 0 0
\(167\) 9.80224i 0.758520i 0.925290 + 0.379260i \(0.123821\pi\)
−0.925290 + 0.379260i \(0.876179\pi\)
\(168\) 0 0
\(169\) 9.77074 0.751595
\(170\) 0 0
\(171\) 1.92652i 0.147325i
\(172\) 0 0
\(173\) 1.23167 0.0936418 0.0468209 0.998903i \(-0.485091\pi\)
0.0468209 + 0.998903i \(0.485091\pi\)
\(174\) 0 0
\(175\) 13.6042 1.02838
\(176\) 0 0
\(177\) 0.655117i 0.0492416i
\(178\) 0 0
\(179\) 18.6390i 1.39314i 0.717487 + 0.696572i \(0.245292\pi\)
−0.717487 + 0.696572i \(0.754708\pi\)
\(180\) 0 0
\(181\) 0.588801 0.0437652 0.0218826 0.999761i \(-0.493034\pi\)
0.0218826 + 0.999761i \(0.493034\pi\)
\(182\) 0 0
\(183\) 4.36430i 0.322618i
\(184\) 0 0
\(185\) −5.53577 0.103055i −0.406998 0.00757672i
\(186\) 0 0
\(187\) 13.8969i 1.01625i
\(188\) 0 0
\(189\) 14.6462 1.06535
\(190\) 0 0
\(191\) 14.9706i 1.08323i 0.840625 + 0.541617i \(0.182188\pi\)
−0.840625 + 0.541617i \(0.817812\pi\)
\(192\) 0 0
\(193\) 7.74399i 0.557424i −0.960375 0.278712i \(-0.910092\pi\)
0.960375 0.278712i \(-0.0899076\pi\)
\(194\) 0 0
\(195\) −3.12457 −0.223755
\(196\) 0 0
\(197\) 20.6892 1.47404 0.737022 0.675868i \(-0.236231\pi\)
0.737022 + 0.675868i \(0.236231\pi\)
\(198\) 0 0
\(199\) 14.1634i 1.00402i 0.864862 + 0.502009i \(0.167406\pi\)
−0.864862 + 0.502009i \(0.832594\pi\)
\(200\) 0 0
\(201\) −6.41120 −0.452211
\(202\) 0 0
\(203\) 18.5694i 1.30332i
\(204\) 0 0
\(205\) 0.963261i 0.0672771i
\(206\) 0 0
\(207\) 0.876792i 0.0609413i
\(208\) 0 0
\(209\) 8.30291i 0.574325i
\(210\) 0 0
\(211\) −5.77237 −0.397386 −0.198693 0.980062i \(-0.563670\pi\)
−0.198693 + 0.980062i \(0.563670\pi\)
\(212\) 0 0
\(213\) 17.5708 1.20393
\(214\) 0 0
\(215\) 0.775496 0.0528884
\(216\) 0 0
\(217\) 19.7574i 1.34122i
\(218\) 0 0
\(219\) −30.4280 −2.05613
\(220\) 0 0
\(221\) 8.92845 0.600593
\(222\) 0 0
\(223\) −21.6577 −1.45031 −0.725153 0.688588i \(-0.758231\pi\)
−0.725153 + 0.688588i \(0.758231\pi\)
\(224\) 0 0
\(225\) 2.70725 0.180483
\(226\) 0 0
\(227\) 6.79582i 0.451055i 0.974237 + 0.225527i \(0.0724105\pi\)
−0.974237 + 0.225527i \(0.927590\pi\)
\(228\) 0 0
\(229\) −7.50114 −0.495689 −0.247845 0.968800i \(-0.579722\pi\)
−0.247845 + 0.968800i \(0.579722\pi\)
\(230\) 0 0
\(231\) 17.4247 1.14646
\(232\) 0 0
\(233\) −12.0474 −0.789250 −0.394625 0.918842i \(-0.629125\pi\)
−0.394625 + 0.918842i \(0.629125\pi\)
\(234\) 0 0
\(235\) 2.65633i 0.173280i
\(236\) 0 0
\(237\) 17.3228i 1.12524i
\(238\) 0 0
\(239\) 5.86826i 0.379586i −0.981824 0.189793i \(-0.939218\pi\)
0.981824 0.189793i \(-0.0607818\pi\)
\(240\) 0 0
\(241\) 22.4434i 1.44570i 0.691003 + 0.722852i \(0.257169\pi\)
−0.691003 + 0.722852i \(0.742831\pi\)
\(242\) 0 0
\(243\) 6.63377 0.425557
\(244\) 0 0
\(245\) 3.30934i 0.211426i
\(246\) 0 0
\(247\) −5.33442 −0.339421
\(248\) 0 0
\(249\) −12.8726 −0.815768
\(250\) 0 0
\(251\) 27.8178i 1.75584i −0.478803 0.877922i \(-0.658929\pi\)
0.478803 0.877922i \(-0.341071\pi\)
\(252\) 0 0
\(253\) 3.77879i 0.237571i
\(254\) 0 0
\(255\) 8.63900 0.540995
\(256\) 0 0
\(257\) 0.0161162i 0.00100530i −1.00000 0.000502650i \(-0.999840\pi\)
1.00000 0.000502650i \(-0.000159998\pi\)
\(258\) 0 0
\(259\) −0.369231 + 19.8339i −0.0229429 + 1.23242i
\(260\) 0 0
\(261\) 3.69533i 0.228735i
\(262\) 0 0
\(263\) 11.5573 0.712653 0.356327 0.934361i \(-0.384029\pi\)
0.356327 + 0.934361i \(0.384029\pi\)
\(264\) 0 0
\(265\) 5.19493i 0.319122i
\(266\) 0 0
\(267\) 8.14996i 0.498769i
\(268\) 0 0
\(269\) 17.0289 1.03827 0.519134 0.854693i \(-0.326255\pi\)
0.519134 + 0.854693i \(0.326255\pi\)
\(270\) 0 0
\(271\) 13.3309 0.809792 0.404896 0.914363i \(-0.367308\pi\)
0.404896 + 0.914363i \(0.367308\pi\)
\(272\) 0 0
\(273\) 11.1949i 0.677548i
\(274\) 0 0
\(275\) −11.6677 −0.703588
\(276\) 0 0
\(277\) 12.1213i 0.728297i −0.931341 0.364148i \(-0.881360\pi\)
0.931341 0.364148i \(-0.118640\pi\)
\(278\) 0 0
\(279\) 3.93175i 0.235388i
\(280\) 0 0
\(281\) 22.1700i 1.32255i −0.750143 0.661276i \(-0.770015\pi\)
0.750143 0.661276i \(-0.229985\pi\)
\(282\) 0 0
\(283\) 1.80435i 0.107257i 0.998561 + 0.0536287i \(0.0170788\pi\)
−0.998561 + 0.0536287i \(0.982921\pi\)
\(284\) 0 0
\(285\) −5.16149 −0.305740
\(286\) 0 0
\(287\) −3.45124 −0.203720
\(288\) 0 0
\(289\) −7.68590 −0.452112
\(290\) 0 0
\(291\) 20.3230i 1.19135i
\(292\) 0 0
\(293\) −7.04497 −0.411572 −0.205786 0.978597i \(-0.565975\pi\)
−0.205786 + 0.978597i \(0.565975\pi\)
\(294\) 0 0
\(295\) −0.312166 −0.0181750
\(296\) 0 0
\(297\) −12.5613 −0.728882
\(298\) 0 0
\(299\) 2.42778 0.140402
\(300\) 0 0
\(301\) 2.77850i 0.160150i
\(302\) 0 0
\(303\) −4.69186 −0.269540
\(304\) 0 0
\(305\) −2.07960 −0.119078
\(306\) 0 0
\(307\) 28.5331 1.62847 0.814236 0.580535i \(-0.197156\pi\)
0.814236 + 0.580535i \(0.197156\pi\)
\(308\) 0 0
\(309\) 32.9576i 1.87489i
\(310\) 0 0
\(311\) 26.4668i 1.50079i −0.660987 0.750397i \(-0.729862\pi\)
0.660987 0.750397i \(-0.270138\pi\)
\(312\) 0 0
\(313\) 12.6459i 0.714787i −0.933954 0.357393i \(-0.883666\pi\)
0.933954 0.357393i \(-0.116334\pi\)
\(314\) 0 0
\(315\) 1.92652i 0.108547i
\(316\) 0 0
\(317\) 21.9209 1.23120 0.615599 0.788059i \(-0.288914\pi\)
0.615599 + 0.788059i \(0.288914\pi\)
\(318\) 0 0
\(319\) 15.9261i 0.891690i
\(320\) 0 0
\(321\) −20.5646 −1.14781
\(322\) 0 0
\(323\) 14.7489 0.820652
\(324\) 0 0
\(325\) 7.49621i 0.415815i
\(326\) 0 0
\(327\) 25.4280i 1.40617i
\(328\) 0 0
\(329\) −9.51726 −0.524703
\(330\) 0 0
\(331\) 6.71248i 0.368951i 0.982837 + 0.184476i \(0.0590587\pi\)
−0.982837 + 0.184476i \(0.940941\pi\)
\(332\) 0 0
\(333\) −0.0734773 + 3.94697i −0.00402653 + 0.216293i
\(334\) 0 0
\(335\) 3.05496i 0.166910i
\(336\) 0 0
\(337\) 5.30604 0.289038 0.144519 0.989502i \(-0.453836\pi\)
0.144519 + 0.989502i \(0.453836\pi\)
\(338\) 0 0
\(339\) 32.9228i 1.78812i
\(340\) 0 0
\(341\) 16.9450i 0.917625i
\(342\) 0 0
\(343\) −10.9718 −0.592421
\(344\) 0 0
\(345\) 2.34908 0.126470
\(346\) 0 0
\(347\) 23.8205i 1.27875i −0.768895 0.639375i \(-0.779193\pi\)
0.768895 0.639375i \(-0.220807\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 8.07035i 0.430764i
\(352\) 0 0
\(353\) 6.02392i 0.320621i −0.987067 0.160310i \(-0.948750\pi\)
0.987067 0.160310i \(-0.0512495\pi\)
\(354\) 0 0
\(355\) 8.37253i 0.444368i
\(356\) 0 0
\(357\) 30.9524i 1.63817i
\(358\) 0 0
\(359\) −28.1106 −1.48362 −0.741809 0.670611i \(-0.766032\pi\)
−0.741809 + 0.670611i \(0.766032\pi\)
\(360\) 0 0
\(361\) 10.1881 0.536214
\(362\) 0 0
\(363\) 6.06825 0.318500
\(364\) 0 0
\(365\) 14.4990i 0.758914i
\(366\) 0 0
\(367\) −30.3430 −1.58389 −0.791945 0.610593i \(-0.790931\pi\)
−0.791945 + 0.610593i \(0.790931\pi\)
\(368\) 0 0
\(369\) −0.686799 −0.0357533
\(370\) 0 0
\(371\) −18.6127 −0.966324
\(372\) 0 0
\(373\) −4.32354 −0.223864 −0.111932 0.993716i \(-0.535704\pi\)
−0.111932 + 0.993716i \(0.535704\pi\)
\(374\) 0 0
\(375\) 15.9470i 0.823498i
\(376\) 0 0
\(377\) 10.2321 0.526982
\(378\) 0 0
\(379\) 27.1025 1.39216 0.696081 0.717963i \(-0.254925\pi\)
0.696081 + 0.717963i \(0.254925\pi\)
\(380\) 0 0
\(381\) 24.2136 1.24050
\(382\) 0 0
\(383\) 27.1558i 1.38760i 0.720169 + 0.693799i \(0.244064\pi\)
−0.720169 + 0.693799i \(0.755936\pi\)
\(384\) 0 0
\(385\) 8.30291i 0.423156i
\(386\) 0 0
\(387\) 0.552924i 0.0281067i
\(388\) 0 0
\(389\) 8.21645i 0.416590i −0.978066 0.208295i \(-0.933209\pi\)
0.978066 0.208295i \(-0.0667915\pi\)
\(390\) 0 0
\(391\) −6.71248 −0.339465
\(392\) 0 0
\(393\) 28.1608i 1.42052i
\(394\) 0 0
\(395\) 8.25438 0.415323
\(396\) 0 0
\(397\) −18.2297 −0.914924 −0.457462 0.889229i \(-0.651241\pi\)
−0.457462 + 0.889229i \(0.651241\pi\)
\(398\) 0 0
\(399\) 18.4929i 0.925803i
\(400\) 0 0
\(401\) 5.94385i 0.296822i 0.988926 + 0.148411i \(0.0474158\pi\)
−0.988926 + 0.148411i \(0.952584\pi\)
\(402\) 0 0
\(403\) −10.8868 −0.542309
\(404\) 0 0
\(405\) 9.58092i 0.476080i
\(406\) 0 0
\(407\) 0.316672 17.0106i 0.0156968 0.843186i
\(408\) 0 0
\(409\) 4.13263i 0.204345i 0.994767 + 0.102173i \(0.0325794\pi\)
−0.994767 + 0.102173i \(0.967421\pi\)
\(410\) 0 0
\(411\) 20.8668 1.02928
\(412\) 0 0
\(413\) 1.11845i 0.0550352i
\(414\) 0 0
\(415\) 6.13384i 0.301098i
\(416\) 0 0
\(417\) 2.11741 0.103690
\(418\) 0 0
\(419\) −7.00211 −0.342075 −0.171038 0.985265i \(-0.554712\pi\)
−0.171038 + 0.985265i \(0.554712\pi\)
\(420\) 0 0
\(421\) 32.9116i 1.60401i −0.597315 0.802007i \(-0.703766\pi\)
0.597315 0.802007i \(-0.296234\pi\)
\(422\) 0 0
\(423\) −1.89394 −0.0920867
\(424\) 0 0
\(425\) 20.7259i 1.00536i
\(426\) 0 0
\(427\) 7.45094i 0.360576i
\(428\) 0 0
\(429\) 9.60137i 0.463558i
\(430\) 0 0
\(431\) 23.1585i 1.11550i −0.830007 0.557752i \(-0.811664\pi\)
0.830007 0.557752i \(-0.188336\pi\)
\(432\) 0 0
\(433\) 34.6096 1.66323 0.831616 0.555352i \(-0.187416\pi\)
0.831616 + 0.555352i \(0.187416\pi\)
\(434\) 0 0
\(435\) 9.90042 0.474689
\(436\) 0 0
\(437\) 4.01046 0.191846
\(438\) 0 0
\(439\) 3.46753i 0.165496i 0.996571 + 0.0827480i \(0.0263696\pi\)
−0.996571 + 0.0827480i \(0.973630\pi\)
\(440\) 0 0
\(441\) 2.35954 0.112359
\(442\) 0 0
\(443\) −0.217169 −0.0103180 −0.00515901 0.999987i \(-0.501642\pi\)
−0.00515901 + 0.999987i \(0.501642\pi\)
\(444\) 0 0
\(445\) −3.88348 −0.184095
\(446\) 0 0
\(447\) −7.51425 −0.355412
\(448\) 0 0
\(449\) 0.419430i 0.0197941i −0.999951 0.00989707i \(-0.996850\pi\)
0.999951 0.00989707i \(-0.00315039\pi\)
\(450\) 0 0
\(451\) 2.95996 0.139379
\(452\) 0 0
\(453\) −4.86930 −0.228780
\(454\) 0 0
\(455\) 5.33442 0.250082
\(456\) 0 0
\(457\) 23.0528i 1.07836i −0.842189 0.539182i \(-0.818734\pi\)
0.842189 0.539182i \(-0.181266\pi\)
\(458\) 0 0
\(459\) 22.3134i 1.04150i
\(460\) 0 0
\(461\) 36.4260i 1.69653i 0.529573 + 0.848265i \(0.322352\pi\)
−0.529573 + 0.848265i \(0.677648\pi\)
\(462\) 0 0
\(463\) 10.1104i 0.469870i 0.972011 + 0.234935i \(0.0754877\pi\)
−0.972011 + 0.234935i \(0.924512\pi\)
\(464\) 0 0
\(465\) −10.5338 −0.488495
\(466\) 0 0
\(467\) 7.32877i 0.339135i 0.985519 + 0.169567i \(0.0542371\pi\)
−0.985519 + 0.169567i \(0.945763\pi\)
\(468\) 0 0
\(469\) 10.9455 0.505417
\(470\) 0 0
\(471\) 21.9002 1.00911
\(472\) 0 0
\(473\) 2.38299i 0.109570i
\(474\) 0 0
\(475\) 12.3830i 0.568170i
\(476\) 0 0
\(477\) −3.70395 −0.169592
\(478\) 0 0
\(479\) 8.71860i 0.398363i 0.979963 + 0.199182i \(0.0638284\pi\)
−0.979963 + 0.199182i \(0.936172\pi\)
\(480\) 0 0
\(481\) 10.9289 + 0.203454i 0.498316 + 0.00927671i
\(482\) 0 0
\(483\) 8.41643i 0.382961i
\(484\) 0 0
\(485\) −9.68397 −0.439726
\(486\) 0 0
\(487\) 16.8894i 0.765330i 0.923887 + 0.382665i \(0.124994\pi\)
−0.923887 + 0.382665i \(0.875006\pi\)
\(488\) 0 0
\(489\) 38.2504i 1.72974i
\(490\) 0 0
\(491\) −29.2145 −1.31843 −0.659216 0.751953i \(-0.729112\pi\)
−0.659216 + 0.751953i \(0.729112\pi\)
\(492\) 0 0
\(493\) −28.2904 −1.27414
\(494\) 0 0
\(495\) 1.65229i 0.0742648i
\(496\) 0 0
\(497\) −29.9976 −1.34558
\(498\) 0 0
\(499\) 18.5168i 0.828927i 0.910066 + 0.414464i \(0.136031\pi\)
−0.910066 + 0.414464i \(0.863969\pi\)
\(500\) 0 0
\(501\) 18.7246i 0.836552i
\(502\) 0 0
\(503\) 10.4881i 0.467643i −0.972279 0.233822i \(-0.924877\pi\)
0.972279 0.233822i \(-0.0751232\pi\)
\(504\) 0 0
\(505\) 2.23569i 0.0994867i
\(506\) 0 0
\(507\) −18.6644 −0.828914
\(508\) 0 0
\(509\) −32.9530 −1.46062 −0.730308 0.683118i \(-0.760624\pi\)
−0.730308 + 0.683118i \(0.760624\pi\)
\(510\) 0 0
\(511\) 51.9481 2.29805
\(512\) 0 0
\(513\) 13.3314i 0.588597i
\(514\) 0 0
\(515\) −15.7044 −0.692019
\(516\) 0 0
\(517\) 8.16251 0.358987
\(518\) 0 0
\(519\) −2.35277 −0.103275
\(520\) 0 0
\(521\) 4.56223 0.199875 0.0999374 0.994994i \(-0.468136\pi\)
0.0999374 + 0.994994i \(0.468136\pi\)
\(522\) 0 0
\(523\) 42.7259i 1.86827i 0.356914 + 0.934137i \(0.383829\pi\)
−0.356914 + 0.934137i \(0.616171\pi\)
\(524\) 0 0
\(525\) −25.9872 −1.13417
\(526\) 0 0
\(527\) 30.1004 1.31119
\(528\) 0 0
\(529\) 21.1748 0.920642
\(530\) 0 0
\(531\) 0.222572i 0.00965881i
\(532\) 0 0
\(533\) 1.90171i 0.0823720i
\(534\) 0 0
\(535\) 9.79912i 0.423653i
\(536\) 0 0
\(537\) 35.6048i 1.53646i
\(538\) 0 0
\(539\) −10.1691 −0.438015
\(540\) 0 0
\(541\) 0.654220i 0.0281271i −0.999901 0.0140636i \(-0.995523\pi\)
0.999901 0.0140636i \(-0.00447672\pi\)
\(542\) 0 0
\(543\) −1.12475 −0.0482675
\(544\) 0 0
\(545\) −12.1165 −0.519015
\(546\) 0 0
\(547\) 44.6068i 1.90725i −0.301001 0.953624i \(-0.597321\pi\)
0.301001 0.953624i \(-0.402679\pi\)
\(548\) 0 0
\(549\) 1.48274i 0.0632820i
\(550\) 0 0
\(551\) 16.9025 0.720069
\(552\) 0 0
\(553\) 29.5743i 1.25763i
\(554\) 0 0
\(555\) 10.5746 + 0.196858i 0.448867 + 0.00835617i
\(556\) 0 0
\(557\) 33.9687i 1.43930i −0.694338 0.719649i \(-0.744303\pi\)
0.694338 0.719649i \(-0.255697\pi\)
\(558\) 0 0
\(559\) −1.53101 −0.0647549
\(560\) 0 0
\(561\) 26.5464i 1.12079i
\(562\) 0 0
\(563\) 34.8732i 1.46973i −0.678212 0.734866i \(-0.737245\pi\)
0.678212 0.734866i \(-0.262755\pi\)
\(564\) 0 0
\(565\) −15.6878 −0.659992
\(566\) 0 0
\(567\) −34.3271 −1.44160
\(568\) 0 0
\(569\) 37.3088i 1.56407i 0.623237 + 0.782033i \(0.285817\pi\)
−0.623237 + 0.782033i \(0.714183\pi\)
\(570\) 0 0
\(571\) −38.0372 −1.59181 −0.795904 0.605423i \(-0.793004\pi\)
−0.795904 + 0.605423i \(0.793004\pi\)
\(572\) 0 0
\(573\) 28.5973i 1.19467i
\(574\) 0 0
\(575\) 5.63570i 0.235025i
\(576\) 0 0
\(577\) 20.9993i 0.874211i −0.899410 0.437106i \(-0.856004\pi\)
0.899410 0.437106i \(-0.143996\pi\)
\(578\) 0 0
\(579\) 14.7928i 0.614769i
\(580\) 0 0
\(581\) 21.9767 0.911748
\(582\) 0 0
\(583\) 15.9633 0.661131
\(584\) 0 0
\(585\) 1.06156 0.0438899
\(586\) 0 0
\(587\) 27.7345i 1.14472i 0.820001 + 0.572362i \(0.193973\pi\)
−0.820001 + 0.572362i \(0.806027\pi\)
\(588\) 0 0
\(589\) −17.9839 −0.741013
\(590\) 0 0
\(591\) −39.5212 −1.62568
\(592\) 0 0
\(593\) 39.7067 1.63056 0.815279 0.579068i \(-0.196583\pi\)
0.815279 + 0.579068i \(0.196583\pi\)
\(594\) 0 0
\(595\) −14.7489 −0.604647
\(596\) 0 0
\(597\) 27.0554i 1.10731i
\(598\) 0 0
\(599\) 28.5431 1.16624 0.583120 0.812386i \(-0.301832\pi\)
0.583120 + 0.812386i \(0.301832\pi\)
\(600\) 0 0
\(601\) 16.5912 0.676769 0.338385 0.941008i \(-0.390120\pi\)
0.338385 + 0.941008i \(0.390120\pi\)
\(602\) 0 0
\(603\) 2.17817 0.0887018
\(604\) 0 0
\(605\) 2.89154i 0.117558i
\(606\) 0 0
\(607\) 4.78283i 0.194129i −0.995278 0.0970646i \(-0.969055\pi\)
0.995278 0.0970646i \(-0.0309453\pi\)
\(608\) 0 0
\(609\) 35.4719i 1.43739i
\(610\) 0 0
\(611\) 5.24421i 0.212158i
\(612\) 0 0
\(613\) −28.3666 −1.14572 −0.572858 0.819655i \(-0.694165\pi\)
−0.572858 + 0.819655i \(0.694165\pi\)
\(614\) 0 0
\(615\) 1.84005i 0.0741981i
\(616\) 0 0
\(617\) 13.9034 0.559729 0.279864 0.960040i \(-0.409711\pi\)
0.279864 + 0.960040i \(0.409711\pi\)
\(618\) 0 0
\(619\) 22.4541 0.902505 0.451253 0.892396i \(-0.350977\pi\)
0.451253 + 0.892396i \(0.350977\pi\)
\(620\) 0 0
\(621\) 6.06735i 0.243474i
\(622\) 0 0
\(623\) 13.9140i 0.557453i
\(624\) 0 0
\(625\) 13.2586 0.530343
\(626\) 0 0
\(627\) 15.8605i 0.633407i
\(628\) 0 0
\(629\) −30.2169 0.562522i −1.20483 0.0224292i
\(630\) 0 0
\(631\) 19.8239i 0.789178i 0.918858 + 0.394589i \(0.129113\pi\)
−0.918858 + 0.394589i \(0.870887\pi\)
\(632\) 0 0
\(633\) 11.0266 0.438267
\(634\) 0 0
\(635\) 11.5379i 0.457867i
\(636\) 0 0
\(637\) 6.53341i 0.258863i
\(638\) 0 0
\(639\) −5.96956 −0.236152
\(640\) 0 0
\(641\) −18.6096 −0.735035 −0.367517 0.930017i \(-0.619792\pi\)
−0.367517 + 0.930017i \(0.619792\pi\)
\(642\) 0 0
\(643\) 13.0142i 0.513229i 0.966514 + 0.256615i \(0.0826071\pi\)
−0.966514 + 0.256615i \(0.917393\pi\)
\(644\) 0 0
\(645\) −1.48138 −0.0583292
\(646\) 0 0
\(647\) 45.0225i 1.77002i −0.465576 0.885008i \(-0.654153\pi\)
0.465576 0.885008i \(-0.345847\pi\)
\(648\) 0 0
\(649\) 0.959240i 0.0376535i
\(650\) 0 0
\(651\) 37.7413i 1.47920i
\(652\) 0 0
\(653\) 6.43867i 0.251965i −0.992032 0.125982i \(-0.959792\pi\)
0.992032 0.125982i \(-0.0402083\pi\)
\(654\) 0 0
\(655\) −13.4187 −0.524312
\(656\) 0 0
\(657\) 10.3377 0.403313
\(658\) 0 0
\(659\) 47.4625 1.84888 0.924438 0.381331i \(-0.124534\pi\)
0.924438 + 0.381331i \(0.124534\pi\)
\(660\) 0 0
\(661\) 13.0845i 0.508930i 0.967082 + 0.254465i \(0.0818993\pi\)
−0.967082 + 0.254465i \(0.918101\pi\)
\(662\) 0 0
\(663\) −17.0554 −0.662378
\(664\) 0 0
\(665\) 8.81194 0.341712
\(666\) 0 0
\(667\) −7.69259 −0.297858
\(668\) 0 0
\(669\) 41.3712 1.59950
\(670\) 0 0
\(671\) 6.39032i 0.246696i
\(672\) 0 0
\(673\) 37.4652 1.44418 0.722088 0.691801i \(-0.243183\pi\)
0.722088 + 0.691801i \(0.243183\pi\)
\(674\) 0 0
\(675\) 18.7340 0.721072
\(676\) 0 0
\(677\) 27.3321 1.05046 0.525228 0.850961i \(-0.323980\pi\)
0.525228 + 0.850961i \(0.323980\pi\)
\(678\) 0 0
\(679\) 34.6964i 1.33152i
\(680\) 0 0
\(681\) 12.9816i 0.497456i
\(682\) 0 0
\(683\) 8.55627i 0.327397i −0.986510 0.163698i \(-0.947658\pi\)
0.986510 0.163698i \(-0.0523424\pi\)
\(684\) 0 0
\(685\) 9.94311i 0.379907i
\(686\) 0 0
\(687\) 14.3289 0.546683
\(688\) 0 0
\(689\) 10.2560i 0.390723i
\(690\) 0 0
\(691\) −48.6190 −1.84955 −0.924777 0.380509i \(-0.875749\pi\)
−0.924777 + 0.380509i \(0.875749\pi\)
\(692\) 0 0
\(693\) −5.91993 −0.224879
\(694\) 0 0
\(695\) 1.00895i 0.0382718i
\(696\) 0 0
\(697\) 5.25794i 0.199159i
\(698\) 0 0
\(699\) 23.0133 0.870442
\(700\) 0 0
\(701\) 40.5485i 1.53150i 0.643141 + 0.765748i \(0.277631\pi\)
−0.643141 + 0.765748i \(0.722369\pi\)
\(702\) 0 0
\(703\) 18.0535 + 0.336086i 0.680901 + 0.0126757i
\(704\) 0 0
\(705\) 5.07420i 0.191105i
\(706\) 0 0
\(707\) 8.01016 0.301253
\(708\) 0 0
\(709\) 5.70185i 0.214137i −0.994252 0.107069i \(-0.965854\pi\)
0.994252 0.107069i \(-0.0341465\pi\)
\(710\) 0 0
\(711\) 5.88532i 0.220717i
\(712\) 0 0
\(713\) 8.18476 0.306522
\(714\) 0 0
\(715\) −4.57509 −0.171099
\(716\) 0 0
\(717\) 11.2098i 0.418636i
\(718\) 0 0
\(719\) −18.2635 −0.681114 −0.340557 0.940224i \(-0.610616\pi\)
−0.340557 + 0.940224i \(0.610616\pi\)
\(720\) 0 0
\(721\) 56.2668i 2.09549i
\(722\) 0 0
\(723\) 42.8720i 1.59443i
\(724\) 0 0
\(725\) 23.7522i 0.882135i
\(726\) 0 0
\(727\) 17.9391i 0.665324i −0.943046 0.332662i \(-0.892053\pi\)
0.943046 0.332662i \(-0.107947\pi\)
\(728\) 0 0
\(729\) 18.9053 0.700196
\(730\) 0 0
\(731\) 4.23303 0.156564
\(732\) 0 0
\(733\) −42.1401 −1.55648 −0.778241 0.627966i \(-0.783888\pi\)
−0.778241 + 0.627966i \(0.783888\pi\)
\(734\) 0 0
\(735\) 6.32161i 0.233176i
\(736\) 0 0
\(737\) −9.38745 −0.345791
\(738\) 0 0
\(739\) 10.0950 0.371350 0.185675 0.982611i \(-0.440553\pi\)
0.185675 + 0.982611i \(0.440553\pi\)
\(740\) 0 0
\(741\) 10.1900 0.374339
\(742\) 0 0
\(743\) −21.0551 −0.772438 −0.386219 0.922407i \(-0.626219\pi\)
−0.386219 + 0.922407i \(0.626219\pi\)
\(744\) 0 0
\(745\) 3.58057i 0.131182i
\(746\) 0 0
\(747\) 4.37339 0.160014
\(748\) 0 0
\(749\) 35.1089 1.28285
\(750\) 0 0
\(751\) 28.6435 1.04522 0.522608 0.852573i \(-0.324959\pi\)
0.522608 + 0.852573i \(0.324959\pi\)
\(752\) 0 0
\(753\) 53.1385i 1.93647i
\(754\) 0 0
\(755\) 2.32024i 0.0844422i
\(756\) 0 0
\(757\) 32.8981i 1.19570i −0.801608 0.597850i \(-0.796022\pi\)
0.801608 0.597850i \(-0.203978\pi\)
\(758\) 0 0
\(759\) 7.21838i 0.262011i
\(760\) 0 0
\(761\) −28.2998 −1.02587 −0.512934 0.858428i \(-0.671441\pi\)
−0.512934 + 0.858428i \(0.671441\pi\)
\(762\) 0 0
\(763\) 43.4118i 1.57161i
\(764\) 0 0
\(765\) −2.93505 −0.106117
\(766\) 0 0
\(767\) 0.616289 0.0222529
\(768\) 0 0
\(769\) 50.9189i 1.83618i −0.396368 0.918092i \(-0.629729\pi\)
0.396368 0.918092i \(-0.370271\pi\)
\(770\) 0 0
\(771\) 0.0307857i 0.00110872i
\(772\) 0 0
\(773\) −50.0407 −1.79984 −0.899919 0.436057i \(-0.856375\pi\)
−0.899919 + 0.436057i \(0.856375\pi\)
\(774\) 0 0
\(775\) 25.2719i 0.907793i
\(776\) 0 0
\(777\) 0.705317 37.8874i 0.0253031 1.35920i
\(778\) 0 0
\(779\) 3.14143i 0.112553i
\(780\) 0 0
\(781\) 25.7276 0.920605
\(782\) 0 0
\(783\) 25.5714i 0.913849i
\(784\) 0 0
\(785\) 10.4355i 0.372461i
\(786\) 0 0
\(787\) 29.2290 1.04190 0.520951 0.853587i \(-0.325577\pi\)
0.520951 + 0.853587i \(0.325577\pi\)
\(788\) 0 0
\(789\) −22.0771 −0.785966
\(790\) 0 0
\(791\) 56.2074i 1.99850i
\(792\) 0 0
\(793\) 4.10563 0.145795
\(794\) 0 0
\(795\) 9.92352i 0.351951i
\(796\) 0 0
\(797\) 21.1819i 0.750303i −0.926964 0.375151i \(-0.877591\pi\)
0.926964 0.375151i \(-0.122409\pi\)
\(798\) 0 0
\(799\) 14.4995i 0.512956i
\(800\) 0 0
\(801\) 2.76890i 0.0978343i
\(802\) 0 0
\(803\) −44.5534 −1.57226
\(804\) 0 0
\(805\) −4.01046 −0.141350
\(806\) 0 0
\(807\) −32.5291 −1.14508
\(808\) 0 0
\(809\) 22.4021i 0.787616i −0.919193 0.393808i \(-0.871157\pi\)
0.919193 0.393808i \(-0.128843\pi\)
\(810\) 0 0
\(811\) −23.9788 −0.842011 −0.421005 0.907058i \(-0.638323\pi\)
−0.421005 + 0.907058i \(0.638323\pi\)
\(812\) 0 0
\(813\) −25.4650 −0.893098
\(814\) 0 0
\(815\) −18.2264 −0.638444
\(816\) 0 0
\(817\) −2.52908 −0.0884813
\(818\) 0 0
\(819\) 3.80341i 0.132902i
\(820\) 0 0
\(821\) 30.8891 1.07804 0.539018 0.842294i \(-0.318796\pi\)
0.539018 + 0.842294i \(0.318796\pi\)
\(822\) 0 0
\(823\) 38.3576 1.33706 0.668531 0.743684i \(-0.266923\pi\)
0.668531 + 0.743684i \(0.266923\pi\)
\(824\) 0 0
\(825\) 22.2880 0.775968
\(826\) 0 0
\(827\) 42.8395i 1.48967i −0.667247 0.744837i \(-0.732527\pi\)
0.667247 0.744837i \(-0.267473\pi\)
\(828\) 0 0
\(829\) 18.8390i 0.654305i 0.944972 + 0.327152i \(0.106089\pi\)
−0.944972 + 0.327152i \(0.893911\pi\)
\(830\) 0 0
\(831\) 23.1545i 0.803219i
\(832\) 0 0
\(833\) 18.0640i 0.625879i
\(834\) 0 0
\(835\) −8.92233 −0.308770
\(836\) 0 0
\(837\) 27.2075i 0.940428i
\(838\) 0 0
\(839\) −12.9754 −0.447959 −0.223980 0.974594i \(-0.571905\pi\)
−0.223980 + 0.974594i \(0.571905\pi\)
\(840\) 0 0
\(841\) −3.42119 −0.117972
\(842\) 0 0
\(843\) 42.3499i 1.45861i
\(844\) 0 0
\(845\) 8.89365i 0.305951i
\(846\) 0 0
\(847\) −10.3600 −0.355974
\(848\) 0 0
\(849\) 3.44673i 0.118291i
\(850\) 0 0
\(851\) −8.21645 0.152958i −0.281656 0.00524334i
\(852\) 0 0
\(853\) 39.3363i 1.34685i −0.739257 0.673424i \(-0.764823\pi\)
0.739257 0.673424i \(-0.235177\pi\)
\(854\) 0 0
\(855\) 1.75358 0.0599713
\(856\) 0 0
\(857\) 31.2096i 1.06610i 0.846084 + 0.533050i \(0.178954\pi\)
−0.846084 + 0.533050i \(0.821046\pi\)
\(858\) 0 0
\(859\) 2.16221i 0.0737736i 0.999319 + 0.0368868i \(0.0117441\pi\)
−0.999319 + 0.0368868i \(0.988256\pi\)
\(860\) 0 0
\(861\) 6.59266 0.224677
\(862\) 0 0
\(863\) −26.3803 −0.897997 −0.448998 0.893533i \(-0.648219\pi\)
−0.448998 + 0.893533i \(0.648219\pi\)
\(864\) 0 0
\(865\) 1.12110i 0.0381186i
\(866\) 0 0
\(867\) 14.6819 0.498622
\(868\) 0 0
\(869\) 25.3645i 0.860432i
\(870\) 0 0
\(871\) 6.03121i 0.204360i
\(872\) 0 0
\(873\) 6.90461i 0.233686i
\(874\) 0 0
\(875\) 27.2254i 0.920388i
\(876\) 0 0
\(877\) 32.4230 1.09485 0.547424 0.836855i \(-0.315609\pi\)
0.547424 + 0.836855i \(0.315609\pi\)
\(878\) 0 0
\(879\) 13.4575 0.453911
\(880\) 0 0
\(881\) −38.3448 −1.29187 −0.645934 0.763393i \(-0.723532\pi\)
−0.645934 + 0.763393i \(0.723532\pi\)
\(882\) 0 0
\(883\) 27.8047i 0.935703i 0.883807 + 0.467851i \(0.154972\pi\)
−0.883807 + 0.467851i \(0.845028\pi\)
\(884\) 0 0
\(885\) 0.596309 0.0200447
\(886\) 0 0
\(887\) 50.5700 1.69798 0.848988 0.528413i \(-0.177213\pi\)
0.848988 + 0.528413i \(0.177213\pi\)
\(888\) 0 0
\(889\) −41.3387 −1.38645
\(890\) 0 0
\(891\) 29.4408 0.986303
\(892\) 0 0
\(893\) 8.66292i 0.289894i
\(894\) 0 0
\(895\) −16.9658 −0.567105
\(896\) 0 0
\(897\) −4.63763 −0.154846
\(898\) 0 0
\(899\) 34.4955 1.15049
\(900\) 0 0
\(901\) 28.3564i 0.944689i
\(902\) 0 0
\(903\) 5.30758i 0.176625i
\(904\) 0 0
\(905\) 0.535946i 0.0178155i
\(906\) 0 0
\(907\) 45.0193i 1.49484i −0.664350 0.747421i \(-0.731292\pi\)
0.664350 0.747421i \(-0.268708\pi\)
\(908\) 0 0
\(909\) 1.59403 0.0528707
\(910\) 0 0
\(911\) 21.4683i 0.711275i −0.934624 0.355638i \(-0.884264\pi\)
0.934624 0.355638i \(-0.115736\pi\)
\(912\) 0 0
\(913\) −18.8484 −0.623791
\(914\) 0 0
\(915\) 3.97253 0.131328
\(916\) 0 0
\(917\) 48.0774i 1.58766i
\(918\) 0 0
\(919\) 36.2560i 1.19598i 0.801505 + 0.597988i \(0.204033\pi\)
−0.801505 + 0.597988i \(0.795967\pi\)
\(920\) 0 0
\(921\) −54.5049 −1.79600
\(922\) 0 0
\(923\) 16.5294i 0.544070i
\(924\) 0 0
\(925\) −0.472285 + 25.3697i −0.0155286 + 0.834151i
\(926\) 0 0
\(927\) 11.1972i 0.367763i
\(928\) 0 0
\(929\) 36.9772 1.21318 0.606591 0.795014i \(-0.292537\pi\)
0.606591 + 0.795014i \(0.292537\pi\)
\(930\) 0 0
\(931\) 10.7926i 0.353712i
\(932\) 0 0
\(933\) 50.5578i 1.65519i
\(934\) 0 0
\(935\) 12.6495 0.413682
\(936\) 0 0
\(937\) 18.1098 0.591622 0.295811 0.955246i \(-0.404410\pi\)
0.295811 + 0.955246i \(0.404410\pi\)
\(938\) 0 0
\(939\) 24.1566i 0.788319i
\(940\) 0 0
\(941\) 16.7271 0.545289 0.272645 0.962115i \(-0.412102\pi\)
0.272645 + 0.962115i \(0.412102\pi\)
\(942\) 0 0
\(943\) 1.42972i 0.0465580i
\(944\) 0 0
\(945\) 13.3314i 0.433671i
\(946\) 0 0
\(947\) 30.1461i 0.979616i 0.871830 + 0.489808i \(0.162933\pi\)
−0.871830 + 0.489808i \(0.837067\pi\)
\(948\) 0 0
\(949\) 28.6245i 0.929191i
\(950\) 0 0
\(951\) −41.8740 −1.35786
\(952\) 0 0
\(953\) 19.9223 0.645348 0.322674 0.946510i \(-0.395418\pi\)
0.322674 + 0.946510i \(0.395418\pi\)
\(954\) 0 0
\(955\) −13.6267 −0.440951
\(956\) 0 0
\(957\) 30.4226i 0.983422i
\(958\) 0 0
\(959\) −35.6248 −1.15039
\(960\) 0 0
\(961\) −5.70249 −0.183951
\(962\) 0 0
\(963\) 6.98671 0.225144
\(964\) 0 0
\(965\) 7.04883 0.226910
\(966\) 0 0
\(967\) 46.4490i 1.49370i −0.664992 0.746850i \(-0.731565\pi\)
0.664992 0.746850i \(-0.268435\pi\)
\(968\) 0 0
\(969\) −28.1739 −0.905075
\(970\) 0 0
\(971\) 47.1179 1.51209 0.756043 0.654522i \(-0.227130\pi\)
0.756043 + 0.654522i \(0.227130\pi\)
\(972\) 0 0
\(973\) −3.61495 −0.115890
\(974\) 0 0
\(975\) 14.3195i 0.458591i
\(976\) 0 0
\(977\) 35.3150i 1.12983i −0.825150 0.564914i \(-0.808909\pi\)
0.825150 0.564914i \(-0.191091\pi\)
\(978\) 0 0
\(979\) 11.9334i 0.381393i
\(980\) 0 0
\(981\) 8.63900i 0.275822i
\(982\) 0 0
\(983\) −20.2641 −0.646325 −0.323162 0.946344i \(-0.604746\pi\)
−0.323162 + 0.946344i \(0.604746\pi\)
\(984\) 0 0
\(985\) 18.8320i 0.600037i
\(986\) 0 0
\(987\) 18.1802 0.578681
\(988\) 0 0
\(989\) 1.15103 0.0366005
\(990\) 0 0
\(991\) 22.2138i 0.705644i 0.935690 + 0.352822i \(0.114778\pi\)
−0.935690 + 0.352822i \(0.885222\pi\)
\(992\) 0 0
\(993\) 12.8224i 0.406907i
\(994\) 0 0
\(995\) −12.8920 −0.408704
\(996\) 0 0
\(997\) 38.5921i 1.22222i 0.791544 + 0.611112i \(0.209278\pi\)
−0.791544 + 0.611112i \(0.790722\pi\)
\(998\) 0 0
\(999\) −0.508458 + 27.3128i −0.0160869 + 0.864139i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2368.2.g.m.961.4 8
4.3 odd 2 2368.2.g.n.961.6 8
8.3 odd 2 1184.2.g.g.961.3 8
8.5 even 2 1184.2.g.h.961.5 yes 8
37.36 even 2 inner 2368.2.g.m.961.3 8
148.147 odd 2 2368.2.g.n.961.5 8
296.147 odd 2 1184.2.g.g.961.4 yes 8
296.221 even 2 1184.2.g.h.961.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1184.2.g.g.961.3 8 8.3 odd 2
1184.2.g.g.961.4 yes 8 296.147 odd 2
1184.2.g.h.961.5 yes 8 8.5 even 2
1184.2.g.h.961.6 yes 8 296.221 even 2
2368.2.g.m.961.3 8 37.36 even 2 inner
2368.2.g.m.961.4 8 1.1 even 1 trivial
2368.2.g.n.961.5 8 148.147 odd 2
2368.2.g.n.961.6 8 4.3 odd 2