Properties

Label 2366.4.bi
Level $2366$
Weight $4$
Character orbit 2366.bi
Rep. character $\chi_{2366}(9,\cdot)$
Character field $\Q(\zeta_{39})$
Dimension $8736$
Sturm bound $1456$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2366.bi (of order \(39\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1183 \)
Character field: \(\Q(\zeta_{39})\)
Sturm bound: \(1456\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2366, [\chi])\).

Total New Old
Modular forms 26304 8736 17568
Cusp forms 26112 8736 17376
Eisenstein series 192 0 192

Trace form

\( 8736 q + 1456 q^{4} - 32 q^{7} - 6616 q^{9} + 80 q^{10} + 60 q^{11} - 1416 q^{13} - 4 q^{14} + 444 q^{15} + 5824 q^{16} - 136 q^{17} - 48 q^{18} + 540 q^{19} + 116 q^{21} - 52 q^{23} + 9100 q^{25} - 116 q^{26}+ \cdots + 5476 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2366, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2366, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2366, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(1183, [\chi])\)\(^{\oplus 2}\)