Properties

Label 2366.4.bf
Level $2366$
Weight $4$
Character orbit 2366.bf
Rep. character $\chi_{2366}(155,\cdot)$
Character field $\Q(\zeta_{26})$
Dimension $3264$
Sturm bound $1456$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2366.bf (of order \(26\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 169 \)
Character field: \(\Q(\zeta_{26})\)
Sturm bound: \(1456\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(2366, [\chi])\).

Total New Old
Modular forms 13152 3264 9888
Cusp forms 13056 3264 9792
Eisenstein series 96 0 96

Trace form

\( 3264 q + 1088 q^{4} - 2348 q^{9} - 112 q^{10} - 120 q^{13} + 56 q^{14} - 572 q^{15} - 4352 q^{16} + 184 q^{17} - 1056 q^{22} - 464 q^{23} + 6716 q^{25} + 144 q^{26} - 624 q^{27} + 972 q^{29} - 5168 q^{30}+ \cdots + 1736 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(2366, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(2366, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(2366, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(1183, [\chi])\)\(^{\oplus 2}\)