Properties

Label 2366.2.d.r.337.9
Level $2366$
Weight $2$
Character 2366.337
Analytic conductor $18.893$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,2,Mod(337,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,4,-12,0,0,0,0,12,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.9
Root \(0.500000 + 0.399480i\) of defining polynomial
Character \(\chi\) \(=\) 2366.337
Dual form 2366.2.d.r.337.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -0.466545 q^{3} -1.00000 q^{4} +3.38938i q^{5} -0.466545i q^{6} -1.00000i q^{7} -1.00000i q^{8} -2.78234 q^{9} -3.38938 q^{10} +0.822730i q^{11} +0.466545 q^{12} +1.00000 q^{14} -1.58130i q^{15} +1.00000 q^{16} -4.58130 q^{17} -2.78234i q^{18} +5.90621i q^{19} -3.38938i q^{20} +0.466545i q^{21} -0.822730 q^{22} +6.13055 q^{23} +0.466545i q^{24} -6.48787 q^{25} +2.69772 q^{27} +1.00000i q^{28} -6.86813 q^{29} +1.58130 q^{30} +4.28683i q^{31} +1.00000i q^{32} -0.383841i q^{33} -4.58130i q^{34} +3.38938 q^{35} +2.78234 q^{36} -9.69086i q^{37} -5.90621 q^{38} +3.38938 q^{40} -0.0893760i q^{41} -0.466545 q^{42} -7.35374 q^{43} -0.822730i q^{44} -9.43038i q^{45} +6.13055i q^{46} -11.1759i q^{47} -0.466545 q^{48} -1.00000 q^{49} -6.48787i q^{50} +2.13738 q^{51} -7.01530 q^{53} +2.69772i q^{54} -2.78854 q^{55} -1.00000 q^{56} -2.75551i q^{57} -6.86813i q^{58} -1.74117i q^{59} +1.58130i q^{60} +2.37945 q^{61} -4.28683 q^{62} +2.78234i q^{63} -1.00000 q^{64} +0.383841 q^{66} +0.291719i q^{67} +4.58130 q^{68} -2.86018 q^{69} +3.38938i q^{70} -10.9484i q^{71} +2.78234i q^{72} +12.7187i q^{73} +9.69086 q^{74} +3.02688 q^{75} -5.90621i q^{76} +0.822730 q^{77} +9.95602 q^{79} +3.38938i q^{80} +7.08840 q^{81} +0.0893760 q^{82} -3.23553i q^{83} -0.466545i q^{84} -15.5277i q^{85} -7.35374i q^{86} +3.20429 q^{87} +0.822730 q^{88} +8.04265i q^{89} +9.43038 q^{90} -6.13055 q^{92} -2.00000i q^{93} +11.1759 q^{94} -20.0184 q^{95} -0.466545i q^{96} -14.7739i q^{97} -1.00000i q^{98} -2.28911i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 12 q^{4} + 12 q^{9} + 4 q^{10} - 4 q^{12} + 12 q^{14} + 12 q^{16} - 8 q^{17} + 4 q^{22} + 12 q^{23} - 24 q^{25} + 40 q^{27} + 20 q^{29} - 28 q^{30} - 4 q^{35} - 12 q^{36} + 8 q^{38} - 4 q^{40}+ \cdots - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2366\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(2199\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −0.466545 −0.269360 −0.134680 0.990889i \(-0.543001\pi\)
−0.134680 + 0.990889i \(0.543001\pi\)
\(4\) −1.00000 −0.500000
\(5\) 3.38938i 1.51578i 0.652385 + 0.757888i \(0.273768\pi\)
−0.652385 + 0.757888i \(0.726232\pi\)
\(6\) − 0.466545i − 0.190466i
\(7\) − 1.00000i − 0.377964i
\(8\) − 1.00000i − 0.353553i
\(9\) −2.78234 −0.927445
\(10\) −3.38938 −1.07181
\(11\) 0.822730i 0.248063i 0.992278 + 0.124031i \(0.0395823\pi\)
−0.992278 + 0.124031i \(0.960418\pi\)
\(12\) 0.466545 0.134680
\(13\) 0 0
\(14\) 1.00000 0.267261
\(15\) − 1.58130i − 0.408289i
\(16\) 1.00000 0.250000
\(17\) −4.58130 −1.11113 −0.555564 0.831474i \(-0.687498\pi\)
−0.555564 + 0.831474i \(0.687498\pi\)
\(18\) − 2.78234i − 0.655803i
\(19\) 5.90621i 1.35498i 0.735534 + 0.677488i \(0.236932\pi\)
−0.735534 + 0.677488i \(0.763068\pi\)
\(20\) − 3.38938i − 0.757888i
\(21\) 0.466545i 0.101808i
\(22\) −0.822730 −0.175407
\(23\) 6.13055 1.27831 0.639154 0.769079i \(-0.279285\pi\)
0.639154 + 0.769079i \(0.279285\pi\)
\(24\) 0.466545i 0.0952331i
\(25\) −6.48787 −1.29757
\(26\) 0 0
\(27\) 2.69772 0.519176
\(28\) 1.00000i 0.188982i
\(29\) −6.86813 −1.27538 −0.637690 0.770293i \(-0.720110\pi\)
−0.637690 + 0.770293i \(0.720110\pi\)
\(30\) 1.58130 0.288704
\(31\) 4.28683i 0.769938i 0.922930 + 0.384969i \(0.125788\pi\)
−0.922930 + 0.384969i \(0.874212\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 0.383841i − 0.0668181i
\(34\) − 4.58130i − 0.785686i
\(35\) 3.38938 0.572909
\(36\) 2.78234 0.463723
\(37\) − 9.69086i − 1.59317i −0.604528 0.796584i \(-0.706638\pi\)
0.604528 0.796584i \(-0.293362\pi\)
\(38\) −5.90621 −0.958113
\(39\) 0 0
\(40\) 3.38938 0.535907
\(41\) − 0.0893760i − 0.0139582i −0.999976 0.00697909i \(-0.997778\pi\)
0.999976 0.00697909i \(-0.00222153\pi\)
\(42\) −0.466545 −0.0719895
\(43\) −7.35374 −1.12144 −0.560718 0.828007i \(-0.689475\pi\)
−0.560718 + 0.828007i \(0.689475\pi\)
\(44\) − 0.822730i − 0.124031i
\(45\) − 9.43038i − 1.40580i
\(46\) 6.13055i 0.903900i
\(47\) − 11.1759i − 1.63018i −0.579335 0.815089i \(-0.696688\pi\)
0.579335 0.815089i \(-0.303312\pi\)
\(48\) −0.466545 −0.0673400
\(49\) −1.00000 −0.142857
\(50\) − 6.48787i − 0.917524i
\(51\) 2.13738 0.299293
\(52\) 0 0
\(53\) −7.01530 −0.963625 −0.481813 0.876274i \(-0.660021\pi\)
−0.481813 + 0.876274i \(0.660021\pi\)
\(54\) 2.69772i 0.367113i
\(55\) −2.78854 −0.376007
\(56\) −1.00000 −0.133631
\(57\) − 2.75551i − 0.364976i
\(58\) − 6.86813i − 0.901829i
\(59\) − 1.74117i − 0.226681i −0.993556 0.113340i \(-0.963845\pi\)
0.993556 0.113340i \(-0.0361551\pi\)
\(60\) 1.58130i 0.204145i
\(61\) 2.37945 0.304657 0.152329 0.988330i \(-0.451323\pi\)
0.152329 + 0.988330i \(0.451323\pi\)
\(62\) −4.28683 −0.544428
\(63\) 2.78234i 0.350541i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0.383841 0.0472475
\(67\) 0.291719i 0.0356391i 0.999841 + 0.0178196i \(0.00567244\pi\)
−0.999841 + 0.0178196i \(0.994328\pi\)
\(68\) 4.58130 0.555564
\(69\) −2.86018 −0.344325
\(70\) 3.38938i 0.405108i
\(71\) − 10.9484i − 1.29933i −0.760219 0.649667i \(-0.774908\pi\)
0.760219 0.649667i \(-0.225092\pi\)
\(72\) 2.78234i 0.327901i
\(73\) 12.7187i 1.48861i 0.667841 + 0.744304i \(0.267219\pi\)
−0.667841 + 0.744304i \(0.732781\pi\)
\(74\) 9.69086 1.12654
\(75\) 3.02688 0.349514
\(76\) − 5.90621i − 0.677488i
\(77\) 0.822730 0.0937588
\(78\) 0 0
\(79\) 9.95602 1.12014 0.560070 0.828445i \(-0.310774\pi\)
0.560070 + 0.828445i \(0.310774\pi\)
\(80\) 3.38938i 0.378944i
\(81\) 7.08840 0.787600
\(82\) 0.0893760 0.00986993
\(83\) − 3.23553i − 0.355146i −0.984108 0.177573i \(-0.943175\pi\)
0.984108 0.177573i \(-0.0568246\pi\)
\(84\) − 0.466545i − 0.0509042i
\(85\) − 15.5277i − 1.68422i
\(86\) − 7.35374i − 0.792974i
\(87\) 3.20429 0.343536
\(88\) 0.822730 0.0877033
\(89\) 8.04265i 0.852519i 0.904601 + 0.426260i \(0.140169\pi\)
−0.904601 + 0.426260i \(0.859831\pi\)
\(90\) 9.43038 0.994050
\(91\) 0 0
\(92\) −6.13055 −0.639154
\(93\) − 2.00000i − 0.207390i
\(94\) 11.1759 1.15271
\(95\) −20.0184 −2.05384
\(96\) − 0.466545i − 0.0476166i
\(97\) − 14.7739i − 1.50006i −0.661405 0.750029i \(-0.730039\pi\)
0.661405 0.750029i \(-0.269961\pi\)
\(98\) − 1.00000i − 0.101015i
\(99\) − 2.28911i − 0.230064i
\(100\) 6.48787 0.648787
\(101\) 8.23976 0.819887 0.409943 0.912111i \(-0.365548\pi\)
0.409943 + 0.912111i \(0.365548\pi\)
\(102\) 2.13738i 0.211632i
\(103\) −13.3231 −1.31277 −0.656383 0.754428i \(-0.727914\pi\)
−0.656383 + 0.754428i \(0.727914\pi\)
\(104\) 0 0
\(105\) −1.58130 −0.154319
\(106\) − 7.01530i − 0.681386i
\(107\) −9.02649 −0.872624 −0.436312 0.899795i \(-0.643716\pi\)
−0.436312 + 0.899795i \(0.643716\pi\)
\(108\) −2.69772 −0.259588
\(109\) 0.397192i 0.0380441i 0.999819 + 0.0190220i \(0.00605527\pi\)
−0.999819 + 0.0190220i \(0.993945\pi\)
\(110\) − 2.78854i − 0.265877i
\(111\) 4.52122i 0.429135i
\(112\) − 1.00000i − 0.0944911i
\(113\) 4.47322 0.420805 0.210402 0.977615i \(-0.432523\pi\)
0.210402 + 0.977615i \(0.432523\pi\)
\(114\) 2.75551 0.258077
\(115\) 20.7787i 1.93763i
\(116\) 6.86813 0.637690
\(117\) 0 0
\(118\) 1.74117 0.160288
\(119\) 4.58130i 0.419967i
\(120\) −1.58130 −0.144352
\(121\) 10.3231 0.938465
\(122\) 2.37945i 0.215425i
\(123\) 0.0416979i 0.00375978i
\(124\) − 4.28683i − 0.384969i
\(125\) − 5.04295i − 0.451056i
\(126\) −2.78234 −0.247870
\(127\) 0.540127 0.0479285 0.0239642 0.999713i \(-0.492371\pi\)
0.0239642 + 0.999713i \(0.492371\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 3.43085 0.302070
\(130\) 0 0
\(131\) −7.72615 −0.675037 −0.337518 0.941319i \(-0.609587\pi\)
−0.337518 + 0.941319i \(0.609587\pi\)
\(132\) 0.383841i 0.0334090i
\(133\) 5.90621 0.512133
\(134\) −0.291719 −0.0252007
\(135\) 9.14359i 0.786955i
\(136\) 4.58130i 0.392843i
\(137\) − 12.5401i − 1.07137i −0.844417 0.535687i \(-0.820053\pi\)
0.844417 0.535687i \(-0.179947\pi\)
\(138\) − 2.86018i − 0.243474i
\(139\) 12.0974 1.02608 0.513042 0.858363i \(-0.328518\pi\)
0.513042 + 0.858363i \(0.328518\pi\)
\(140\) −3.38938 −0.286455
\(141\) 5.21408i 0.439105i
\(142\) 10.9484 0.918768
\(143\) 0 0
\(144\) −2.78234 −0.231861
\(145\) − 23.2787i − 1.93319i
\(146\) −12.7187 −1.05261
\(147\) 0.466545 0.0384800
\(148\) 9.69086i 0.796584i
\(149\) − 17.0078i − 1.39333i −0.717395 0.696666i \(-0.754666\pi\)
0.717395 0.696666i \(-0.245334\pi\)
\(150\) 3.02688i 0.247144i
\(151\) − 5.54567i − 0.451300i −0.974208 0.225650i \(-0.927549\pi\)
0.974208 0.225650i \(-0.0724506\pi\)
\(152\) 5.90621 0.479057
\(153\) 12.7467 1.03051
\(154\) 0.822730i 0.0662975i
\(155\) −14.5297 −1.16705
\(156\) 0 0
\(157\) 2.29353 0.183044 0.0915218 0.995803i \(-0.470827\pi\)
0.0915218 + 0.995803i \(0.470827\pi\)
\(158\) 9.95602i 0.792059i
\(159\) 3.27295 0.259562
\(160\) −3.38938 −0.267954
\(161\) − 6.13055i − 0.483155i
\(162\) 7.08840i 0.556917i
\(163\) 23.3560i 1.82938i 0.404155 + 0.914691i \(0.367566\pi\)
−0.404155 + 0.914691i \(0.632434\pi\)
\(164\) 0.0893760i 0.00697909i
\(165\) 1.30098 0.101281
\(166\) 3.23553 0.251126
\(167\) − 21.7780i − 1.68523i −0.538517 0.842614i \(-0.681015\pi\)
0.538517 0.842614i \(-0.318985\pi\)
\(168\) 0.466545 0.0359947
\(169\) 0 0
\(170\) 15.5277 1.19092
\(171\) − 16.4330i − 1.25667i
\(172\) 7.35374 0.560718
\(173\) −8.09733 −0.615629 −0.307814 0.951446i \(-0.599598\pi\)
−0.307814 + 0.951446i \(0.599598\pi\)
\(174\) 3.20429i 0.242917i
\(175\) 6.48787i 0.490437i
\(176\) 0.822730i 0.0620156i
\(177\) 0.812334i 0.0610588i
\(178\) −8.04265 −0.602822
\(179\) −9.90883 −0.740621 −0.370310 0.928908i \(-0.620749\pi\)
−0.370310 + 0.928908i \(0.620749\pi\)
\(180\) 9.43038i 0.702899i
\(181\) 1.27902 0.0950685 0.0475343 0.998870i \(-0.484864\pi\)
0.0475343 + 0.998870i \(0.484864\pi\)
\(182\) 0 0
\(183\) −1.11012 −0.0820624
\(184\) − 6.13055i − 0.451950i
\(185\) 32.8460 2.41488
\(186\) 2.00000 0.146647
\(187\) − 3.76917i − 0.275629i
\(188\) 11.1759i 0.815089i
\(189\) − 2.69772i − 0.196230i
\(190\) − 20.0184i − 1.45228i
\(191\) −10.0342 −0.726050 −0.363025 0.931779i \(-0.618256\pi\)
−0.363025 + 0.931779i \(0.618256\pi\)
\(192\) 0.466545 0.0336700
\(193\) − 15.8582i − 1.14150i −0.821124 0.570750i \(-0.806653\pi\)
0.821124 0.570750i \(-0.193347\pi\)
\(194\) 14.7739 1.06070
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 14.8081i 1.05503i 0.849546 + 0.527515i \(0.176876\pi\)
−0.849546 + 0.527515i \(0.823124\pi\)
\(198\) 2.28911 0.162680
\(199\) 2.55543 0.181149 0.0905747 0.995890i \(-0.471130\pi\)
0.0905747 + 0.995890i \(0.471130\pi\)
\(200\) 6.48787i 0.458762i
\(201\) − 0.136100i − 0.00959974i
\(202\) 8.23976i 0.579748i
\(203\) 6.86813i 0.482048i
\(204\) −2.13738 −0.149647
\(205\) 0.302929 0.0211575
\(206\) − 13.3231i − 0.928265i
\(207\) −17.0572 −1.18556
\(208\) 0 0
\(209\) −4.85921 −0.336119
\(210\) − 1.58130i − 0.109120i
\(211\) −8.63648 −0.594560 −0.297280 0.954790i \(-0.596080\pi\)
−0.297280 + 0.954790i \(0.596080\pi\)
\(212\) 7.01530 0.481813
\(213\) 5.10792i 0.349989i
\(214\) − 9.02649i − 0.617038i
\(215\) − 24.9246i − 1.69984i
\(216\) − 2.69772i − 0.183557i
\(217\) 4.28683 0.291009
\(218\) −0.397192 −0.0269012
\(219\) − 5.93384i − 0.400971i
\(220\) 2.78854 0.188003
\(221\) 0 0
\(222\) −4.52122 −0.303445
\(223\) − 19.9277i − 1.33446i −0.744854 0.667228i \(-0.767481\pi\)
0.744854 0.667228i \(-0.232519\pi\)
\(224\) 1.00000 0.0668153
\(225\) 18.0514 1.20343
\(226\) 4.47322i 0.297554i
\(227\) − 0.352624i − 0.0234045i −0.999932 0.0117022i \(-0.996275\pi\)
0.999932 0.0117022i \(-0.00372502\pi\)
\(228\) 2.75551i 0.182488i
\(229\) 8.31317i 0.549350i 0.961537 + 0.274675i \(0.0885702\pi\)
−0.961537 + 0.274675i \(0.911430\pi\)
\(230\) −20.7787 −1.37011
\(231\) −0.383841 −0.0252549
\(232\) 6.86813i 0.450915i
\(233\) −15.3798 −1.00756 −0.503781 0.863831i \(-0.668058\pi\)
−0.503781 + 0.863831i \(0.668058\pi\)
\(234\) 0 0
\(235\) 37.8795 2.47098
\(236\) 1.74117i 0.113340i
\(237\) −4.64493 −0.301721
\(238\) −4.58130 −0.296961
\(239\) − 2.88606i − 0.186684i −0.995634 0.0933418i \(-0.970245\pi\)
0.995634 0.0933418i \(-0.0297549\pi\)
\(240\) − 1.58130i − 0.102072i
\(241\) 6.26744i 0.403722i 0.979414 + 0.201861i \(0.0646988\pi\)
−0.979414 + 0.201861i \(0.935301\pi\)
\(242\) 10.3231i 0.663595i
\(243\) −11.4002 −0.731324
\(244\) −2.37945 −0.152329
\(245\) − 3.38938i − 0.216539i
\(246\) −0.0416979 −0.00265856
\(247\) 0 0
\(248\) 4.28683 0.272214
\(249\) 1.50952i 0.0956621i
\(250\) 5.04295 0.318944
\(251\) −17.2665 −1.08985 −0.544926 0.838484i \(-0.683442\pi\)
−0.544926 + 0.838484i \(0.683442\pi\)
\(252\) − 2.78234i − 0.175271i
\(253\) 5.04379i 0.317100i
\(254\) 0.540127i 0.0338906i
\(255\) 7.24439i 0.453661i
\(256\) 1.00000 0.0625000
\(257\) 11.1931 0.698206 0.349103 0.937084i \(-0.386486\pi\)
0.349103 + 0.937084i \(0.386486\pi\)
\(258\) 3.43085i 0.213595i
\(259\) −9.69086 −0.602161
\(260\) 0 0
\(261\) 19.1094 1.18284
\(262\) − 7.72615i − 0.477323i
\(263\) −28.5826 −1.76248 −0.881240 0.472668i \(-0.843291\pi\)
−0.881240 + 0.472668i \(0.843291\pi\)
\(264\) −0.383841 −0.0236238
\(265\) − 23.7775i − 1.46064i
\(266\) 5.90621i 0.362133i
\(267\) − 3.75226i − 0.229635i
\(268\) − 0.291719i − 0.0178196i
\(269\) −18.3754 −1.12037 −0.560183 0.828369i \(-0.689269\pi\)
−0.560183 + 0.828369i \(0.689269\pi\)
\(270\) −9.14359 −0.556461
\(271\) 20.3825i 1.23815i 0.785332 + 0.619075i \(0.212492\pi\)
−0.785332 + 0.619075i \(0.787508\pi\)
\(272\) −4.58130 −0.277782
\(273\) 0 0
\(274\) 12.5401 0.757575
\(275\) − 5.33777i − 0.321880i
\(276\) 2.86018 0.172162
\(277\) −7.23219 −0.434540 −0.217270 0.976112i \(-0.569715\pi\)
−0.217270 + 0.976112i \(0.569715\pi\)
\(278\) 12.0974i 0.725551i
\(279\) − 11.9274i − 0.714075i
\(280\) − 3.38938i − 0.202554i
\(281\) − 12.4585i − 0.743215i −0.928390 0.371607i \(-0.878807\pi\)
0.928390 0.371607i \(-0.121193\pi\)
\(282\) −5.21408 −0.310494
\(283\) −13.0607 −0.776378 −0.388189 0.921580i \(-0.626899\pi\)
−0.388189 + 0.921580i \(0.626899\pi\)
\(284\) 10.9484i 0.649667i
\(285\) 9.33946 0.553222
\(286\) 0 0
\(287\) −0.0893760 −0.00527570
\(288\) − 2.78234i − 0.163951i
\(289\) 3.98828 0.234605
\(290\) 23.2787 1.36697
\(291\) 6.89267i 0.404056i
\(292\) − 12.7187i − 0.744304i
\(293\) 14.5582i 0.850498i 0.905076 + 0.425249i \(0.139813\pi\)
−0.905076 + 0.425249i \(0.860187\pi\)
\(294\) 0.466545i 0.0272095i
\(295\) 5.90148 0.343597
\(296\) −9.69086 −0.563270
\(297\) 2.21950i 0.128788i
\(298\) 17.0078 0.985235
\(299\) 0 0
\(300\) −3.02688 −0.174757
\(301\) 7.35374i 0.423863i
\(302\) 5.54567 0.319117
\(303\) −3.84422 −0.220845
\(304\) 5.90621i 0.338744i
\(305\) 8.06485i 0.461792i
\(306\) 12.7467i 0.728681i
\(307\) 3.24267i 0.185069i 0.995709 + 0.0925345i \(0.0294968\pi\)
−0.995709 + 0.0925345i \(0.970503\pi\)
\(308\) −0.822730 −0.0468794
\(309\) 6.21583 0.353606
\(310\) − 14.5297i − 0.825231i
\(311\) −10.2709 −0.582408 −0.291204 0.956661i \(-0.594056\pi\)
−0.291204 + 0.956661i \(0.594056\pi\)
\(312\) 0 0
\(313\) −6.13382 −0.346704 −0.173352 0.984860i \(-0.555460\pi\)
−0.173352 + 0.984860i \(0.555460\pi\)
\(314\) 2.29353i 0.129431i
\(315\) −9.43038 −0.531342
\(316\) −9.95602 −0.560070
\(317\) − 5.04487i − 0.283348i −0.989913 0.141674i \(-0.954752\pi\)
0.989913 0.141674i \(-0.0452485\pi\)
\(318\) 3.27295i 0.183538i
\(319\) − 5.65062i − 0.316374i
\(320\) − 3.38938i − 0.189472i
\(321\) 4.21127 0.235050
\(322\) 6.13055 0.341642
\(323\) − 27.0581i − 1.50555i
\(324\) −7.08840 −0.393800
\(325\) 0 0
\(326\) −23.3560 −1.29357
\(327\) − 0.185308i − 0.0102475i
\(328\) −0.0893760 −0.00493496
\(329\) −11.1759 −0.616150
\(330\) 1.30098i 0.0716166i
\(331\) 23.0874i 1.26900i 0.772924 + 0.634499i \(0.218793\pi\)
−0.772924 + 0.634499i \(0.781207\pi\)
\(332\) 3.23553i 0.177573i
\(333\) 26.9632i 1.47758i
\(334\) 21.7780 1.19164
\(335\) −0.988744 −0.0540209
\(336\) 0.466545i 0.0254521i
\(337\) 29.1429 1.58751 0.793757 0.608235i \(-0.208122\pi\)
0.793757 + 0.608235i \(0.208122\pi\)
\(338\) 0 0
\(339\) −2.08696 −0.113348
\(340\) 15.5277i 0.842110i
\(341\) −3.52691 −0.190993
\(342\) 16.4330 0.888597
\(343\) 1.00000i 0.0539949i
\(344\) 7.35374i 0.396487i
\(345\) − 9.69421i − 0.521919i
\(346\) − 8.09733i − 0.435315i
\(347\) −29.1082 −1.56261 −0.781306 0.624148i \(-0.785446\pi\)
−0.781306 + 0.624148i \(0.785446\pi\)
\(348\) −3.20429 −0.171768
\(349\) 25.7802i 1.37998i 0.723817 + 0.689992i \(0.242386\pi\)
−0.723817 + 0.689992i \(0.757614\pi\)
\(350\) −6.48787 −0.346791
\(351\) 0 0
\(352\) −0.822730 −0.0438517
\(353\) − 9.91779i − 0.527871i −0.964540 0.263935i \(-0.914979\pi\)
0.964540 0.263935i \(-0.0850206\pi\)
\(354\) −0.812334 −0.0431751
\(355\) 37.1082 1.96950
\(356\) − 8.04265i − 0.426260i
\(357\) − 2.13738i − 0.113122i
\(358\) − 9.90883i − 0.523698i
\(359\) 25.2683i 1.33361i 0.745233 + 0.666804i \(0.232338\pi\)
−0.745233 + 0.666804i \(0.767662\pi\)
\(360\) −9.43038 −0.497025
\(361\) −15.8833 −0.835962
\(362\) 1.27902i 0.0672236i
\(363\) −4.81620 −0.252785
\(364\) 0 0
\(365\) −43.1084 −2.25640
\(366\) − 1.11012i − 0.0580269i
\(367\) 35.7838 1.86790 0.933950 0.357404i \(-0.116338\pi\)
0.933950 + 0.357404i \(0.116338\pi\)
\(368\) 6.13055 0.319577
\(369\) 0.248674i 0.0129455i
\(370\) 32.8460i 1.70758i
\(371\) 7.01530i 0.364216i
\(372\) 2.00000i 0.103695i
\(373\) −23.3304 −1.20800 −0.604000 0.796984i \(-0.706427\pi\)
−0.604000 + 0.796984i \(0.706427\pi\)
\(374\) 3.76917 0.194899
\(375\) 2.35277i 0.121496i
\(376\) −11.1759 −0.576355
\(377\) 0 0
\(378\) 2.69772 0.138756
\(379\) 24.3066i 1.24855i 0.781206 + 0.624274i \(0.214605\pi\)
−0.781206 + 0.624274i \(0.785395\pi\)
\(380\) 20.0184 1.02692
\(381\) −0.251993 −0.0129100
\(382\) − 10.0342i − 0.513395i
\(383\) − 4.91150i − 0.250966i −0.992096 0.125483i \(-0.959952\pi\)
0.992096 0.125483i \(-0.0400480\pi\)
\(384\) 0.466545i 0.0238083i
\(385\) 2.78854i 0.142117i
\(386\) 15.8582 0.807162
\(387\) 20.4606 1.04007
\(388\) 14.7739i 0.750029i
\(389\) −5.14522 −0.260873 −0.130437 0.991457i \(-0.541638\pi\)
−0.130437 + 0.991457i \(0.541638\pi\)
\(390\) 0 0
\(391\) −28.0858 −1.42036
\(392\) 1.00000i 0.0505076i
\(393\) 3.60460 0.181828
\(394\) −14.8081 −0.746019
\(395\) 33.7447i 1.69788i
\(396\) 2.28911i 0.115032i
\(397\) 12.3500i 0.619827i 0.950765 + 0.309913i \(0.100300\pi\)
−0.950765 + 0.309913i \(0.899700\pi\)
\(398\) 2.55543i 0.128092i
\(399\) −2.75551 −0.137948
\(400\) −6.48787 −0.324394
\(401\) 32.4894i 1.62244i 0.584739 + 0.811221i \(0.301197\pi\)
−0.584739 + 0.811221i \(0.698803\pi\)
\(402\) 0.136100 0.00678804
\(403\) 0 0
\(404\) −8.23976 −0.409943
\(405\) 24.0253i 1.19382i
\(406\) −6.86813 −0.340859
\(407\) 7.97296 0.395205
\(408\) − 2.13738i − 0.105816i
\(409\) − 3.76834i − 0.186332i −0.995651 0.0931662i \(-0.970301\pi\)
0.995651 0.0931662i \(-0.0296988\pi\)
\(410\) 0.302929i 0.0149606i
\(411\) 5.85052i 0.288585i
\(412\) 13.3231 0.656383
\(413\) −1.74117 −0.0856774
\(414\) − 17.0572i − 0.838317i
\(415\) 10.9664 0.538321
\(416\) 0 0
\(417\) −5.64396 −0.276386
\(418\) − 4.85921i − 0.237672i
\(419\) −10.5301 −0.514428 −0.257214 0.966354i \(-0.582805\pi\)
−0.257214 + 0.966354i \(0.582805\pi\)
\(420\) 1.58130 0.0771594
\(421\) − 24.9973i − 1.21830i −0.793057 0.609148i \(-0.791512\pi\)
0.793057 0.609148i \(-0.208488\pi\)
\(422\) − 8.63648i − 0.420417i
\(423\) 31.0952i 1.51190i
\(424\) 7.01530i 0.340693i
\(425\) 29.7229 1.44177
\(426\) −5.10792 −0.247479
\(427\) − 2.37945i − 0.115150i
\(428\) 9.02649 0.436312
\(429\) 0 0
\(430\) 24.9246 1.20197
\(431\) 11.9784i 0.576979i 0.957483 + 0.288489i \(0.0931530\pi\)
−0.957483 + 0.288489i \(0.906847\pi\)
\(432\) 2.69772 0.129794
\(433\) −7.96950 −0.382990 −0.191495 0.981494i \(-0.561334\pi\)
−0.191495 + 0.981494i \(0.561334\pi\)
\(434\) 4.28683i 0.205775i
\(435\) 10.8605i 0.520723i
\(436\) − 0.397192i − 0.0190220i
\(437\) 36.2083i 1.73208i
\(438\) 5.93384 0.283530
\(439\) −4.35655 −0.207927 −0.103963 0.994581i \(-0.533152\pi\)
−0.103963 + 0.994581i \(0.533152\pi\)
\(440\) 2.78854i 0.132939i
\(441\) 2.78234 0.132492
\(442\) 0 0
\(443\) −11.4823 −0.545542 −0.272771 0.962079i \(-0.587940\pi\)
−0.272771 + 0.962079i \(0.587940\pi\)
\(444\) − 4.52122i − 0.214568i
\(445\) −27.2596 −1.29223
\(446\) 19.9277 0.943603
\(447\) 7.93490i 0.375308i
\(448\) 1.00000i 0.0472456i
\(449\) 29.5248i 1.39336i 0.717382 + 0.696680i \(0.245340\pi\)
−0.717382 + 0.696680i \(0.754660\pi\)
\(450\) 18.0514i 0.850953i
\(451\) 0.0735323 0.00346250
\(452\) −4.47322 −0.210402
\(453\) 2.58730i 0.121562i
\(454\) 0.352624 0.0165495
\(455\) 0 0
\(456\) −2.75551 −0.129039
\(457\) − 16.5981i − 0.776428i −0.921569 0.388214i \(-0.873092\pi\)
0.921569 0.388214i \(-0.126908\pi\)
\(458\) −8.31317 −0.388449
\(459\) −12.3591 −0.576871
\(460\) − 20.7787i − 0.968813i
\(461\) − 26.4422i − 1.23154i −0.787927 0.615769i \(-0.788846\pi\)
0.787927 0.615769i \(-0.211154\pi\)
\(462\) − 0.383841i − 0.0178579i
\(463\) − 10.4717i − 0.486663i −0.969943 0.243331i \(-0.921760\pi\)
0.969943 0.243331i \(-0.0782403\pi\)
\(464\) −6.86813 −0.318845
\(465\) 6.77875 0.314357
\(466\) − 15.3798i − 0.712454i
\(467\) 27.9010 1.29110 0.645551 0.763717i \(-0.276628\pi\)
0.645551 + 0.763717i \(0.276628\pi\)
\(468\) 0 0
\(469\) 0.291719 0.0134703
\(470\) 37.8795i 1.74725i
\(471\) −1.07003 −0.0493046
\(472\) −1.74117 −0.0801438
\(473\) − 6.05015i − 0.278186i
\(474\) − 4.64493i − 0.213349i
\(475\) − 38.3187i − 1.75818i
\(476\) − 4.58130i − 0.209983i
\(477\) 19.5189 0.893710
\(478\) 2.88606 0.132005
\(479\) − 6.88133i − 0.314416i −0.987566 0.157208i \(-0.949751\pi\)
0.987566 0.157208i \(-0.0502493\pi\)
\(480\) 1.58130 0.0721760
\(481\) 0 0
\(482\) −6.26744 −0.285474
\(483\) 2.86018i 0.130142i
\(484\) −10.3231 −0.469232
\(485\) 50.0742 2.27375
\(486\) − 11.4002i − 0.517124i
\(487\) 40.8062i 1.84911i 0.381053 + 0.924553i \(0.375562\pi\)
−0.381053 + 0.924553i \(0.624438\pi\)
\(488\) − 2.37945i − 0.107713i
\(489\) − 10.8966i − 0.492762i
\(490\) 3.38938 0.153116
\(491\) −6.72706 −0.303588 −0.151794 0.988412i \(-0.548505\pi\)
−0.151794 + 0.988412i \(0.548505\pi\)
\(492\) − 0.0416979i − 0.00187989i
\(493\) 31.4649 1.41711
\(494\) 0 0
\(495\) 7.75866 0.348726
\(496\) 4.28683i 0.192484i
\(497\) −10.9484 −0.491102
\(498\) −1.50952 −0.0676433
\(499\) − 1.16200i − 0.0520184i −0.999662 0.0260092i \(-0.991720\pi\)
0.999662 0.0260092i \(-0.00827993\pi\)
\(500\) 5.04295i 0.225528i
\(501\) 10.1604i 0.453933i
\(502\) − 17.2665i − 0.770641i
\(503\) 9.95053 0.443672 0.221836 0.975084i \(-0.428795\pi\)
0.221836 + 0.975084i \(0.428795\pi\)
\(504\) 2.78234 0.123935
\(505\) 27.9277i 1.24276i
\(506\) −5.04379 −0.224224
\(507\) 0 0
\(508\) −0.540127 −0.0239642
\(509\) − 0.0522003i − 0.00231374i −0.999999 0.00115687i \(-0.999632\pi\)
0.999999 0.00115687i \(-0.000368243\pi\)
\(510\) −7.24439 −0.320787
\(511\) 12.7187 0.562641
\(512\) 1.00000i 0.0441942i
\(513\) 15.9333i 0.703472i
\(514\) 11.1931i 0.493706i
\(515\) − 45.1570i − 1.98986i
\(516\) −3.43085 −0.151035
\(517\) 9.19479 0.404386
\(518\) − 9.69086i − 0.425792i
\(519\) 3.77777 0.165826
\(520\) 0 0
\(521\) 26.0984 1.14339 0.571695 0.820466i \(-0.306286\pi\)
0.571695 + 0.820466i \(0.306286\pi\)
\(522\) 19.1094i 0.836397i
\(523\) −19.5321 −0.854080 −0.427040 0.904233i \(-0.640444\pi\)
−0.427040 + 0.904233i \(0.640444\pi\)
\(524\) 7.72615 0.337518
\(525\) − 3.02688i − 0.132104i
\(526\) − 28.5826i − 1.24626i
\(527\) − 19.6392i − 0.855499i
\(528\) − 0.383841i − 0.0167045i
\(529\) 14.5836 0.634069
\(530\) 23.7775 1.03283
\(531\) 4.84452i 0.210234i
\(532\) −5.90621 −0.256067
\(533\) 0 0
\(534\) 3.75226 0.162376
\(535\) − 30.5942i − 1.32270i
\(536\) 0.291719 0.0126003
\(537\) 4.62292 0.199494
\(538\) − 18.3754i − 0.792219i
\(539\) − 0.822730i − 0.0354375i
\(540\) − 9.14359i − 0.393477i
\(541\) 32.8802i 1.41363i 0.707399 + 0.706814i \(0.249868\pi\)
−0.707399 + 0.706814i \(0.750132\pi\)
\(542\) −20.3825 −0.875504
\(543\) −0.596719 −0.0256077
\(544\) − 4.58130i − 0.196421i
\(545\) −1.34623 −0.0576662
\(546\) 0 0
\(547\) −39.0180 −1.66829 −0.834144 0.551546i \(-0.814038\pi\)
−0.834144 + 0.551546i \(0.814038\pi\)
\(548\) 12.5401i 0.535687i
\(549\) −6.62043 −0.282553
\(550\) 5.33777 0.227603
\(551\) − 40.5646i − 1.72811i
\(552\) 2.86018i 0.121737i
\(553\) − 9.95602i − 0.423373i
\(554\) − 7.23219i − 0.307266i
\(555\) −15.3241 −0.650473
\(556\) −12.0974 −0.513042
\(557\) − 29.5492i − 1.25204i −0.779807 0.626020i \(-0.784683\pi\)
0.779807 0.626020i \(-0.215317\pi\)
\(558\) 11.9274 0.504927
\(559\) 0 0
\(560\) 3.38938 0.143227
\(561\) 1.75849i 0.0742434i
\(562\) 12.4585 0.525532
\(563\) 27.1323 1.14349 0.571745 0.820431i \(-0.306267\pi\)
0.571745 + 0.820431i \(0.306267\pi\)
\(564\) − 5.21408i − 0.219552i
\(565\) 15.1614i 0.637845i
\(566\) − 13.0607i − 0.548982i
\(567\) − 7.08840i − 0.297685i
\(568\) −10.9484 −0.459384
\(569\) −42.4594 −1.77999 −0.889996 0.455969i \(-0.849293\pi\)
−0.889996 + 0.455969i \(0.849293\pi\)
\(570\) 9.33946i 0.391187i
\(571\) −11.2678 −0.471543 −0.235771 0.971809i \(-0.575762\pi\)
−0.235771 + 0.971809i \(0.575762\pi\)
\(572\) 0 0
\(573\) 4.68141 0.195569
\(574\) − 0.0893760i − 0.00373048i
\(575\) −39.7742 −1.65870
\(576\) 2.78234 0.115931
\(577\) − 22.8987i − 0.953286i −0.879097 0.476643i \(-0.841853\pi\)
0.879097 0.476643i \(-0.158147\pi\)
\(578\) 3.98828i 0.165890i
\(579\) 7.39857i 0.307474i
\(580\) 23.2787i 0.966594i
\(581\) −3.23553 −0.134233
\(582\) −6.89267 −0.285710
\(583\) − 5.77170i − 0.239039i
\(584\) 12.7187 0.526303
\(585\) 0 0
\(586\) −14.5582 −0.601393
\(587\) 35.8019i 1.47770i 0.673868 + 0.738852i \(0.264632\pi\)
−0.673868 + 0.738852i \(0.735368\pi\)
\(588\) −0.466545 −0.0192400
\(589\) −25.3189 −1.04325
\(590\) 5.90148i 0.242960i
\(591\) − 6.90862i − 0.284183i
\(592\) − 9.69086i − 0.398292i
\(593\) − 14.6093i − 0.599931i −0.953950 0.299965i \(-0.903025\pi\)
0.953950 0.299965i \(-0.0969752\pi\)
\(594\) −2.21950 −0.0910670
\(595\) −15.5277 −0.636575
\(596\) 17.0078i 0.696666i
\(597\) −1.19222 −0.0487944
\(598\) 0 0
\(599\) −37.5729 −1.53519 −0.767594 0.640936i \(-0.778546\pi\)
−0.767594 + 0.640936i \(0.778546\pi\)
\(600\) − 3.02688i − 0.123572i
\(601\) −5.45158 −0.222375 −0.111187 0.993799i \(-0.535465\pi\)
−0.111187 + 0.993799i \(0.535465\pi\)
\(602\) −7.35374 −0.299716
\(603\) − 0.811659i − 0.0330533i
\(604\) 5.54567i 0.225650i
\(605\) 34.9889i 1.42250i
\(606\) − 3.84422i − 0.156161i
\(607\) −39.9387 −1.62106 −0.810531 0.585696i \(-0.800821\pi\)
−0.810531 + 0.585696i \(0.800821\pi\)
\(608\) −5.90621 −0.239528
\(609\) − 3.20429i − 0.129844i
\(610\) −8.06485 −0.326536
\(611\) 0 0
\(612\) −12.7467 −0.515255
\(613\) 16.6552i 0.672696i 0.941738 + 0.336348i \(0.109192\pi\)
−0.941738 + 0.336348i \(0.890808\pi\)
\(614\) −3.24267 −0.130864
\(615\) −0.141330 −0.00569897
\(616\) − 0.822730i − 0.0331487i
\(617\) 26.9652i 1.08558i 0.839869 + 0.542788i \(0.182631\pi\)
−0.839869 + 0.542788i \(0.817369\pi\)
\(618\) 6.21583i 0.250037i
\(619\) − 12.7533i − 0.512597i −0.966598 0.256298i \(-0.917497\pi\)
0.966598 0.256298i \(-0.0825029\pi\)
\(620\) 14.5297 0.583526
\(621\) 16.5385 0.663667
\(622\) − 10.2709i − 0.411825i
\(623\) 8.04265 0.322222
\(624\) 0 0
\(625\) −15.3469 −0.613875
\(626\) − 6.13382i − 0.245157i
\(627\) 2.26704 0.0905369
\(628\) −2.29353 −0.0915218
\(629\) 44.3967i 1.77021i
\(630\) − 9.43038i − 0.375715i
\(631\) − 37.5529i − 1.49496i −0.664286 0.747479i \(-0.731264\pi\)
0.664286 0.747479i \(-0.268736\pi\)
\(632\) − 9.95602i − 0.396029i
\(633\) 4.02931 0.160151
\(634\) 5.04487 0.200357
\(635\) 1.83069i 0.0726488i
\(636\) −3.27295 −0.129781
\(637\) 0 0
\(638\) 5.65062 0.223710
\(639\) 30.4621i 1.20506i
\(640\) 3.38938 0.133977
\(641\) −1.97623 −0.0780564 −0.0390282 0.999238i \(-0.512426\pi\)
−0.0390282 + 0.999238i \(0.512426\pi\)
\(642\) 4.21127i 0.166205i
\(643\) 39.0704i 1.54079i 0.637568 + 0.770394i \(0.279940\pi\)
−0.637568 + 0.770394i \(0.720060\pi\)
\(644\) 6.13055i 0.241577i
\(645\) 11.6284i 0.457870i
\(646\) 27.0581 1.06459
\(647\) −12.1051 −0.475900 −0.237950 0.971277i \(-0.576475\pi\)
−0.237950 + 0.971277i \(0.576475\pi\)
\(648\) − 7.08840i − 0.278459i
\(649\) 1.43251 0.0562311
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) − 23.3560i − 0.914691i
\(653\) 40.2464 1.57496 0.787481 0.616338i \(-0.211385\pi\)
0.787481 + 0.616338i \(0.211385\pi\)
\(654\) 0.185308 0.00724611
\(655\) − 26.1868i − 1.02320i
\(656\) − 0.0893760i − 0.00348955i
\(657\) − 35.3876i − 1.38060i
\(658\) − 11.1759i − 0.435684i
\(659\) −3.62327 −0.141143 −0.0705714 0.997507i \(-0.522482\pi\)
−0.0705714 + 0.997507i \(0.522482\pi\)
\(660\) −1.30098 −0.0506406
\(661\) − 23.6365i − 0.919352i −0.888087 0.459676i \(-0.847965\pi\)
0.888087 0.459676i \(-0.152035\pi\)
\(662\) −23.0874 −0.897317
\(663\) 0 0
\(664\) −3.23553 −0.125563
\(665\) 20.0184i 0.776278i
\(666\) −26.9632 −1.04480
\(667\) −42.1054 −1.63033
\(668\) 21.7780i 0.842614i
\(669\) 9.29716i 0.359449i
\(670\) − 0.988744i − 0.0381985i
\(671\) 1.95764i 0.0755740i
\(672\) −0.466545 −0.0179974
\(673\) −46.8710 −1.80674 −0.903372 0.428859i \(-0.858916\pi\)
−0.903372 + 0.428859i \(0.858916\pi\)
\(674\) 29.1429i 1.12254i
\(675\) −17.5025 −0.673670
\(676\) 0 0
\(677\) −13.7304 −0.527704 −0.263852 0.964563i \(-0.584993\pi\)
−0.263852 + 0.964563i \(0.584993\pi\)
\(678\) − 2.08696i − 0.0801491i
\(679\) −14.7739 −0.566969
\(680\) −15.5277 −0.595462
\(681\) 0.164515i 0.00630423i
\(682\) − 3.52691i − 0.135052i
\(683\) − 3.50578i − 0.134145i −0.997748 0.0670725i \(-0.978634\pi\)
0.997748 0.0670725i \(-0.0213659\pi\)
\(684\) 16.4330i 0.628333i
\(685\) 42.5031 1.62396
\(686\) −1.00000 −0.0381802
\(687\) − 3.87847i − 0.147973i
\(688\) −7.35374 −0.280359
\(689\) 0 0
\(690\) 9.69421 0.369052
\(691\) − 31.7769i − 1.20885i −0.796662 0.604426i \(-0.793403\pi\)
0.796662 0.604426i \(-0.206597\pi\)
\(692\) 8.09733 0.307814
\(693\) −2.28911 −0.0869562
\(694\) − 29.1082i − 1.10493i
\(695\) 41.0025i 1.55531i
\(696\) − 3.20429i − 0.121458i
\(697\) 0.409458i 0.0155093i
\(698\) −25.7802 −0.975796
\(699\) 7.17535 0.271397
\(700\) − 6.48787i − 0.245218i
\(701\) −31.6828 −1.19664 −0.598322 0.801256i \(-0.704166\pi\)
−0.598322 + 0.801256i \(0.704166\pi\)
\(702\) 0 0
\(703\) 57.2362 2.15870
\(704\) − 0.822730i − 0.0310078i
\(705\) −17.6725 −0.665584
\(706\) 9.91779 0.373261
\(707\) − 8.23976i − 0.309888i
\(708\) − 0.812334i − 0.0305294i
\(709\) 35.3147i 1.32627i 0.748498 + 0.663137i \(0.230775\pi\)
−0.748498 + 0.663137i \(0.769225\pi\)
\(710\) 37.1082i 1.39265i
\(711\) −27.7010 −1.03887
\(712\) 8.04265 0.301411
\(713\) 26.2806i 0.984217i
\(714\) 2.13738 0.0799895
\(715\) 0 0
\(716\) 9.90883 0.370310
\(717\) 1.34648i 0.0502850i
\(718\) −25.2683 −0.943003
\(719\) 1.21956 0.0454818 0.0227409 0.999741i \(-0.492761\pi\)
0.0227409 + 0.999741i \(0.492761\pi\)
\(720\) − 9.43038i − 0.351450i
\(721\) 13.3231i 0.496179i
\(722\) − 15.8833i − 0.591114i
\(723\) − 2.92404i − 0.108746i
\(724\) −1.27902 −0.0475343
\(725\) 44.5595 1.65490
\(726\) − 4.81620i − 0.178746i
\(727\) 5.75380 0.213397 0.106698 0.994291i \(-0.465972\pi\)
0.106698 + 0.994291i \(0.465972\pi\)
\(728\) 0 0
\(729\) −15.9465 −0.590611
\(730\) − 43.1084i − 1.59551i
\(731\) 33.6897 1.24606
\(732\) 1.11012 0.0410312
\(733\) 35.2258i 1.30110i 0.759466 + 0.650548i \(0.225461\pi\)
−0.759466 + 0.650548i \(0.774539\pi\)
\(734\) 35.7838i 1.32080i
\(735\) 1.58130i 0.0583270i
\(736\) 6.13055i 0.225975i
\(737\) −0.240006 −0.00884073
\(738\) −0.248674 −0.00915382
\(739\) − 29.3524i − 1.07975i −0.841746 0.539873i \(-0.818472\pi\)
0.841746 0.539873i \(-0.181528\pi\)
\(740\) −32.8460 −1.20744
\(741\) 0 0
\(742\) −7.01530 −0.257540
\(743\) − 14.9838i − 0.549702i −0.961487 0.274851i \(-0.911371\pi\)
0.961487 0.274851i \(-0.0886286\pi\)
\(744\) −2.00000 −0.0733236
\(745\) 57.6458 2.11198
\(746\) − 23.3304i − 0.854185i
\(747\) 9.00234i 0.329378i
\(748\) 3.76917i 0.137815i
\(749\) 9.02649i 0.329821i
\(750\) −2.35277 −0.0859108
\(751\) −43.8390 −1.59971 −0.799855 0.600194i \(-0.795090\pi\)
−0.799855 + 0.600194i \(0.795090\pi\)
\(752\) − 11.1759i − 0.407545i
\(753\) 8.05560 0.293562
\(754\) 0 0
\(755\) 18.7963 0.684069
\(756\) 2.69772i 0.0981151i
\(757\) −36.3597 −1.32152 −0.660758 0.750599i \(-0.729765\pi\)
−0.660758 + 0.750599i \(0.729765\pi\)
\(758\) −24.3066 −0.882856
\(759\) − 2.35315i − 0.0854140i
\(760\) 20.0184i 0.726142i
\(761\) 18.2335i 0.660962i 0.943813 + 0.330481i \(0.107211\pi\)
−0.943813 + 0.330481i \(0.892789\pi\)
\(762\) − 0.251993i − 0.00912876i
\(763\) 0.397192 0.0143793
\(764\) 10.0342 0.363025
\(765\) 43.2034i 1.56202i
\(766\) 4.91150 0.177460
\(767\) 0 0
\(768\) −0.466545 −0.0168350
\(769\) − 6.54565i − 0.236042i −0.993011 0.118021i \(-0.962345\pi\)
0.993011 0.118021i \(-0.0376551\pi\)
\(770\) −2.78854 −0.100492
\(771\) −5.22208 −0.188069
\(772\) 15.8582i 0.570750i
\(773\) − 44.6466i − 1.60583i −0.596097 0.802913i \(-0.703282\pi\)
0.596097 0.802913i \(-0.296718\pi\)
\(774\) 20.4606i 0.735440i
\(775\) − 27.8124i − 0.999051i
\(776\) −14.7739 −0.530351
\(777\) 4.52122 0.162198
\(778\) − 5.14522i − 0.184465i
\(779\) 0.527873 0.0189130
\(780\) 0 0
\(781\) 9.00757 0.322316
\(782\) − 28.0858i − 1.00435i
\(783\) −18.5283 −0.662147
\(784\) −1.00000 −0.0357143
\(785\) 7.77363i 0.277453i
\(786\) 3.60460i 0.128572i
\(787\) − 25.0526i − 0.893028i −0.894777 0.446514i \(-0.852665\pi\)
0.894777 0.446514i \(-0.147335\pi\)
\(788\) − 14.8081i − 0.527515i
\(789\) 13.3351 0.474742
\(790\) −33.7447 −1.20058
\(791\) − 4.47322i − 0.159049i
\(792\) −2.28911 −0.0813400
\(793\) 0 0
\(794\) −12.3500 −0.438284
\(795\) 11.0933i 0.393438i
\(796\) −2.55543 −0.0905747
\(797\) −27.8264 −0.985662 −0.492831 0.870125i \(-0.664038\pi\)
−0.492831 + 0.870125i \(0.664038\pi\)
\(798\) − 2.75551i − 0.0975440i
\(799\) 51.2003i 1.81134i
\(800\) − 6.48787i − 0.229381i
\(801\) − 22.3774i − 0.790665i
\(802\) −32.4894 −1.14724
\(803\) −10.4640 −0.369268
\(804\) 0.136100i 0.00479987i
\(805\) 20.7787 0.732354
\(806\) 0 0
\(807\) 8.57294 0.301782
\(808\) − 8.23976i − 0.289874i
\(809\) 7.49650 0.263563 0.131781 0.991279i \(-0.457930\pi\)
0.131781 + 0.991279i \(0.457930\pi\)
\(810\) −24.0253 −0.844161
\(811\) − 9.88726i − 0.347189i −0.984817 0.173594i \(-0.944462\pi\)
0.984817 0.173594i \(-0.0555381\pi\)
\(812\) − 6.86813i − 0.241024i
\(813\) − 9.50936i − 0.333508i
\(814\) 7.97296i 0.279452i
\(815\) −79.1622 −2.77293
\(816\) 2.13738 0.0748233
\(817\) − 43.4327i − 1.51952i
\(818\) 3.76834 0.131757
\(819\) 0 0
\(820\) −0.302929 −0.0105787
\(821\) 14.3675i 0.501430i 0.968061 + 0.250715i \(0.0806657\pi\)
−0.968061 + 0.250715i \(0.919334\pi\)
\(822\) −5.85052 −0.204060
\(823\) −11.8869 −0.414350 −0.207175 0.978304i \(-0.566427\pi\)
−0.207175 + 0.978304i \(0.566427\pi\)
\(824\) 13.3231i 0.464133i
\(825\) 2.49031i 0.0867014i
\(826\) − 1.74117i − 0.0605830i
\(827\) 29.0884i 1.01150i 0.862679 + 0.505752i \(0.168785\pi\)
−0.862679 + 0.505752i \(0.831215\pi\)
\(828\) 17.0572 0.592780
\(829\) 49.6286 1.72367 0.861836 0.507187i \(-0.169315\pi\)
0.861836 + 0.507187i \(0.169315\pi\)
\(830\) 10.9664i 0.380651i
\(831\) 3.37414 0.117048
\(832\) 0 0
\(833\) 4.58130 0.158733
\(834\) − 5.64396i − 0.195434i
\(835\) 73.8137 2.55443
\(836\) 4.85921 0.168059
\(837\) 11.5647i 0.399734i
\(838\) − 10.5301i − 0.363755i
\(839\) 4.61692i 0.159394i 0.996819 + 0.0796969i \(0.0253952\pi\)
−0.996819 + 0.0796969i \(0.974605\pi\)
\(840\) 1.58130i 0.0545599i
\(841\) 18.1712 0.626593
\(842\) 24.9973 0.861465
\(843\) 5.81247i 0.200192i
\(844\) 8.63648 0.297280
\(845\) 0 0
\(846\) −31.0952 −1.06908
\(847\) − 10.3231i − 0.354706i
\(848\) −7.01530 −0.240906
\(849\) 6.09341 0.209125
\(850\) 29.7229i 1.01949i
\(851\) − 59.4103i − 2.03656i
\(852\) − 5.10792i − 0.174994i
\(853\) − 37.8266i − 1.29516i −0.761999 0.647579i \(-0.775782\pi\)
0.761999 0.647579i \(-0.224218\pi\)
\(854\) 2.37945 0.0814231
\(855\) 55.6978 1.90482
\(856\) 9.02649i 0.308519i
\(857\) 30.1652 1.03042 0.515211 0.857063i \(-0.327713\pi\)
0.515211 + 0.857063i \(0.327713\pi\)
\(858\) 0 0
\(859\) 10.6316 0.362745 0.181372 0.983414i \(-0.441946\pi\)
0.181372 + 0.983414i \(0.441946\pi\)
\(860\) 24.9246i 0.849922i
\(861\) 0.0416979 0.00142106
\(862\) −11.9784 −0.407986
\(863\) 23.8352i 0.811360i 0.914015 + 0.405680i \(0.132965\pi\)
−0.914015 + 0.405680i \(0.867035\pi\)
\(864\) 2.69772i 0.0917783i
\(865\) − 27.4449i − 0.933154i
\(866\) − 7.96950i − 0.270814i
\(867\) −1.86071 −0.0631931
\(868\) −4.28683 −0.145505
\(869\) 8.19112i 0.277865i
\(870\) −10.8605 −0.368207
\(871\) 0 0
\(872\) 0.397192 0.0134506
\(873\) 41.1059i 1.39122i
\(874\) −36.2083 −1.22476
\(875\) −5.04295 −0.170483
\(876\) 5.93384i 0.200486i
\(877\) − 28.4246i − 0.959829i −0.877315 0.479915i \(-0.840668\pi\)
0.877315 0.479915i \(-0.159332\pi\)
\(878\) − 4.35655i − 0.147026i
\(879\) − 6.79205i − 0.229090i
\(880\) −2.78854 −0.0940017
\(881\) −55.1829 −1.85916 −0.929580 0.368621i \(-0.879830\pi\)
−0.929580 + 0.368621i \(0.879830\pi\)
\(882\) 2.78234i 0.0936861i
\(883\) 9.18216 0.309004 0.154502 0.987992i \(-0.450623\pi\)
0.154502 + 0.987992i \(0.450623\pi\)
\(884\) 0 0
\(885\) −2.75331 −0.0925514
\(886\) − 11.4823i − 0.385757i
\(887\) 33.5715 1.12722 0.563610 0.826041i \(-0.309412\pi\)
0.563610 + 0.826041i \(0.309412\pi\)
\(888\) 4.52122 0.151722
\(889\) − 0.540127i − 0.0181153i
\(890\) − 27.2596i − 0.913743i
\(891\) 5.83184i 0.195374i
\(892\) 19.9277i 0.667228i
\(893\) 66.0074 2.20885
\(894\) −7.93490 −0.265383
\(895\) − 33.5848i − 1.12261i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −29.5248 −0.985255
\(899\) − 29.4425i − 0.981963i
\(900\) −18.0514 −0.601715
\(901\) 32.1392 1.07071
\(902\) 0.0735323i 0.00244836i
\(903\) − 3.43085i − 0.114172i
\(904\) − 4.47322i − 0.148777i
\(905\) 4.33507i 0.144103i
\(906\) −2.58730 −0.0859574
\(907\) −11.0349 −0.366409 −0.183205 0.983075i \(-0.558647\pi\)
−0.183205 + 0.983075i \(0.558647\pi\)
\(908\) 0.352624i 0.0117022i
\(909\) −22.9258 −0.760400
\(910\) 0 0
\(911\) 59.9931 1.98766 0.993830 0.110917i \(-0.0353789\pi\)
0.993830 + 0.110917i \(0.0353789\pi\)
\(912\) − 2.75551i − 0.0912441i
\(913\) 2.66197 0.0880984
\(914\) 16.5981 0.549018
\(915\) − 3.76261i − 0.124388i
\(916\) − 8.31317i − 0.274675i
\(917\) 7.72615i 0.255140i
\(918\) − 12.3591i − 0.407910i
\(919\) 35.6537 1.17611 0.588053 0.808822i \(-0.299895\pi\)
0.588053 + 0.808822i \(0.299895\pi\)
\(920\) 20.7787 0.685054
\(921\) − 1.51285i − 0.0498502i
\(922\) 26.4422 0.870828
\(923\) 0 0
\(924\) 0.383841 0.0126274
\(925\) 62.8730i 2.06725i
\(926\) 10.4717 0.344123
\(927\) 37.0694 1.21752
\(928\) − 6.86813i − 0.225457i
\(929\) − 29.0302i − 0.952450i −0.879324 0.476225i \(-0.842005\pi\)
0.879324 0.476225i \(-0.157995\pi\)
\(930\) 6.77875i 0.222284i
\(931\) − 5.90621i − 0.193568i
\(932\) 15.3798 0.503781
\(933\) 4.79183 0.156877
\(934\) 27.9010i 0.912947i
\(935\) 12.7751 0.417792
\(936\) 0 0
\(937\) 38.2635 1.25001 0.625006 0.780620i \(-0.285096\pi\)
0.625006 + 0.780620i \(0.285096\pi\)
\(938\) 0.291719i 0.00952495i
\(939\) 2.86170 0.0933882
\(940\) −37.8795 −1.23549
\(941\) 4.14746i 0.135203i 0.997712 + 0.0676017i \(0.0215347\pi\)
−0.997712 + 0.0676017i \(0.978465\pi\)
\(942\) − 1.07003i − 0.0348636i
\(943\) − 0.547924i − 0.0178428i
\(944\) − 1.74117i − 0.0566702i
\(945\) 9.14359 0.297441
\(946\) 6.05015 0.196707
\(947\) 1.00792i 0.0327530i 0.999866 + 0.0163765i \(0.00521303\pi\)
−0.999866 + 0.0163765i \(0.994787\pi\)
\(948\) 4.64493 0.150860
\(949\) 0 0
\(950\) 38.3187 1.24322
\(951\) 2.35366i 0.0763226i
\(952\) 4.58130 0.148481
\(953\) −16.5029 −0.534582 −0.267291 0.963616i \(-0.586129\pi\)
−0.267291 + 0.963616i \(0.586129\pi\)
\(954\) 19.5189i 0.631948i
\(955\) − 34.0097i − 1.10053i
\(956\) 2.88606i 0.0933418i
\(957\) 2.63627i 0.0852184i
\(958\) 6.88133 0.222326
\(959\) −12.5401 −0.404941
\(960\) 1.58130i 0.0510361i
\(961\) 12.6231 0.407196
\(962\) 0 0
\(963\) 25.1147 0.809311
\(964\) − 6.26744i − 0.201861i
\(965\) 53.7495 1.73026
\(966\) −2.86018 −0.0920246
\(967\) − 37.7765i − 1.21481i −0.794392 0.607406i \(-0.792210\pi\)
0.794392 0.607406i \(-0.207790\pi\)
\(968\) − 10.3231i − 0.331797i
\(969\) 12.6238i 0.405535i
\(970\) 50.0742i 1.60779i
\(971\) −48.3122 −1.55041 −0.775206 0.631709i \(-0.782354\pi\)
−0.775206 + 0.631709i \(0.782354\pi\)
\(972\) 11.4002 0.365662
\(973\) − 12.0974i − 0.387823i
\(974\) −40.8062 −1.30752
\(975\) 0 0
\(976\) 2.37945 0.0761643
\(977\) − 16.3041i − 0.521615i −0.965391 0.260807i \(-0.916011\pi\)
0.965391 0.260807i \(-0.0839888\pi\)
\(978\) 10.8966 0.348435
\(979\) −6.61693 −0.211478
\(980\) 3.38938i 0.108270i
\(981\) − 1.10512i − 0.0352838i
\(982\) − 6.72706i − 0.214669i
\(983\) 29.5121i 0.941291i 0.882322 + 0.470645i \(0.155979\pi\)
−0.882322 + 0.470645i \(0.844021\pi\)
\(984\) 0.0416979 0.00132928
\(985\) −50.1901 −1.59919
\(986\) 31.4649i 1.00205i
\(987\) 5.21408 0.165966
\(988\) 0 0
\(989\) −45.0825 −1.43354
\(990\) 7.75866i 0.246586i
\(991\) 4.39245 0.139531 0.0697653 0.997563i \(-0.477775\pi\)
0.0697653 + 0.997563i \(0.477775\pi\)
\(992\) −4.28683 −0.136107
\(993\) − 10.7713i − 0.341817i
\(994\) − 10.9484i − 0.347262i
\(995\) 8.66130i 0.274582i
\(996\) − 1.50952i − 0.0478310i
\(997\) 46.3338 1.46741 0.733704 0.679470i \(-0.237790\pi\)
0.733704 + 0.679470i \(0.237790\pi\)
\(998\) 1.16200 0.0367826
\(999\) − 26.1432i − 0.827135i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.2.d.r.337.9 12
13.5 odd 4 2366.2.a.bh.1.3 6
13.8 odd 4 2366.2.a.bf.1.3 6
13.9 even 3 182.2.m.b.127.5 yes 12
13.10 even 6 182.2.m.b.43.5 12
13.12 even 2 inner 2366.2.d.r.337.3 12
39.23 odd 6 1638.2.bj.g.1135.3 12
39.35 odd 6 1638.2.bj.g.127.1 12
52.23 odd 6 1456.2.cc.d.225.3 12
52.35 odd 6 1456.2.cc.d.673.3 12
91.9 even 3 1274.2.v.e.361.2 12
91.10 odd 6 1274.2.v.d.667.2 12
91.23 even 6 1274.2.o.d.459.2 12
91.48 odd 6 1274.2.m.c.491.5 12
91.61 odd 6 1274.2.v.d.361.2 12
91.62 odd 6 1274.2.m.c.589.5 12
91.74 even 3 1274.2.o.d.569.5 12
91.75 odd 6 1274.2.o.e.459.2 12
91.87 odd 6 1274.2.o.e.569.5 12
91.88 even 6 1274.2.v.e.667.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.m.b.43.5 12 13.10 even 6
182.2.m.b.127.5 yes 12 13.9 even 3
1274.2.m.c.491.5 12 91.48 odd 6
1274.2.m.c.589.5 12 91.62 odd 6
1274.2.o.d.459.2 12 91.23 even 6
1274.2.o.d.569.5 12 91.74 even 3
1274.2.o.e.459.2 12 91.75 odd 6
1274.2.o.e.569.5 12 91.87 odd 6
1274.2.v.d.361.2 12 91.61 odd 6
1274.2.v.d.667.2 12 91.10 odd 6
1274.2.v.e.361.2 12 91.9 even 3
1274.2.v.e.667.2 12 91.88 even 6
1456.2.cc.d.225.3 12 52.23 odd 6
1456.2.cc.d.673.3 12 52.35 odd 6
1638.2.bj.g.127.1 12 39.35 odd 6
1638.2.bj.g.1135.3 12 39.23 odd 6
2366.2.a.bf.1.3 6 13.8 odd 4
2366.2.a.bh.1.3 6 13.5 odd 4
2366.2.d.r.337.3 12 13.12 even 2 inner
2366.2.d.r.337.9 12 1.1 even 1 trivial