Properties

Label 2366.2.d.r.337.7
Level $2366$
Weight $2$
Character 2366.337
Analytic conductor $18.893$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,2,Mod(337,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,4,-12,0,0,0,0,12,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 39 x^{10} - 140 x^{9} + 460 x^{8} - 1066 x^{7} + 2127 x^{6} - 3172 x^{5} + \cdots + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.7
Root \(0.500000 - 1.69027i\) of defining polynomial
Character \(\chi\) \(=\) 2366.337
Dual form 2366.2.d.r.337.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -2.55629 q^{3} -1.00000 q^{4} -3.48754i q^{5} -2.55629i q^{6} -1.00000i q^{7} -1.00000i q^{8} +3.53463 q^{9} +3.48754 q^{10} -2.68172i q^{11} +2.55629 q^{12} +1.00000 q^{14} +8.91517i q^{15} +1.00000 q^{16} +5.91517 q^{17} +3.53463i q^{18} -5.19793i q^{19} +3.48754i q^{20} +2.55629i q^{21} +2.68172 q^{22} +7.05268 q^{23} +2.55629i q^{24} -7.16292 q^{25} -1.36668 q^{27} +1.00000i q^{28} +7.13278 q^{29} -8.91517 q^{30} +0.782383i q^{31} +1.00000i q^{32} +6.85526i q^{33} +5.91517i q^{34} -3.48754 q^{35} -3.53463 q^{36} +7.81450i q^{37} +5.19793 q^{38} -3.48754 q^{40} +0.157708i q^{41} -2.55629 q^{42} +0.330202 q^{43} +2.68172i q^{44} -12.3272i q^{45} +7.05268i q^{46} -1.60161i q^{47} -2.55629 q^{48} -1.00000 q^{49} -7.16292i q^{50} -15.1209 q^{51} +3.92601 q^{53} -1.36668i q^{54} -9.35259 q^{55} -1.00000 q^{56} +13.2874i q^{57} +7.13278i q^{58} -9.54021i q^{59} -8.91517i q^{60} +15.4105 q^{61} -0.782383 q^{62} -3.53463i q^{63} -1.00000 q^{64} -6.85526 q^{66} +0.966765i q^{67} -5.91517 q^{68} -18.0287 q^{69} -3.48754i q^{70} -4.18658i q^{71} -3.53463i q^{72} -15.0361i q^{73} -7.81450 q^{74} +18.3105 q^{75} +5.19793i q^{76} -2.68172 q^{77} -0.293356 q^{79} -3.48754i q^{80} -7.11027 q^{81} -0.157708 q^{82} -2.87495i q^{83} -2.55629i q^{84} -20.6294i q^{85} +0.330202i q^{86} -18.2335 q^{87} -2.68172 q^{88} +5.21325i q^{89} +12.3272 q^{90} -7.05268 q^{92} -2.00000i q^{93} +1.60161 q^{94} -18.1280 q^{95} -2.55629i q^{96} +3.15946i q^{97} -1.00000i q^{98} -9.47889i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 12 q^{4} + 12 q^{9} + 4 q^{10} - 4 q^{12} + 12 q^{14} + 12 q^{16} - 8 q^{17} + 4 q^{22} + 12 q^{23} - 24 q^{25} + 40 q^{27} + 20 q^{29} - 28 q^{30} - 4 q^{35} - 12 q^{36} + 8 q^{38} - 4 q^{40}+ \cdots - 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2366\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(2199\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −2.55629 −1.47588 −0.737938 0.674868i \(-0.764200\pi\)
−0.737938 + 0.674868i \(0.764200\pi\)
\(4\) −1.00000 −0.500000
\(5\) − 3.48754i − 1.55967i −0.625983 0.779837i \(-0.715302\pi\)
0.625983 0.779837i \(-0.284698\pi\)
\(6\) − 2.55629i − 1.04360i
\(7\) − 1.00000i − 0.377964i
\(8\) − 1.00000i − 0.353553i
\(9\) 3.53463 1.17821
\(10\) 3.48754 1.10286
\(11\) − 2.68172i − 0.808569i −0.914633 0.404284i \(-0.867521\pi\)
0.914633 0.404284i \(-0.132479\pi\)
\(12\) 2.55629 0.737938
\(13\) 0 0
\(14\) 1.00000 0.267261
\(15\) 8.91517i 2.30189i
\(16\) 1.00000 0.250000
\(17\) 5.91517 1.43464 0.717319 0.696745i \(-0.245369\pi\)
0.717319 + 0.696745i \(0.245369\pi\)
\(18\) 3.53463i 0.833121i
\(19\) − 5.19793i − 1.19249i −0.802804 0.596243i \(-0.796659\pi\)
0.802804 0.596243i \(-0.203341\pi\)
\(20\) 3.48754i 0.779837i
\(21\) 2.55629i 0.557829i
\(22\) 2.68172 0.571744
\(23\) 7.05268 1.47058 0.735292 0.677750i \(-0.237045\pi\)
0.735292 + 0.677750i \(0.237045\pi\)
\(24\) 2.55629i 0.521801i
\(25\) −7.16292 −1.43258
\(26\) 0 0
\(27\) −1.36668 −0.263017
\(28\) 1.00000i 0.188982i
\(29\) 7.13278 1.32452 0.662262 0.749272i \(-0.269596\pi\)
0.662262 + 0.749272i \(0.269596\pi\)
\(30\) −8.91517 −1.62768
\(31\) 0.782383i 0.140520i 0.997529 + 0.0702601i \(0.0223829\pi\)
−0.997529 + 0.0702601i \(0.977617\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 6.85526i 1.19335i
\(34\) 5.91517i 1.01444i
\(35\) −3.48754 −0.589501
\(36\) −3.53463 −0.589105
\(37\) 7.81450i 1.28470i 0.766413 + 0.642348i \(0.222040\pi\)
−0.766413 + 0.642348i \(0.777960\pi\)
\(38\) 5.19793 0.843215
\(39\) 0 0
\(40\) −3.48754 −0.551428
\(41\) 0.157708i 0.0246299i 0.999924 + 0.0123149i \(0.00392006\pi\)
−0.999924 + 0.0123149i \(0.996080\pi\)
\(42\) −2.55629 −0.394445
\(43\) 0.330202 0.0503553 0.0251777 0.999683i \(-0.491985\pi\)
0.0251777 + 0.999683i \(0.491985\pi\)
\(44\) 2.68172i 0.404284i
\(45\) − 12.3272i − 1.83762i
\(46\) 7.05268i 1.03986i
\(47\) − 1.60161i − 0.233619i −0.993154 0.116810i \(-0.962733\pi\)
0.993154 0.116810i \(-0.0372667\pi\)
\(48\) −2.55629 −0.368969
\(49\) −1.00000 −0.142857
\(50\) − 7.16292i − 1.01299i
\(51\) −15.1209 −2.11735
\(52\) 0 0
\(53\) 3.92601 0.539279 0.269639 0.962961i \(-0.413095\pi\)
0.269639 + 0.962961i \(0.413095\pi\)
\(54\) − 1.36668i − 0.185981i
\(55\) −9.35259 −1.26110
\(56\) −1.00000 −0.133631
\(57\) 13.2874i 1.75996i
\(58\) 7.13278i 0.936580i
\(59\) − 9.54021i − 1.24203i −0.783799 0.621015i \(-0.786721\pi\)
0.783799 0.621015i \(-0.213279\pi\)
\(60\) − 8.91517i − 1.15094i
\(61\) 15.4105 1.97311 0.986556 0.163421i \(-0.0522527\pi\)
0.986556 + 0.163421i \(0.0522527\pi\)
\(62\) −0.782383 −0.0993627
\(63\) − 3.53463i − 0.445322i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −6.85526 −0.843824
\(67\) 0.966765i 0.118109i 0.998255 + 0.0590546i \(0.0188086\pi\)
−0.998255 + 0.0590546i \(0.981191\pi\)
\(68\) −5.91517 −0.717319
\(69\) −18.0287 −2.17040
\(70\) − 3.48754i − 0.416840i
\(71\) − 4.18658i − 0.496855i −0.968650 0.248428i \(-0.920086\pi\)
0.968650 0.248428i \(-0.0799138\pi\)
\(72\) − 3.53463i − 0.416560i
\(73\) − 15.0361i − 1.75984i −0.475124 0.879919i \(-0.657597\pi\)
0.475124 0.879919i \(-0.342403\pi\)
\(74\) −7.81450 −0.908417
\(75\) 18.3105 2.11432
\(76\) 5.19793i 0.596243i
\(77\) −2.68172 −0.305610
\(78\) 0 0
\(79\) −0.293356 −0.0330052 −0.0165026 0.999864i \(-0.505253\pi\)
−0.0165026 + 0.999864i \(0.505253\pi\)
\(80\) − 3.48754i − 0.389919i
\(81\) −7.11027 −0.790030
\(82\) −0.157708 −0.0174159
\(83\) − 2.87495i − 0.315566i −0.987474 0.157783i \(-0.949565\pi\)
0.987474 0.157783i \(-0.0504347\pi\)
\(84\) − 2.55629i − 0.278914i
\(85\) − 20.6294i − 2.23757i
\(86\) 0.330202i 0.0356066i
\(87\) −18.2335 −1.95483
\(88\) −2.68172 −0.285872
\(89\) 5.21325i 0.552603i 0.961071 + 0.276302i \(0.0891089\pi\)
−0.961071 + 0.276302i \(0.910891\pi\)
\(90\) 12.3272 1.29940
\(91\) 0 0
\(92\) −7.05268 −0.735292
\(93\) − 2.00000i − 0.207390i
\(94\) 1.60161 0.165194
\(95\) −18.1280 −1.85989
\(96\) − 2.55629i − 0.260901i
\(97\) 3.15946i 0.320794i 0.987053 + 0.160397i \(0.0512775\pi\)
−0.987053 + 0.160397i \(0.948723\pi\)
\(98\) − 1.00000i − 0.101015i
\(99\) − 9.47889i − 0.952664i
\(100\) 7.16292 0.716292
\(101\) −3.78650 −0.376771 −0.188386 0.982095i \(-0.560325\pi\)
−0.188386 + 0.982095i \(0.560325\pi\)
\(102\) − 15.1209i − 1.49719i
\(103\) −6.80839 −0.670850 −0.335425 0.942067i \(-0.608880\pi\)
−0.335425 + 0.942067i \(0.608880\pi\)
\(104\) 0 0
\(105\) 8.91517 0.870031
\(106\) 3.92601i 0.381328i
\(107\) 14.3017 1.38259 0.691297 0.722571i \(-0.257040\pi\)
0.691297 + 0.722571i \(0.257040\pi\)
\(108\) 1.36668 0.131508
\(109\) 4.57669i 0.438367i 0.975684 + 0.219184i \(0.0703394\pi\)
−0.975684 + 0.219184i \(0.929661\pi\)
\(110\) − 9.35259i − 0.891735i
\(111\) − 19.9762i − 1.89605i
\(112\) − 1.00000i − 0.0944911i
\(113\) −3.01297 −0.283436 −0.141718 0.989907i \(-0.545263\pi\)
−0.141718 + 0.989907i \(0.545263\pi\)
\(114\) −13.2874 −1.24448
\(115\) − 24.5965i − 2.29363i
\(116\) −7.13278 −0.662262
\(117\) 0 0
\(118\) 9.54021 0.878248
\(119\) − 5.91517i − 0.542242i
\(120\) 8.91517 0.813840
\(121\) 3.80839 0.346217
\(122\) 15.4105i 1.39520i
\(123\) − 0.403148i − 0.0363506i
\(124\) − 0.782383i − 0.0702601i
\(125\) 7.54326i 0.674689i
\(126\) 3.53463 0.314890
\(127\) −11.1256 −0.987233 −0.493616 0.869680i \(-0.664325\pi\)
−0.493616 + 0.869680i \(0.664325\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −0.844093 −0.0743183
\(130\) 0 0
\(131\) 14.9117 1.30284 0.651420 0.758718i \(-0.274174\pi\)
0.651420 + 0.758718i \(0.274174\pi\)
\(132\) − 6.85526i − 0.596674i
\(133\) −5.19793 −0.450717
\(134\) −0.966765 −0.0835158
\(135\) 4.76633i 0.410220i
\(136\) − 5.91517i − 0.507221i
\(137\) 15.4617i 1.32098i 0.750833 + 0.660492i \(0.229652\pi\)
−0.750833 + 0.660492i \(0.770348\pi\)
\(138\) − 18.0287i − 1.53471i
\(139\) 14.3022 1.21310 0.606548 0.795046i \(-0.292554\pi\)
0.606548 + 0.795046i \(0.292554\pi\)
\(140\) 3.48754 0.294751
\(141\) 4.09419i 0.344793i
\(142\) 4.18658 0.351330
\(143\) 0 0
\(144\) 3.53463 0.294553
\(145\) − 24.8758i − 2.06583i
\(146\) 15.0361 1.24439
\(147\) 2.55629 0.210839
\(148\) − 7.81450i − 0.642348i
\(149\) 3.55717i 0.291415i 0.989328 + 0.145708i \(0.0465458\pi\)
−0.989328 + 0.145708i \(0.953454\pi\)
\(150\) 18.3105i 1.49505i
\(151\) − 9.52740i − 0.775329i −0.921801 0.387664i \(-0.873282\pi\)
0.921801 0.387664i \(-0.126718\pi\)
\(152\) −5.19793 −0.421608
\(153\) 20.9079 1.69031
\(154\) − 2.68172i − 0.216099i
\(155\) 2.72859 0.219166
\(156\) 0 0
\(157\) 20.8345 1.66278 0.831388 0.555692i \(-0.187547\pi\)
0.831388 + 0.555692i \(0.187547\pi\)
\(158\) − 0.293356i − 0.0233382i
\(159\) −10.0360 −0.795909
\(160\) 3.48754 0.275714
\(161\) − 7.05268i − 0.555829i
\(162\) − 7.11027i − 0.558636i
\(163\) − 6.30603i − 0.493927i −0.969025 0.246963i \(-0.920567\pi\)
0.969025 0.246963i \(-0.0794327\pi\)
\(164\) − 0.157708i − 0.0123149i
\(165\) 23.9080 1.86123
\(166\) 2.87495 0.223139
\(167\) 6.66871i 0.516041i 0.966139 + 0.258020i \(0.0830701\pi\)
−0.966139 + 0.258020i \(0.916930\pi\)
\(168\) 2.55629 0.197222
\(169\) 0 0
\(170\) 20.6294 1.58220
\(171\) − 18.3728i − 1.40500i
\(172\) −0.330202 −0.0251777
\(173\) 21.3192 1.62087 0.810434 0.585830i \(-0.199231\pi\)
0.810434 + 0.585830i \(0.199231\pi\)
\(174\) − 18.2335i − 1.38228i
\(175\) 7.16292i 0.541466i
\(176\) − 2.68172i − 0.202142i
\(177\) 24.3876i 1.83308i
\(178\) −5.21325 −0.390750
\(179\) −15.4384 −1.15392 −0.576961 0.816772i \(-0.695761\pi\)
−0.576961 + 0.816772i \(0.695761\pi\)
\(180\) 12.3272i 0.918812i
\(181\) −13.2818 −0.987231 −0.493616 0.869680i \(-0.664325\pi\)
−0.493616 + 0.869680i \(0.664325\pi\)
\(182\) 0 0
\(183\) −39.3938 −2.91207
\(184\) − 7.05268i − 0.519930i
\(185\) 27.2534 2.00371
\(186\) 2.00000 0.146647
\(187\) − 15.8628i − 1.16000i
\(188\) 1.60161i 0.116810i
\(189\) 1.36668i 0.0994110i
\(190\) − 18.1280i − 1.31514i
\(191\) −11.9246 −0.862833 −0.431417 0.902153i \(-0.641986\pi\)
−0.431417 + 0.902153i \(0.641986\pi\)
\(192\) 2.55629 0.184485
\(193\) 5.34936i 0.385055i 0.981292 + 0.192528i \(0.0616685\pi\)
−0.981292 + 0.192528i \(0.938332\pi\)
\(194\) −3.15946 −0.226836
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) − 13.1938i − 0.940017i −0.882662 0.470009i \(-0.844251\pi\)
0.882662 0.470009i \(-0.155749\pi\)
\(198\) 9.47889 0.673635
\(199\) −20.0516 −1.42142 −0.710709 0.703486i \(-0.751626\pi\)
−0.710709 + 0.703486i \(0.751626\pi\)
\(200\) 7.16292i 0.506495i
\(201\) − 2.47133i − 0.174314i
\(202\) − 3.78650i − 0.266417i
\(203\) − 7.13278i − 0.500623i
\(204\) 15.1209 1.05867
\(205\) 0.550013 0.0384146
\(206\) − 6.80839i − 0.474363i
\(207\) 24.9286 1.73266
\(208\) 0 0
\(209\) −13.9394 −0.964207
\(210\) 8.91517i 0.615205i
\(211\) −7.96144 −0.548088 −0.274044 0.961717i \(-0.588361\pi\)
−0.274044 + 0.961717i \(0.588361\pi\)
\(212\) −3.92601 −0.269639
\(213\) 10.7021i 0.733297i
\(214\) 14.3017i 0.977642i
\(215\) − 1.15159i − 0.0785379i
\(216\) 1.36668i 0.0929905i
\(217\) 0.782383 0.0531116
\(218\) −4.57669 −0.309972
\(219\) 38.4366i 2.59730i
\(220\) 9.35259 0.630552
\(221\) 0 0
\(222\) 19.9762 1.34071
\(223\) − 21.5417i − 1.44254i −0.692653 0.721271i \(-0.743558\pi\)
0.692653 0.721271i \(-0.256442\pi\)
\(224\) 1.00000 0.0668153
\(225\) −25.3183 −1.68789
\(226\) − 3.01297i − 0.200419i
\(227\) − 3.65771i − 0.242771i −0.992605 0.121385i \(-0.961266\pi\)
0.992605 0.121385i \(-0.0387337\pi\)
\(228\) − 13.2874i − 0.879981i
\(229\) 9.74752i 0.644134i 0.946717 + 0.322067i \(0.104378\pi\)
−0.946717 + 0.322067i \(0.895622\pi\)
\(230\) 24.5965 1.62184
\(231\) 6.85526 0.451043
\(232\) − 7.13278i − 0.468290i
\(233\) −2.72895 −0.178779 −0.0893897 0.995997i \(-0.528492\pi\)
−0.0893897 + 0.995997i \(0.528492\pi\)
\(234\) 0 0
\(235\) −5.58568 −0.364370
\(236\) 9.54021i 0.621015i
\(237\) 0.749905 0.0487115
\(238\) 5.91517 0.383423
\(239\) 12.2347i 0.791400i 0.918380 + 0.395700i \(0.129498\pi\)
−0.918380 + 0.395700i \(0.870502\pi\)
\(240\) 8.91517i 0.575471i
\(241\) 24.2176i 1.56000i 0.625782 + 0.779998i \(0.284780\pi\)
−0.625782 + 0.779998i \(0.715220\pi\)
\(242\) 3.80839i 0.244812i
\(243\) 22.2760 1.42900
\(244\) −15.4105 −0.986556
\(245\) 3.48754i 0.222811i
\(246\) 0.403148 0.0257038
\(247\) 0 0
\(248\) 0.782383 0.0496814
\(249\) 7.34921i 0.465737i
\(250\) −7.54326 −0.477077
\(251\) −2.01371 −0.127104 −0.0635521 0.997979i \(-0.520243\pi\)
−0.0635521 + 0.997979i \(0.520243\pi\)
\(252\) 3.53463i 0.222661i
\(253\) − 18.9133i − 1.18907i
\(254\) − 11.1256i − 0.698079i
\(255\) 52.7347i 3.30237i
\(256\) 1.00000 0.0625000
\(257\) 2.14218 0.133625 0.0668127 0.997766i \(-0.478717\pi\)
0.0668127 + 0.997766i \(0.478717\pi\)
\(258\) − 0.844093i − 0.0525509i
\(259\) 7.81450 0.485570
\(260\) 0 0
\(261\) 25.2118 1.56057
\(262\) 14.9117i 0.921247i
\(263\) −10.8626 −0.669818 −0.334909 0.942250i \(-0.608706\pi\)
−0.334909 + 0.942250i \(0.608706\pi\)
\(264\) 6.85526 0.421912
\(265\) − 13.6921i − 0.841099i
\(266\) − 5.19793i − 0.318705i
\(267\) − 13.3266i − 0.815574i
\(268\) − 0.966765i − 0.0590546i
\(269\) −14.8051 −0.902686 −0.451343 0.892351i \(-0.649055\pi\)
−0.451343 + 0.892351i \(0.649055\pi\)
\(270\) −4.76633 −0.290070
\(271\) 0.0646361i 0.00392636i 0.999998 + 0.00196318i \(0.000624900\pi\)
−0.999998 + 0.00196318i \(0.999375\pi\)
\(272\) 5.91517 0.358660
\(273\) 0 0
\(274\) −15.4617 −0.934077
\(275\) 19.2089i 1.15834i
\(276\) 18.0287 1.08520
\(277\) −4.25115 −0.255427 −0.127713 0.991811i \(-0.540764\pi\)
−0.127713 + 0.991811i \(0.540764\pi\)
\(278\) 14.3022i 0.857789i
\(279\) 2.76544i 0.165562i
\(280\) 3.48754i 0.208420i
\(281\) − 11.0454i − 0.658916i −0.944170 0.329458i \(-0.893134\pi\)
0.944170 0.329458i \(-0.106866\pi\)
\(282\) −4.09419 −0.243805
\(283\) −11.2854 −0.670849 −0.335424 0.942067i \(-0.608880\pi\)
−0.335424 + 0.942067i \(0.608880\pi\)
\(284\) 4.18658i 0.248428i
\(285\) 46.3404 2.74497
\(286\) 0 0
\(287\) 0.157708 0.00930922
\(288\) 3.53463i 0.208280i
\(289\) 17.9892 1.05819
\(290\) 24.8758 1.46076
\(291\) − 8.07650i − 0.473453i
\(292\) 15.0361i 0.879919i
\(293\) 26.0442i 1.52152i 0.649036 + 0.760758i \(0.275172\pi\)
−0.649036 + 0.760758i \(0.724828\pi\)
\(294\) 2.55629i 0.149086i
\(295\) −33.2719 −1.93716
\(296\) 7.81450 0.454209
\(297\) 3.66504i 0.212667i
\(298\) −3.55717 −0.206062
\(299\) 0 0
\(300\) −18.3105 −1.05716
\(301\) − 0.330202i − 0.0190325i
\(302\) 9.52740 0.548240
\(303\) 9.67941 0.556067
\(304\) − 5.19793i − 0.298122i
\(305\) − 53.7447i − 3.07741i
\(306\) 20.9079i 1.19523i
\(307\) − 25.0551i − 1.42997i −0.699139 0.714986i \(-0.746433\pi\)
0.699139 0.714986i \(-0.253567\pi\)
\(308\) 2.68172 0.152805
\(309\) 17.4042 0.990092
\(310\) 2.72859i 0.154974i
\(311\) −32.4330 −1.83911 −0.919554 0.392964i \(-0.871450\pi\)
−0.919554 + 0.392964i \(0.871450\pi\)
\(312\) 0 0
\(313\) 2.22517 0.125774 0.0628870 0.998021i \(-0.479969\pi\)
0.0628870 + 0.998021i \(0.479969\pi\)
\(314\) 20.8345i 1.17576i
\(315\) −12.3272 −0.694557
\(316\) 0.293356 0.0165026
\(317\) 3.83753i 0.215537i 0.994176 + 0.107769i \(0.0343706\pi\)
−0.994176 + 0.107769i \(0.965629\pi\)
\(318\) − 10.0360i − 0.562793i
\(319\) − 19.1281i − 1.07097i
\(320\) 3.48754i 0.194959i
\(321\) −36.5592 −2.04054
\(322\) 7.05268 0.393030
\(323\) − 30.7466i − 1.71079i
\(324\) 7.11027 0.395015
\(325\) 0 0
\(326\) 6.30603 0.349259
\(327\) − 11.6994i − 0.646976i
\(328\) 0.157708 0.00870797
\(329\) −1.60161 −0.0882997
\(330\) 23.9080i 1.31609i
\(331\) − 6.08365i − 0.334387i −0.985924 0.167194i \(-0.946529\pi\)
0.985924 0.167194i \(-0.0534705\pi\)
\(332\) 2.87495i 0.157783i
\(333\) 27.6214i 1.51364i
\(334\) −6.66871 −0.364896
\(335\) 3.37163 0.184212
\(336\) 2.55629i 0.139457i
\(337\) −19.3746 −1.05540 −0.527700 0.849431i \(-0.676946\pi\)
−0.527700 + 0.849431i \(0.676946\pi\)
\(338\) 0 0
\(339\) 7.70202 0.418316
\(340\) 20.6294i 1.11878i
\(341\) 2.09813 0.113620
\(342\) 18.3728 0.993485
\(343\) 1.00000i 0.0539949i
\(344\) − 0.330202i − 0.0178033i
\(345\) 62.8758i 3.38512i
\(346\) 21.3192i 1.14613i
\(347\) −9.02056 −0.484249 −0.242124 0.970245i \(-0.577844\pi\)
−0.242124 + 0.970245i \(0.577844\pi\)
\(348\) 18.2335 0.977417
\(349\) 6.97685i 0.373462i 0.982411 + 0.186731i \(0.0597893\pi\)
−0.982411 + 0.186731i \(0.940211\pi\)
\(350\) −7.16292 −0.382874
\(351\) 0 0
\(352\) 2.68172 0.142936
\(353\) − 25.0386i − 1.33267i −0.745653 0.666335i \(-0.767862\pi\)
0.745653 0.666335i \(-0.232138\pi\)
\(354\) −24.3876 −1.29619
\(355\) −14.6008 −0.774932
\(356\) − 5.21325i − 0.276302i
\(357\) 15.1209i 0.800283i
\(358\) − 15.4384i − 0.815946i
\(359\) 37.6090i 1.98493i 0.122545 + 0.992463i \(0.460894\pi\)
−0.122545 + 0.992463i \(0.539106\pi\)
\(360\) −12.3272 −0.649698
\(361\) −8.01845 −0.422024
\(362\) − 13.2818i − 0.698078i
\(363\) −9.73535 −0.510973
\(364\) 0 0
\(365\) −52.4388 −2.74477
\(366\) − 39.3938i − 2.05914i
\(367\) 21.0910 1.10094 0.550470 0.834855i \(-0.314449\pi\)
0.550470 + 0.834855i \(0.314449\pi\)
\(368\) 7.05268 0.367646
\(369\) 0.557440i 0.0290192i
\(370\) 27.2534i 1.41684i
\(371\) − 3.92601i − 0.203828i
\(372\) 2.00000i 0.103695i
\(373\) 14.0942 0.729768 0.364884 0.931053i \(-0.381109\pi\)
0.364884 + 0.931053i \(0.381109\pi\)
\(374\) 15.8628 0.820246
\(375\) − 19.2828i − 0.995758i
\(376\) −1.60161 −0.0825968
\(377\) 0 0
\(378\) −1.36668 −0.0702942
\(379\) 33.1137i 1.70093i 0.526028 + 0.850467i \(0.323681\pi\)
−0.526028 + 0.850467i \(0.676319\pi\)
\(380\) 18.1280 0.929945
\(381\) 28.4402 1.45703
\(382\) − 11.9246i − 0.610115i
\(383\) 25.9321i 1.32507i 0.749032 + 0.662534i \(0.230519\pi\)
−0.749032 + 0.662534i \(0.769481\pi\)
\(384\) 2.55629i 0.130450i
\(385\) 9.35259i 0.476652i
\(386\) −5.34936 −0.272275
\(387\) 1.16714 0.0593292
\(388\) − 3.15946i − 0.160397i
\(389\) −30.5647 −1.54969 −0.774847 0.632149i \(-0.782173\pi\)
−0.774847 + 0.632149i \(0.782173\pi\)
\(390\) 0 0
\(391\) 41.7178 2.10976
\(392\) 1.00000i 0.0505076i
\(393\) −38.1186 −1.92283
\(394\) 13.1938 0.664692
\(395\) 1.02309i 0.0514773i
\(396\) 9.47889i 0.476332i
\(397\) − 22.4614i − 1.12731i −0.826012 0.563653i \(-0.809396\pi\)
0.826012 0.563653i \(-0.190604\pi\)
\(398\) − 20.0516i − 1.00509i
\(399\) 13.2874 0.665203
\(400\) −7.16292 −0.358146
\(401\) − 17.0288i − 0.850376i −0.905105 0.425188i \(-0.860208\pi\)
0.905105 0.425188i \(-0.139792\pi\)
\(402\) 2.47133 0.123259
\(403\) 0 0
\(404\) 3.78650 0.188386
\(405\) 24.7973i 1.23219i
\(406\) 7.13278 0.353994
\(407\) 20.9563 1.03876
\(408\) 15.1209i 0.748596i
\(409\) − 5.13532i − 0.253925i −0.991908 0.126963i \(-0.959477\pi\)
0.991908 0.126963i \(-0.0405228\pi\)
\(410\) 0.550013i 0.0271632i
\(411\) − 39.5247i − 1.94961i
\(412\) 6.80839 0.335425
\(413\) −9.54021 −0.469443
\(414\) 24.9286i 1.22517i
\(415\) −10.0265 −0.492181
\(416\) 0 0
\(417\) −36.5606 −1.79038
\(418\) − 13.9394i − 0.681797i
\(419\) −31.8836 −1.55762 −0.778808 0.627263i \(-0.784175\pi\)
−0.778808 + 0.627263i \(0.784175\pi\)
\(420\) −8.91517 −0.435016
\(421\) − 14.7648i − 0.719594i −0.933031 0.359797i \(-0.882846\pi\)
0.933031 0.359797i \(-0.117154\pi\)
\(422\) − 7.96144i − 0.387557i
\(423\) − 5.66111i − 0.275252i
\(424\) − 3.92601i − 0.190664i
\(425\) −42.3698 −2.05524
\(426\) −10.7021 −0.518519
\(427\) − 15.4105i − 0.745767i
\(428\) −14.3017 −0.691297
\(429\) 0 0
\(430\) 1.15159 0.0555347
\(431\) 35.1088i 1.69113i 0.533872 + 0.845565i \(0.320736\pi\)
−0.533872 + 0.845565i \(0.679264\pi\)
\(432\) −1.36668 −0.0657542
\(433\) 3.97251 0.190907 0.0954533 0.995434i \(-0.469570\pi\)
0.0954533 + 0.995434i \(0.469570\pi\)
\(434\) 0.782383i 0.0375556i
\(435\) 63.5899i 3.04890i
\(436\) − 4.57669i − 0.219184i
\(437\) − 36.6593i − 1.75365i
\(438\) −38.4366 −1.83657
\(439\) −5.75277 −0.274565 −0.137282 0.990532i \(-0.543837\pi\)
−0.137282 + 0.990532i \(0.543837\pi\)
\(440\) 9.35259i 0.445867i
\(441\) −3.53463 −0.168316
\(442\) 0 0
\(443\) −27.0804 −1.28663 −0.643315 0.765602i \(-0.722441\pi\)
−0.643315 + 0.765602i \(0.722441\pi\)
\(444\) 19.9762i 0.948026i
\(445\) 18.1814 0.861881
\(446\) 21.5417 1.02003
\(447\) − 9.09318i − 0.430092i
\(448\) 1.00000i 0.0472456i
\(449\) − 8.24914i − 0.389301i −0.980873 0.194650i \(-0.937643\pi\)
0.980873 0.194650i \(-0.0623573\pi\)
\(450\) − 25.3183i − 1.19351i
\(451\) 0.422929 0.0199149
\(452\) 3.01297 0.141718
\(453\) 24.3548i 1.14429i
\(454\) 3.65771 0.171665
\(455\) 0 0
\(456\) 13.2874 0.622241
\(457\) 38.6967i 1.81015i 0.425247 + 0.905077i \(0.360187\pi\)
−0.425247 + 0.905077i \(0.639813\pi\)
\(458\) −9.74752 −0.455472
\(459\) −8.08411 −0.377334
\(460\) 24.5965i 1.14682i
\(461\) − 13.1348i − 0.611751i −0.952072 0.305875i \(-0.901051\pi\)
0.952072 0.305875i \(-0.0989491\pi\)
\(462\) 6.85526i 0.318935i
\(463\) − 6.98417i − 0.324582i −0.986743 0.162291i \(-0.948112\pi\)
0.986743 0.162291i \(-0.0518883\pi\)
\(464\) 7.13278 0.331131
\(465\) −6.97507 −0.323461
\(466\) − 2.72895i − 0.126416i
\(467\) 5.62691 0.260382 0.130191 0.991489i \(-0.458441\pi\)
0.130191 + 0.991489i \(0.458441\pi\)
\(468\) 0 0
\(469\) 0.966765 0.0446411
\(470\) − 5.58568i − 0.257648i
\(471\) −53.2591 −2.45405
\(472\) −9.54021 −0.439124
\(473\) − 0.885509i − 0.0407158i
\(474\) 0.749905i 0.0344443i
\(475\) 37.2323i 1.70834i
\(476\) 5.91517i 0.271121i
\(477\) 13.8770 0.635384
\(478\) −12.2347 −0.559604
\(479\) 25.1191i 1.14772i 0.818953 + 0.573861i \(0.194555\pi\)
−0.818953 + 0.573861i \(0.805445\pi\)
\(480\) −8.91517 −0.406920
\(481\) 0 0
\(482\) −24.2176 −1.10308
\(483\) 18.0287i 0.820334i
\(484\) −3.80839 −0.173108
\(485\) 11.0187 0.500334
\(486\) 22.2760i 1.01046i
\(487\) 17.6758i 0.800968i 0.916304 + 0.400484i \(0.131158\pi\)
−0.916304 + 0.400484i \(0.868842\pi\)
\(488\) − 15.4105i − 0.697601i
\(489\) 16.1201i 0.728975i
\(490\) −3.48754 −0.157551
\(491\) −31.9949 −1.44391 −0.721956 0.691939i \(-0.756757\pi\)
−0.721956 + 0.691939i \(0.756757\pi\)
\(492\) 0.403148i 0.0181753i
\(493\) 42.1916 1.90021
\(494\) 0 0
\(495\) −33.0580 −1.48585
\(496\) 0.782383i 0.0351300i
\(497\) −4.18658 −0.187794
\(498\) −7.34921 −0.329326
\(499\) − 11.6416i − 0.521149i −0.965454 0.260574i \(-0.916088\pi\)
0.965454 0.260574i \(-0.0839119\pi\)
\(500\) − 7.54326i − 0.337345i
\(501\) − 17.0472i − 0.761612i
\(502\) − 2.01371i − 0.0898762i
\(503\) 15.0353 0.670390 0.335195 0.942149i \(-0.391198\pi\)
0.335195 + 0.942149i \(0.391198\pi\)
\(504\) −3.53463 −0.157445
\(505\) 13.2056i 0.587640i
\(506\) 18.9133 0.840798
\(507\) 0 0
\(508\) 11.1256 0.493616
\(509\) 2.56096i 0.113513i 0.998388 + 0.0567563i \(0.0180758\pi\)
−0.998388 + 0.0567563i \(0.981924\pi\)
\(510\) −52.7347 −2.33513
\(511\) −15.0361 −0.665156
\(512\) 1.00000i 0.0441942i
\(513\) 7.10388i 0.313644i
\(514\) 2.14218i 0.0944874i
\(515\) 23.7445i 1.04631i
\(516\) 0.844093 0.0371591
\(517\) −4.29507 −0.188897
\(518\) 7.81450i 0.343349i
\(519\) −54.4981 −2.39220
\(520\) 0 0
\(521\) −31.0544 −1.36052 −0.680259 0.732972i \(-0.738133\pi\)
−0.680259 + 0.732972i \(0.738133\pi\)
\(522\) 25.2118i 1.10349i
\(523\) −4.36360 −0.190807 −0.0954035 0.995439i \(-0.530414\pi\)
−0.0954035 + 0.995439i \(0.530414\pi\)
\(524\) −14.9117 −0.651420
\(525\) − 18.3105i − 0.799136i
\(526\) − 10.8626i − 0.473633i
\(527\) 4.62793i 0.201596i
\(528\) 6.85526i 0.298337i
\(529\) 26.7402 1.16262
\(530\) 13.6921 0.594747
\(531\) − 33.7211i − 1.46337i
\(532\) 5.19793 0.225359
\(533\) 0 0
\(534\) 13.3266 0.576698
\(535\) − 49.8776i − 2.15640i
\(536\) 0.966765 0.0417579
\(537\) 39.4651 1.70305
\(538\) − 14.8051i − 0.638295i
\(539\) 2.68172i 0.115510i
\(540\) − 4.76633i − 0.205110i
\(541\) 17.2191i 0.740305i 0.928971 + 0.370152i \(0.120695\pi\)
−0.928971 + 0.370152i \(0.879305\pi\)
\(542\) −0.0646361 −0.00277636
\(543\) 33.9523 1.45703
\(544\) 5.91517i 0.253611i
\(545\) 15.9614 0.683710
\(546\) 0 0
\(547\) 42.8331 1.83141 0.915706 0.401849i \(-0.131632\pi\)
0.915706 + 0.401849i \(0.131632\pi\)
\(548\) − 15.4617i − 0.660492i
\(549\) 54.4705 2.32474
\(550\) −19.2089 −0.819071
\(551\) − 37.0757i − 1.57948i
\(552\) 18.0287i 0.767353i
\(553\) 0.293356i 0.0124748i
\(554\) − 4.25115i − 0.180614i
\(555\) −69.6676 −2.95722
\(556\) −14.3022 −0.606548
\(557\) − 24.2206i − 1.02626i −0.858312 0.513129i \(-0.828486\pi\)
0.858312 0.513129i \(-0.171514\pi\)
\(558\) −2.76544 −0.117070
\(559\) 0 0
\(560\) −3.48754 −0.147375
\(561\) 40.5500i 1.71202i
\(562\) 11.0454 0.465924
\(563\) 13.2481 0.558341 0.279170 0.960242i \(-0.409941\pi\)
0.279170 + 0.960242i \(0.409941\pi\)
\(564\) − 4.09419i − 0.172396i
\(565\) 10.5078i 0.442068i
\(566\) − 11.2854i − 0.474362i
\(567\) 7.11027i 0.298603i
\(568\) −4.18658 −0.175665
\(569\) 24.9921 1.04772 0.523861 0.851804i \(-0.324491\pi\)
0.523861 + 0.851804i \(0.324491\pi\)
\(570\) 46.3404i 1.94099i
\(571\) 22.5276 0.942750 0.471375 0.881933i \(-0.343758\pi\)
0.471375 + 0.881933i \(0.343758\pi\)
\(572\) 0 0
\(573\) 30.4827 1.27344
\(574\) 0.157708i 0.00658261i
\(575\) −50.5177 −2.10674
\(576\) −3.53463 −0.147276
\(577\) 12.9848i 0.540564i 0.962781 + 0.270282i \(0.0871170\pi\)
−0.962781 + 0.270282i \(0.912883\pi\)
\(578\) 17.9892i 0.748252i
\(579\) − 13.6745i − 0.568294i
\(580\) 24.8758i 1.03291i
\(581\) −2.87495 −0.119273
\(582\) 8.07650 0.334782
\(583\) − 10.5285i − 0.436044i
\(584\) −15.0361 −0.622197
\(585\) 0 0
\(586\) −26.0442 −1.07587
\(587\) 3.49432i 0.144226i 0.997396 + 0.0721131i \(0.0229742\pi\)
−0.997396 + 0.0721131i \(0.977026\pi\)
\(588\) −2.55629 −0.105420
\(589\) 4.06677 0.167568
\(590\) − 33.2719i − 1.36978i
\(591\) 33.7271i 1.38735i
\(592\) 7.81450i 0.321174i
\(593\) 23.2140i 0.953283i 0.879098 + 0.476642i \(0.158146\pi\)
−0.879098 + 0.476642i \(0.841854\pi\)
\(594\) −3.66504 −0.150378
\(595\) −20.6294 −0.845721
\(596\) − 3.55717i − 0.145708i
\(597\) 51.2577 2.09784
\(598\) 0 0
\(599\) 18.3645 0.750354 0.375177 0.926953i \(-0.377582\pi\)
0.375177 + 0.926953i \(0.377582\pi\)
\(600\) − 18.3105i − 0.747524i
\(601\) −4.75965 −0.194150 −0.0970751 0.995277i \(-0.530949\pi\)
−0.0970751 + 0.995277i \(0.530949\pi\)
\(602\) 0.330202 0.0134580
\(603\) 3.41716i 0.139157i
\(604\) 9.52740i 0.387664i
\(605\) − 13.2819i − 0.539986i
\(606\) 9.67941i 0.393199i
\(607\) 20.9656 0.850968 0.425484 0.904966i \(-0.360104\pi\)
0.425484 + 0.904966i \(0.360104\pi\)
\(608\) 5.19793 0.210804
\(609\) 18.2335i 0.738858i
\(610\) 53.7447 2.17606
\(611\) 0 0
\(612\) −20.9079 −0.845153
\(613\) − 29.3124i − 1.18392i −0.805968 0.591959i \(-0.798355\pi\)
0.805968 0.591959i \(-0.201645\pi\)
\(614\) 25.0551 1.01114
\(615\) −1.40599 −0.0566952
\(616\) 2.68172i 0.108050i
\(617\) 5.26343i 0.211898i 0.994372 + 0.105949i \(0.0337880\pi\)
−0.994372 + 0.105949i \(0.966212\pi\)
\(618\) 17.4042i 0.700101i
\(619\) 10.9663i 0.440774i 0.975413 + 0.220387i \(0.0707320\pi\)
−0.975413 + 0.220387i \(0.929268\pi\)
\(620\) −2.72859 −0.109583
\(621\) −9.63872 −0.386788
\(622\) − 32.4330i − 1.30045i
\(623\) 5.21325 0.208864
\(624\) 0 0
\(625\) −9.50720 −0.380288
\(626\) 2.22517i 0.0889357i
\(627\) 35.6331 1.42305
\(628\) −20.8345 −0.831388
\(629\) 46.2241i 1.84307i
\(630\) − 12.3272i − 0.491126i
\(631\) 24.3229i 0.968278i 0.874991 + 0.484139i \(0.160867\pi\)
−0.874991 + 0.484139i \(0.839133\pi\)
\(632\) 0.293356i 0.0116691i
\(633\) 20.3518 0.808910
\(634\) −3.83753 −0.152408
\(635\) 38.8008i 1.53976i
\(636\) 10.0360 0.397954
\(637\) 0 0
\(638\) 19.1281 0.757289
\(639\) − 14.7980i − 0.585400i
\(640\) −3.48754 −0.137857
\(641\) −1.30118 −0.0513937 −0.0256968 0.999670i \(-0.508180\pi\)
−0.0256968 + 0.999670i \(0.508180\pi\)
\(642\) − 36.5592i − 1.44288i
\(643\) − 5.62971i − 0.222014i −0.993820 0.111007i \(-0.964592\pi\)
0.993820 0.111007i \(-0.0354076\pi\)
\(644\) 7.05268i 0.277914i
\(645\) 2.94381i 0.115912i
\(646\) 30.7466 1.20971
\(647\) 11.8127 0.464405 0.232202 0.972667i \(-0.425407\pi\)
0.232202 + 0.972667i \(0.425407\pi\)
\(648\) 7.11027i 0.279318i
\(649\) −25.5842 −1.00427
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) 6.30603i 0.246963i
\(653\) −3.12013 −0.122100 −0.0610500 0.998135i \(-0.519445\pi\)
−0.0610500 + 0.998135i \(0.519445\pi\)
\(654\) 11.6994 0.457481
\(655\) − 52.0050i − 2.03201i
\(656\) 0.157708i 0.00615747i
\(657\) − 53.1469i − 2.07346i
\(658\) − 1.60161i − 0.0624373i
\(659\) 37.5067 1.46105 0.730526 0.682885i \(-0.239275\pi\)
0.730526 + 0.682885i \(0.239275\pi\)
\(660\) −23.9080 −0.930616
\(661\) 35.7746i 1.39147i 0.718299 + 0.695735i \(0.244921\pi\)
−0.718299 + 0.695735i \(0.755079\pi\)
\(662\) 6.08365 0.236448
\(663\) 0 0
\(664\) −2.87495 −0.111570
\(665\) 18.1280i 0.702972i
\(666\) −27.6214 −1.07031
\(667\) 50.3052 1.94783
\(668\) − 6.66871i − 0.258020i
\(669\) 55.0670i 2.12901i
\(670\) 3.37163i 0.130257i
\(671\) − 41.3266i − 1.59540i
\(672\) −2.55629 −0.0986111
\(673\) 8.62162 0.332339 0.166170 0.986097i \(-0.446860\pi\)
0.166170 + 0.986097i \(0.446860\pi\)
\(674\) − 19.3746i − 0.746281i
\(675\) 9.78938 0.376793
\(676\) 0 0
\(677\) −15.5551 −0.597829 −0.298915 0.954280i \(-0.596625\pi\)
−0.298915 + 0.954280i \(0.596625\pi\)
\(678\) 7.70202i 0.295794i
\(679\) 3.15946 0.121249
\(680\) −20.6294 −0.791100
\(681\) 9.35019i 0.358300i
\(682\) 2.09813i 0.0803416i
\(683\) 8.89795i 0.340471i 0.985403 + 0.170235i \(0.0544528\pi\)
−0.985403 + 0.170235i \(0.945547\pi\)
\(684\) 18.3728i 0.702500i
\(685\) 53.9233 2.06030
\(686\) −1.00000 −0.0381802
\(687\) − 24.9175i − 0.950663i
\(688\) 0.330202 0.0125888
\(689\) 0 0
\(690\) −62.8758 −2.39364
\(691\) − 38.1797i − 1.45243i −0.687470 0.726213i \(-0.741279\pi\)
0.687470 0.726213i \(-0.258721\pi\)
\(692\) −21.3192 −0.810434
\(693\) −9.47889 −0.360073
\(694\) − 9.02056i − 0.342416i
\(695\) − 49.8795i − 1.89204i
\(696\) 18.2335i 0.691138i
\(697\) 0.932870i 0.0353350i
\(698\) −6.97685 −0.264078
\(699\) 6.97600 0.263856
\(700\) − 7.16292i − 0.270733i
\(701\) 44.0952 1.66545 0.832727 0.553684i \(-0.186779\pi\)
0.832727 + 0.553684i \(0.186779\pi\)
\(702\) 0 0
\(703\) 40.6192 1.53198
\(704\) 2.68172i 0.101071i
\(705\) 14.2786 0.537765
\(706\) 25.0386 0.942340
\(707\) 3.78650i 0.142406i
\(708\) − 24.3876i − 0.916541i
\(709\) − 12.2637i − 0.460573i −0.973123 0.230287i \(-0.926034\pi\)
0.973123 0.230287i \(-0.0739663\pi\)
\(710\) − 14.6008i − 0.547960i
\(711\) −1.03691 −0.0388870
\(712\) 5.21325 0.195375
\(713\) 5.51789i 0.206647i
\(714\) −15.1209 −0.565885
\(715\) 0 0
\(716\) 15.4384 0.576961
\(717\) − 31.2756i − 1.16801i
\(718\) −37.6090 −1.40355
\(719\) −27.1933 −1.01414 −0.507070 0.861905i \(-0.669272\pi\)
−0.507070 + 0.861905i \(0.669272\pi\)
\(720\) − 12.3272i − 0.459406i
\(721\) 6.80839i 0.253558i
\(722\) − 8.01845i − 0.298416i
\(723\) − 61.9074i − 2.30236i
\(724\) 13.2818 0.493616
\(725\) −51.0915 −1.89749
\(726\) − 9.73535i − 0.361313i
\(727\) −18.5289 −0.687200 −0.343600 0.939116i \(-0.611646\pi\)
−0.343600 + 0.939116i \(0.611646\pi\)
\(728\) 0 0
\(729\) −35.6131 −1.31900
\(730\) − 52.4388i − 1.94085i
\(731\) 1.95320 0.0722417
\(732\) 39.3938 1.45604
\(733\) − 50.8986i − 1.87998i −0.341196 0.939992i \(-0.610832\pi\)
0.341196 0.939992i \(-0.389168\pi\)
\(734\) 21.0910i 0.778482i
\(735\) − 8.91517i − 0.328841i
\(736\) 7.05268i 0.259965i
\(737\) 2.59259 0.0954993
\(738\) −0.557440 −0.0205197
\(739\) − 8.58969i − 0.315977i −0.987441 0.157988i \(-0.949499\pi\)
0.987441 0.157988i \(-0.0505009\pi\)
\(740\) −27.2534 −1.00185
\(741\) 0 0
\(742\) 3.92601 0.144128
\(743\) 38.1873i 1.40095i 0.713675 + 0.700477i \(0.247029\pi\)
−0.713675 + 0.700477i \(0.752971\pi\)
\(744\) −2.00000 −0.0733236
\(745\) 12.4058 0.454512
\(746\) 14.0942i 0.516024i
\(747\) − 10.1619i − 0.371804i
\(748\) 15.8628i 0.580002i
\(749\) − 14.3017i − 0.522572i
\(750\) 19.2828 0.704107
\(751\) 2.84971 0.103987 0.0519937 0.998647i \(-0.483442\pi\)
0.0519937 + 0.998647i \(0.483442\pi\)
\(752\) − 1.60161i − 0.0584048i
\(753\) 5.14763 0.187590
\(754\) 0 0
\(755\) −33.2272 −1.20926
\(756\) − 1.36668i − 0.0497055i
\(757\) 19.2790 0.700707 0.350354 0.936618i \(-0.386061\pi\)
0.350354 + 0.936618i \(0.386061\pi\)
\(758\) −33.1137 −1.20274
\(759\) 48.3479i 1.75492i
\(760\) 18.1280i 0.657570i
\(761\) 11.5840i 0.419919i 0.977710 + 0.209959i \(0.0673332\pi\)
−0.977710 + 0.209959i \(0.932667\pi\)
\(762\) 28.4402i 1.03028i
\(763\) 4.57669 0.165687
\(764\) 11.9246 0.431417
\(765\) − 72.9172i − 2.63633i
\(766\) −25.9321 −0.936964
\(767\) 0 0
\(768\) −2.55629 −0.0922423
\(769\) 24.4203i 0.880619i 0.897846 + 0.440310i \(0.145131\pi\)
−0.897846 + 0.440310i \(0.854869\pi\)
\(770\) −9.35259 −0.337044
\(771\) −5.47603 −0.197214
\(772\) − 5.34936i − 0.192528i
\(773\) − 6.98615i − 0.251275i −0.992076 0.125637i \(-0.959902\pi\)
0.992076 0.125637i \(-0.0400975\pi\)
\(774\) 1.16714i 0.0419521i
\(775\) − 5.60415i − 0.201307i
\(776\) 3.15946 0.113418
\(777\) −19.9762 −0.716640
\(778\) − 30.5647i − 1.09580i
\(779\) 0.819755 0.0293708
\(780\) 0 0
\(781\) −11.2272 −0.401741
\(782\) 41.7178i 1.49182i
\(783\) −9.74820 −0.348372
\(784\) −1.00000 −0.0357143
\(785\) − 72.6612i − 2.59339i
\(786\) − 38.1186i − 1.35965i
\(787\) 17.3473i 0.618364i 0.951003 + 0.309182i \(0.100055\pi\)
−0.951003 + 0.309182i \(0.899945\pi\)
\(788\) 13.1938i 0.470009i
\(789\) 27.7681 0.988569
\(790\) −1.02309 −0.0363999
\(791\) 3.01297i 0.107129i
\(792\) −9.47889 −0.336818
\(793\) 0 0
\(794\) 22.4614 0.797125
\(795\) 35.0010i 1.24136i
\(796\) 20.0516 0.710709
\(797\) −40.3340 −1.42871 −0.714353 0.699786i \(-0.753279\pi\)
−0.714353 + 0.699786i \(0.753279\pi\)
\(798\) 13.2874i 0.470370i
\(799\) − 9.47380i − 0.335159i
\(800\) − 7.16292i − 0.253247i
\(801\) 18.4269i 0.651083i
\(802\) 17.0288 0.601307
\(803\) −40.3225 −1.42295
\(804\) 2.47133i 0.0871572i
\(805\) −24.5965 −0.866912
\(806\) 0 0
\(807\) 37.8463 1.33225
\(808\) 3.78650i 0.133209i
\(809\) 2.71050 0.0952961 0.0476481 0.998864i \(-0.484827\pi\)
0.0476481 + 0.998864i \(0.484827\pi\)
\(810\) −24.7973 −0.871290
\(811\) 29.7449i 1.04448i 0.852797 + 0.522242i \(0.174904\pi\)
−0.852797 + 0.522242i \(0.825096\pi\)
\(812\) 7.13278i 0.250312i
\(813\) − 0.165229i − 0.00579483i
\(814\) 20.9563i 0.734518i
\(815\) −21.9925 −0.770365
\(816\) −15.1209 −0.529337
\(817\) − 1.71637i − 0.0600481i
\(818\) 5.13532 0.179552
\(819\) 0 0
\(820\) −0.550013 −0.0192073
\(821\) 17.3317i 0.604880i 0.953168 + 0.302440i \(0.0978011\pi\)
−0.953168 + 0.302440i \(0.902199\pi\)
\(822\) 39.5247 1.37858
\(823\) −11.4589 −0.399432 −0.199716 0.979854i \(-0.564002\pi\)
−0.199716 + 0.979854i \(0.564002\pi\)
\(824\) 6.80839i 0.237181i
\(825\) − 49.1036i − 1.70957i
\(826\) − 9.54021i − 0.331946i
\(827\) − 5.41259i − 0.188214i −0.995562 0.0941070i \(-0.970000\pi\)
0.995562 0.0941070i \(-0.0299996\pi\)
\(828\) −24.9286 −0.866329
\(829\) −34.8694 −1.21107 −0.605533 0.795820i \(-0.707040\pi\)
−0.605533 + 0.795820i \(0.707040\pi\)
\(830\) − 10.0265i − 0.348024i
\(831\) 10.8672 0.376979
\(832\) 0 0
\(833\) −5.91517 −0.204948
\(834\) − 36.5606i − 1.26599i
\(835\) 23.2574 0.804855
\(836\) 13.9394 0.482103
\(837\) − 1.06926i − 0.0369592i
\(838\) − 31.8836i − 1.10140i
\(839\) − 24.7350i − 0.853947i −0.904264 0.426973i \(-0.859580\pi\)
0.904264 0.426973i \(-0.140420\pi\)
\(840\) − 8.91517i − 0.307602i
\(841\) 21.8766 0.754365
\(842\) 14.7648 0.508830
\(843\) 28.2354i 0.972478i
\(844\) 7.96144 0.274044
\(845\) 0 0
\(846\) 5.66111 0.194633
\(847\) − 3.80839i − 0.130858i
\(848\) 3.92601 0.134820
\(849\) 28.8488 0.990089
\(850\) − 42.3698i − 1.45327i
\(851\) 55.1132i 1.88925i
\(852\) − 10.7021i − 0.366648i
\(853\) − 6.14219i − 0.210304i −0.994456 0.105152i \(-0.966467\pi\)
0.994456 0.105152i \(-0.0335330\pi\)
\(854\) 15.4105 0.527337
\(855\) −64.0757 −2.19134
\(856\) − 14.3017i − 0.488821i
\(857\) 32.2072 1.10018 0.550088 0.835106i \(-0.314594\pi\)
0.550088 + 0.835106i \(0.314594\pi\)
\(858\) 0 0
\(859\) −17.3714 −0.592705 −0.296352 0.955079i \(-0.595770\pi\)
−0.296352 + 0.955079i \(0.595770\pi\)
\(860\) 1.15159i 0.0392690i
\(861\) −0.403148 −0.0137393
\(862\) −35.1088 −1.19581
\(863\) 0.309300i 0.0105287i 0.999986 + 0.00526435i \(0.00167570\pi\)
−0.999986 + 0.00526435i \(0.998324\pi\)
\(864\) − 1.36668i − 0.0464952i
\(865\) − 74.3515i − 2.52803i
\(866\) 3.97251i 0.134991i
\(867\) −45.9856 −1.56175
\(868\) −0.782383 −0.0265558
\(869\) 0.786699i 0.0266869i
\(870\) −63.5899 −2.15590
\(871\) 0 0
\(872\) 4.57669 0.154986
\(873\) 11.1675i 0.377963i
\(874\) 36.6593 1.24002
\(875\) 7.54326 0.255009
\(876\) − 38.4366i − 1.29865i
\(877\) 21.8148i 0.736633i 0.929701 + 0.368316i \(0.120066\pi\)
−0.929701 + 0.368316i \(0.879934\pi\)
\(878\) − 5.75277i − 0.194147i
\(879\) − 66.5765i − 2.24557i
\(880\) −9.35259 −0.315276
\(881\) 10.3626 0.349126 0.174563 0.984646i \(-0.444149\pi\)
0.174563 + 0.984646i \(0.444149\pi\)
\(882\) − 3.53463i − 0.119017i
\(883\) 47.4366 1.59637 0.798184 0.602414i \(-0.205794\pi\)
0.798184 + 0.602414i \(0.205794\pi\)
\(884\) 0 0
\(885\) 85.0526 2.85901
\(886\) − 27.0804i − 0.909785i
\(887\) 20.3479 0.683216 0.341608 0.939843i \(-0.389028\pi\)
0.341608 + 0.939843i \(0.389028\pi\)
\(888\) −19.9762 −0.670356
\(889\) 11.1256i 0.373139i
\(890\) 18.1814i 0.609442i
\(891\) 19.0678i 0.638794i
\(892\) 21.5417i 0.721271i
\(893\) −8.32506 −0.278588
\(894\) 9.09318 0.304121
\(895\) 53.8421i 1.79974i
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 8.24914 0.275277
\(899\) 5.58057i 0.186122i
\(900\) 25.3183 0.843943
\(901\) 23.2230 0.773670
\(902\) 0.422929i 0.0140820i
\(903\) 0.844093i 0.0280897i
\(904\) 3.01297i 0.100210i
\(905\) 46.3209i 1.53976i
\(906\) −24.3548 −0.809135
\(907\) 17.0130 0.564908 0.282454 0.959281i \(-0.408852\pi\)
0.282454 + 0.959281i \(0.408852\pi\)
\(908\) 3.65771i 0.121385i
\(909\) −13.3839 −0.443916
\(910\) 0 0
\(911\) 12.8289 0.425040 0.212520 0.977157i \(-0.431833\pi\)
0.212520 + 0.977157i \(0.431833\pi\)
\(912\) 13.2874i 0.439991i
\(913\) −7.70980 −0.255157
\(914\) −38.6967 −1.27997
\(915\) 137.387i 4.54188i
\(916\) − 9.74752i − 0.322067i
\(917\) − 14.9117i − 0.492427i
\(918\) − 8.08411i − 0.266815i
\(919\) −38.5765 −1.27252 −0.636261 0.771474i \(-0.719520\pi\)
−0.636261 + 0.771474i \(0.719520\pi\)
\(920\) −24.5965 −0.810922
\(921\) 64.0482i 2.11046i
\(922\) 13.1348 0.432573
\(923\) 0 0
\(924\) −6.85526 −0.225521
\(925\) − 55.9746i − 1.84043i
\(926\) 6.98417 0.229514
\(927\) −24.0651 −0.790403
\(928\) 7.13278i 0.234145i
\(929\) 4.34958i 0.142705i 0.997451 + 0.0713526i \(0.0227316\pi\)
−0.997451 + 0.0713526i \(0.977268\pi\)
\(930\) − 6.97507i − 0.228722i
\(931\) 5.19793i 0.170355i
\(932\) 2.72895 0.0893897
\(933\) 82.9083 2.71430
\(934\) 5.62691i 0.184118i
\(935\) −55.3221 −1.80923
\(936\) 0 0
\(937\) −13.5931 −0.444068 −0.222034 0.975039i \(-0.571270\pi\)
−0.222034 + 0.975039i \(0.571270\pi\)
\(938\) 0.966765i 0.0315660i
\(939\) −5.68819 −0.185627
\(940\) 5.58568 0.182185
\(941\) 24.5649i 0.800792i 0.916342 + 0.400396i \(0.131127\pi\)
−0.916342 + 0.400396i \(0.868873\pi\)
\(942\) − 53.2591i − 1.73528i
\(943\) 1.11226i 0.0362203i
\(944\) − 9.54021i − 0.310508i
\(945\) 4.76633 0.155049
\(946\) 0.885509 0.0287904
\(947\) − 2.09781i − 0.0681697i −0.999419 0.0340848i \(-0.989148\pi\)
0.999419 0.0340848i \(-0.0108516\pi\)
\(948\) −0.749905 −0.0243558
\(949\) 0 0
\(950\) −37.2323 −1.20798
\(951\) − 9.80985i − 0.318106i
\(952\) −5.91517 −0.191712
\(953\) 40.3398 1.30673 0.653367 0.757042i \(-0.273356\pi\)
0.653367 + 0.757042i \(0.273356\pi\)
\(954\) 13.8770i 0.449284i
\(955\) 41.5875i 1.34574i
\(956\) − 12.2347i − 0.395700i
\(957\) 48.8971i 1.58062i
\(958\) −25.1191 −0.811562
\(959\) 15.4617 0.499285
\(960\) − 8.91517i − 0.287736i
\(961\) 30.3879 0.980254
\(962\) 0 0
\(963\) 50.5511 1.62899
\(964\) − 24.2176i − 0.779998i
\(965\) 18.6561 0.600560
\(966\) −18.0287 −0.580064
\(967\) 2.90536i 0.0934300i 0.998908 + 0.0467150i \(0.0148753\pi\)
−0.998908 + 0.0467150i \(0.985125\pi\)
\(968\) − 3.80839i − 0.122406i
\(969\) 78.5973i 2.52491i
\(970\) 11.0187i 0.353790i
\(971\) −11.7552 −0.377242 −0.188621 0.982050i \(-0.560402\pi\)
−0.188621 + 0.982050i \(0.560402\pi\)
\(972\) −22.2760 −0.714502
\(973\) − 14.3022i − 0.458508i
\(974\) −17.6758 −0.566370
\(975\) 0 0
\(976\) 15.4105 0.493278
\(977\) 20.0905i 0.642751i 0.946952 + 0.321375i \(0.104145\pi\)
−0.946952 + 0.321375i \(0.895855\pi\)
\(978\) −16.1201 −0.515463
\(979\) 13.9805 0.446818
\(980\) − 3.48754i − 0.111405i
\(981\) 16.1769i 0.516489i
\(982\) − 31.9949i − 1.02100i
\(983\) 30.8037i 0.982487i 0.871022 + 0.491243i \(0.163457\pi\)
−0.871022 + 0.491243i \(0.836543\pi\)
\(984\) −0.403148 −0.0128519
\(985\) −46.0138 −1.46612
\(986\) 42.1916i 1.34365i
\(987\) 4.09419 0.130319
\(988\) 0 0
\(989\) 2.32881 0.0740518
\(990\) − 33.0580i − 1.05065i
\(991\) −42.6457 −1.35469 −0.677343 0.735668i \(-0.736869\pi\)
−0.677343 + 0.735668i \(0.736869\pi\)
\(992\) −0.782383 −0.0248407
\(993\) 15.5516i 0.493514i
\(994\) − 4.18658i − 0.132790i
\(995\) 69.9306i 2.21695i
\(996\) − 7.34921i − 0.232868i
\(997\) −31.5540 −0.999326 −0.499663 0.866220i \(-0.666543\pi\)
−0.499663 + 0.866220i \(0.666543\pi\)
\(998\) 11.6416 0.368508
\(999\) − 10.6799i − 0.337897i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.2.d.r.337.7 12
13.5 odd 4 2366.2.a.bh.1.1 6
13.8 odd 4 2366.2.a.bf.1.1 6
13.9 even 3 182.2.m.b.127.6 yes 12
13.10 even 6 182.2.m.b.43.6 12
13.12 even 2 inner 2366.2.d.r.337.1 12
39.23 odd 6 1638.2.bj.g.1135.1 12
39.35 odd 6 1638.2.bj.g.127.3 12
52.23 odd 6 1456.2.cc.d.225.1 12
52.35 odd 6 1456.2.cc.d.673.1 12
91.9 even 3 1274.2.v.e.361.1 12
91.10 odd 6 1274.2.v.d.667.3 12
91.23 even 6 1274.2.o.d.459.3 12
91.48 odd 6 1274.2.m.c.491.4 12
91.61 odd 6 1274.2.v.d.361.3 12
91.62 odd 6 1274.2.m.c.589.4 12
91.74 even 3 1274.2.o.d.569.6 12
91.75 odd 6 1274.2.o.e.459.1 12
91.87 odd 6 1274.2.o.e.569.4 12
91.88 even 6 1274.2.v.e.667.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.m.b.43.6 12 13.10 even 6
182.2.m.b.127.6 yes 12 13.9 even 3
1274.2.m.c.491.4 12 91.48 odd 6
1274.2.m.c.589.4 12 91.62 odd 6
1274.2.o.d.459.3 12 91.23 even 6
1274.2.o.d.569.6 12 91.74 even 3
1274.2.o.e.459.1 12 91.75 odd 6
1274.2.o.e.569.4 12 91.87 odd 6
1274.2.v.d.361.3 12 91.61 odd 6
1274.2.v.d.667.3 12 91.10 odd 6
1274.2.v.e.361.1 12 91.9 even 3
1274.2.v.e.667.1 12 91.88 even 6
1456.2.cc.d.225.1 12 52.23 odd 6
1456.2.cc.d.673.1 12 52.35 odd 6
1638.2.bj.g.127.3 12 39.35 odd 6
1638.2.bj.g.1135.1 12 39.23 odd 6
2366.2.a.bf.1.1 6 13.8 odd 4
2366.2.a.bh.1.1 6 13.5 odd 4
2366.2.d.r.337.1 12 13.12 even 2 inner
2366.2.d.r.337.7 12 1.1 even 1 trivial