Properties

Label 2366.2.d.n
Level $2366$
Weight $2$
Character orbit 2366.d
Analytic conductor $18.893$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,2,Mod(337,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-8,-6,0,0,0,0,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} + ( - \beta_{2} - 1) q^{3} - q^{4} + (\beta_{5} - \beta_1) q^{5} + ( - 2 \beta_{5} - \beta_{3} + \beta_1) q^{6} - \beta_{5} q^{7} - \beta_{5} q^{8} + (\beta_{4} + 3 \beta_{2} - 1) q^{9}+ \cdots + (12 \beta_{5} + 14 \beta_{3} - 9 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{3} - 6 q^{4} + 2 q^{9} - 4 q^{10} + 8 q^{12} + 6 q^{14} + 6 q^{16} + 4 q^{17} - 22 q^{22} + 14 q^{23} + 18 q^{25} - 2 q^{27} - 6 q^{29} + 10 q^{30} + 4 q^{35} - 2 q^{36} + 26 q^{38} + 4 q^{40}+ \cdots + 22 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 5x^{4} + 6x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 3\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 4\nu^{3} + 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 3\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{3} + 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2366\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(2199\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
0.445042i
1.24698i
1.80194i
0.445042i
1.24698i
1.80194i
1.00000i −2.80194 −1.00000 0.554958i 2.80194i 1.00000i 1.00000i 4.85086 −0.554958
337.2 1.00000i −1.44504 −1.00000 2.24698i 1.44504i 1.00000i 1.00000i −0.911854 −2.24698
337.3 1.00000i 0.246980 −1.00000 0.801938i 0.246980i 1.00000i 1.00000i −2.93900 0.801938
337.4 1.00000i −2.80194 −1.00000 0.554958i 2.80194i 1.00000i 1.00000i 4.85086 −0.554958
337.5 1.00000i −1.44504 −1.00000 2.24698i 1.44504i 1.00000i 1.00000i −0.911854 −2.24698
337.6 1.00000i 0.246980 −1.00000 0.801938i 0.246980i 1.00000i 1.00000i −2.93900 0.801938
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 337.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2366.2.d.n 6
13.b even 2 1 inner 2366.2.d.n 6
13.d odd 4 1 2366.2.a.v 3
13.d odd 4 1 2366.2.a.ba yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2366.2.a.v 3 13.d odd 4 1
2366.2.a.ba yes 3 13.d odd 4 1
2366.2.d.n 6 1.a even 1 1 trivial
2366.2.d.n 6 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2366, [\chi])\):

\( T_{3}^{3} + 4T_{3}^{2} + 3T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{6} + 6T_{5}^{4} + 5T_{5}^{2} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( (T^{3} + 4 T^{2} + 3 T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{6} + 45 T^{4} + \cdots + 1681 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( (T^{3} - 2 T^{2} - 57 T + 71)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 61 T^{4} + \cdots + 5041 \) Copy content Toggle raw display
$23$ \( (T^{3} - 7 T^{2} + 49)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} + 3 T^{2} - 46 T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 62 T^{4} + \cdots + 5041 \) Copy content Toggle raw display
$37$ \( T^{6} + 42 T^{4} + \cdots + 49 \) Copy content Toggle raw display
$41$ \( T^{6} + 245 T^{4} + \cdots + 117649 \) Copy content Toggle raw display
$43$ \( (T^{3} - 17 T^{2} + \cdots - 71)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 153 T^{4} + \cdots + 841 \) Copy content Toggle raw display
$53$ \( (T^{3} - 49 T + 91)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 101 T^{4} + \cdots + 28561 \) Copy content Toggle raw display
$61$ \( (T^{3} - 3 T^{2} - 46 T - 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 189 T^{4} + \cdots + 41209 \) Copy content Toggle raw display
$71$ \( T^{6} + 314 T^{4} + \cdots + 707281 \) Copy content Toggle raw display
$73$ \( T^{6} + 33 T^{4} + \cdots + 841 \) Copy content Toggle raw display
$79$ \( (T^{3} - 10 T^{2} + \cdots + 125)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 201 T^{4} + \cdots + 32761 \) Copy content Toggle raw display
$89$ \( T^{6} + 234 T^{4} + \cdots + 57121 \) Copy content Toggle raw display
$97$ \( T^{6} + 321 T^{4} + \cdots + 212521 \) Copy content Toggle raw display
show more
show less