Properties

Label 2366.2.bn
Level $2366$
Weight $2$
Character orbit 2366.bn
Rep. character $\chi_{2366}(83,\cdot)$
Character field $\Q(\zeta_{52})$
Dimension $2976$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.bn (of order \(52\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1183 \)
Character field: \(\Q(\zeta_{52})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2366, [\chi])\).

Total New Old
Modular forms 8832 2976 5856
Cusp forms 8640 2976 5664
Eisenstein series 192 0 192

Trace form

\( 2976q - 8q^{7} + 264q^{9} + O(q^{10}) \) \( 2976q - 8q^{7} + 264q^{9} - 16q^{15} + 248q^{16} - 8q^{18} - 4q^{21} - 8q^{28} + 16q^{29} + 104q^{30} - 32q^{35} + 8q^{37} + 144q^{39} - 24q^{42} + 24q^{50} - 32q^{53} - 16q^{57} - 8q^{58} + 16q^{60} + 300q^{63} - 88q^{65} - 320q^{67} - 164q^{70} + 64q^{71} + 8q^{72} - 192q^{74} - 16q^{78} + 48q^{79} - 328q^{81} - 4q^{84} + 264q^{85} + 256q^{86} - 44q^{91} + 16q^{92} - 112q^{93} - 32q^{98} + 16q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2366, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2366, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2366, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(1183, [\chi])\)\(^{\oplus 2}\)