Properties

Label 2366.2.bk
Level $2366$
Weight $2$
Character orbit 2366.bk
Rep. character $\chi_{2366}(53,\cdot)$
Character field $\Q(\zeta_{39})$
Dimension $2880$
Sturm bound $728$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.bk (of order \(39\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1183 \)
Character field: \(\Q(\zeta_{39})\)
Sturm bound: \(728\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2366, [\chi])\).

Total New Old
Modular forms 8832 2880 5952
Cusp forms 8640 2880 5760
Eisenstein series 192 0 192

Trace form

\( 2880q + 120q^{4} - 8q^{7} + 124q^{9} + O(q^{10}) \) \( 2880q + 120q^{4} - 8q^{7} + 124q^{9} + 4q^{10} + 4q^{11} - 48q^{13} + 4q^{14} + 72q^{15} + 120q^{16} + 8q^{17} - 4q^{19} + 16q^{21} + 8q^{23} + 112q^{25} - 6q^{26} + 4q^{28} - 16q^{29} - 44q^{30} + 12q^{31} - 28q^{33} - 248q^{36} + 12q^{38} - 52q^{39} + 4q^{40} + 32q^{41} + 20q^{42} - 40q^{43} + 4q^{44} + 40q^{45} + 4q^{46} + 12q^{47} + 44q^{49} - 48q^{50} + 24q^{51} - 2q^{52} - 116q^{53} + 66q^{54} + 24q^{55} - 8q^{56} - 48q^{57} - 28q^{58} + 8q^{59} + 16q^{60} - 12q^{61} - 8q^{62} - 126q^{63} - 240q^{64} - 4q^{65} + 16q^{66} + 60q^{67} + 8q^{68} + 40q^{69} - 200q^{70} - 148q^{71} + 4q^{73} - 104q^{74} - 214q^{75} - 44q^{76} - 52q^{77} + 28q^{79} + 152q^{81} - 8q^{82} + 24q^{83} - 32q^{84} + 176q^{85} + 74q^{86} - 16q^{87} - 28q^{89} - 40q^{90} + 120q^{91} - 16q^{92} - 20q^{93} - 20q^{94} - 112q^{95} - 188q^{97} + 24q^{98} - 40q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2366, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2366, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2366, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(1183, [\chi])\)\(^{\oplus 2}\)