Properties

Label 2366.2.a.bg.1.6
Level $2366$
Weight $2$
Character 2366.1
Self dual yes
Analytic conductor $18.893$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,2,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,1,6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6052921.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 11x^{4} + 7x^{3} + 33x^{2} - 9x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.85334\) of defining polynomial
Character \(\chi\) \(=\) 2366.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.85334 q^{3} +1.00000 q^{4} +0.532083 q^{5} +2.85334 q^{6} +1.00000 q^{7} +1.00000 q^{8} +5.14154 q^{9} +0.532083 q^{10} +2.71490 q^{11} +2.85334 q^{12} +1.00000 q^{14} +1.51821 q^{15} +1.00000 q^{16} -2.94148 q^{17} +5.14154 q^{18} +5.83604 q^{19} +0.532083 q^{20} +2.85334 q^{21} +2.71490 q^{22} -5.52440 q^{23} +2.85334 q^{24} -4.71689 q^{25} +6.11053 q^{27} +1.00000 q^{28} -8.19741 q^{29} +1.51821 q^{30} +3.42217 q^{31} +1.00000 q^{32} +7.74652 q^{33} -2.94148 q^{34} +0.532083 q^{35} +5.14154 q^{36} +6.00763 q^{37} +5.83604 q^{38} +0.532083 q^{40} -7.76238 q^{41} +2.85334 q^{42} -9.13544 q^{43} +2.71490 q^{44} +2.73572 q^{45} -5.52440 q^{46} -9.98779 q^{47} +2.85334 q^{48} +1.00000 q^{49} -4.71689 q^{50} -8.39305 q^{51} +12.8839 q^{53} +6.11053 q^{54} +1.44455 q^{55} +1.00000 q^{56} +16.6522 q^{57} -8.19741 q^{58} -1.24624 q^{59} +1.51821 q^{60} +1.36564 q^{61} +3.42217 q^{62} +5.14154 q^{63} +1.00000 q^{64} +7.74652 q^{66} -9.49764 q^{67} -2.94148 q^{68} -15.7630 q^{69} +0.532083 q^{70} +1.34074 q^{71} +5.14154 q^{72} +11.2652 q^{73} +6.00763 q^{74} -13.4589 q^{75} +5.83604 q^{76} +2.71490 q^{77} +7.62525 q^{79} +0.532083 q^{80} +2.01079 q^{81} -7.76238 q^{82} -3.49046 q^{83} +2.85334 q^{84} -1.56511 q^{85} -9.13544 q^{86} -23.3900 q^{87} +2.71490 q^{88} -14.5067 q^{89} +2.73572 q^{90} -5.52440 q^{92} +9.76460 q^{93} -9.98779 q^{94} +3.10526 q^{95} +2.85334 q^{96} +7.63555 q^{97} +1.00000 q^{98} +13.9587 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + q^{3} + 6 q^{4} + 4 q^{5} + q^{6} + 6 q^{7} + 6 q^{8} + 5 q^{9} + 4 q^{10} + 6 q^{11} + q^{12} + 6 q^{14} - 5 q^{15} + 6 q^{16} - 9 q^{17} + 5 q^{18} + 10 q^{19} + 4 q^{20} + q^{21}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.85334 1.64738 0.823688 0.567044i \(-0.191913\pi\)
0.823688 + 0.567044i \(0.191913\pi\)
\(4\) 1.00000 0.500000
\(5\) 0.532083 0.237955 0.118977 0.992897i \(-0.462038\pi\)
0.118977 + 0.992897i \(0.462038\pi\)
\(6\) 2.85334 1.16487
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) 5.14154 1.71385
\(10\) 0.532083 0.168259
\(11\) 2.71490 0.818572 0.409286 0.912406i \(-0.365778\pi\)
0.409286 + 0.912406i \(0.365778\pi\)
\(12\) 2.85334 0.823688
\(13\) 0 0
\(14\) 1.00000 0.267261
\(15\) 1.51821 0.392001
\(16\) 1.00000 0.250000
\(17\) −2.94148 −0.713415 −0.356707 0.934216i \(-0.616101\pi\)
−0.356707 + 0.934216i \(0.616101\pi\)
\(18\) 5.14154 1.21187
\(19\) 5.83604 1.33888 0.669440 0.742866i \(-0.266534\pi\)
0.669440 + 0.742866i \(0.266534\pi\)
\(20\) 0.532083 0.118977
\(21\) 2.85334 0.622649
\(22\) 2.71490 0.578818
\(23\) −5.52440 −1.15192 −0.575959 0.817479i \(-0.695371\pi\)
−0.575959 + 0.817479i \(0.695371\pi\)
\(24\) 2.85334 0.582435
\(25\) −4.71689 −0.943378
\(26\) 0 0
\(27\) 6.11053 1.17597
\(28\) 1.00000 0.188982
\(29\) −8.19741 −1.52222 −0.761111 0.648622i \(-0.775346\pi\)
−0.761111 + 0.648622i \(0.775346\pi\)
\(30\) 1.51821 0.277186
\(31\) 3.42217 0.614639 0.307320 0.951606i \(-0.400568\pi\)
0.307320 + 0.951606i \(0.400568\pi\)
\(32\) 1.00000 0.176777
\(33\) 7.74652 1.34850
\(34\) −2.94148 −0.504460
\(35\) 0.532083 0.0899384
\(36\) 5.14154 0.856923
\(37\) 6.00763 0.987648 0.493824 0.869562i \(-0.335599\pi\)
0.493824 + 0.869562i \(0.335599\pi\)
\(38\) 5.83604 0.946731
\(39\) 0 0
\(40\) 0.532083 0.0841297
\(41\) −7.76238 −1.21228 −0.606140 0.795358i \(-0.707283\pi\)
−0.606140 + 0.795358i \(0.707283\pi\)
\(42\) 2.85334 0.440280
\(43\) −9.13544 −1.39314 −0.696570 0.717488i \(-0.745292\pi\)
−0.696570 + 0.717488i \(0.745292\pi\)
\(44\) 2.71490 0.409286
\(45\) 2.73572 0.407818
\(46\) −5.52440 −0.814529
\(47\) −9.98779 −1.45687 −0.728435 0.685115i \(-0.759752\pi\)
−0.728435 + 0.685115i \(0.759752\pi\)
\(48\) 2.85334 0.411844
\(49\) 1.00000 0.142857
\(50\) −4.71689 −0.667069
\(51\) −8.39305 −1.17526
\(52\) 0 0
\(53\) 12.8839 1.76973 0.884867 0.465844i \(-0.154249\pi\)
0.884867 + 0.465844i \(0.154249\pi\)
\(54\) 6.11053 0.831538
\(55\) 1.44455 0.194783
\(56\) 1.00000 0.133631
\(57\) 16.6522 2.20564
\(58\) −8.19741 −1.07637
\(59\) −1.24624 −0.162246 −0.0811232 0.996704i \(-0.525851\pi\)
−0.0811232 + 0.996704i \(0.525851\pi\)
\(60\) 1.51821 0.196000
\(61\) 1.36564 0.174852 0.0874262 0.996171i \(-0.472136\pi\)
0.0874262 + 0.996171i \(0.472136\pi\)
\(62\) 3.42217 0.434616
\(63\) 5.14154 0.647773
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 7.74652 0.953530
\(67\) −9.49764 −1.16032 −0.580161 0.814502i \(-0.697010\pi\)
−0.580161 + 0.814502i \(0.697010\pi\)
\(68\) −2.94148 −0.356707
\(69\) −15.7630 −1.89764
\(70\) 0.532083 0.0635961
\(71\) 1.34074 0.159116 0.0795580 0.996830i \(-0.474649\pi\)
0.0795580 + 0.996830i \(0.474649\pi\)
\(72\) 5.14154 0.605936
\(73\) 11.2652 1.31849 0.659244 0.751929i \(-0.270876\pi\)
0.659244 + 0.751929i \(0.270876\pi\)
\(74\) 6.00763 0.698372
\(75\) −13.4589 −1.55410
\(76\) 5.83604 0.669440
\(77\) 2.71490 0.309391
\(78\) 0 0
\(79\) 7.62525 0.857907 0.428954 0.903327i \(-0.358882\pi\)
0.428954 + 0.903327i \(0.358882\pi\)
\(80\) 0.532083 0.0594887
\(81\) 2.01079 0.223422
\(82\) −7.76238 −0.857211
\(83\) −3.49046 −0.383128 −0.191564 0.981480i \(-0.561356\pi\)
−0.191564 + 0.981480i \(0.561356\pi\)
\(84\) 2.85334 0.311325
\(85\) −1.56511 −0.169760
\(86\) −9.13544 −0.985099
\(87\) −23.3900 −2.50767
\(88\) 2.71490 0.289409
\(89\) −14.5067 −1.53771 −0.768854 0.639424i \(-0.779173\pi\)
−0.768854 + 0.639424i \(0.779173\pi\)
\(90\) 2.73572 0.288371
\(91\) 0 0
\(92\) −5.52440 −0.575959
\(93\) 9.76460 1.01254
\(94\) −9.98779 −1.03016
\(95\) 3.10526 0.318593
\(96\) 2.85334 0.291218
\(97\) 7.63555 0.775273 0.387636 0.921812i \(-0.373292\pi\)
0.387636 + 0.921812i \(0.373292\pi\)
\(98\) 1.00000 0.101015
\(99\) 13.9587 1.40291
\(100\) −4.71689 −0.471689
\(101\) 9.28861 0.924252 0.462126 0.886814i \(-0.347087\pi\)
0.462126 + 0.886814i \(0.347087\pi\)
\(102\) −8.39305 −0.831036
\(103\) 11.8102 1.16369 0.581846 0.813299i \(-0.302331\pi\)
0.581846 + 0.813299i \(0.302331\pi\)
\(104\) 0 0
\(105\) 1.51821 0.148162
\(106\) 12.8839 1.25139
\(107\) 14.9803 1.44820 0.724102 0.689693i \(-0.242254\pi\)
0.724102 + 0.689693i \(0.242254\pi\)
\(108\) 6.11053 0.587986
\(109\) 12.9227 1.23777 0.618884 0.785482i \(-0.287585\pi\)
0.618884 + 0.785482i \(0.287585\pi\)
\(110\) 1.44455 0.137732
\(111\) 17.1418 1.62703
\(112\) 1.00000 0.0944911
\(113\) −13.9606 −1.31330 −0.656649 0.754196i \(-0.728027\pi\)
−0.656649 + 0.754196i \(0.728027\pi\)
\(114\) 16.6522 1.55962
\(115\) −2.93944 −0.274104
\(116\) −8.19741 −0.761111
\(117\) 0 0
\(118\) −1.24624 −0.114726
\(119\) −2.94148 −0.269645
\(120\) 1.51821 0.138593
\(121\) −3.62934 −0.329940
\(122\) 1.36564 0.123639
\(123\) −22.1487 −1.99708
\(124\) 3.42217 0.307320
\(125\) −5.17019 −0.462436
\(126\) 5.14154 0.458045
\(127\) 5.30082 0.470372 0.235186 0.971950i \(-0.424430\pi\)
0.235186 + 0.971950i \(0.424430\pi\)
\(128\) 1.00000 0.0883883
\(129\) −26.0665 −2.29503
\(130\) 0 0
\(131\) −10.7726 −0.941209 −0.470605 0.882344i \(-0.655964\pi\)
−0.470605 + 0.882344i \(0.655964\pi\)
\(132\) 7.74652 0.674248
\(133\) 5.83604 0.506049
\(134\) −9.49764 −0.820471
\(135\) 3.25131 0.279828
\(136\) −2.94148 −0.252230
\(137\) 19.5853 1.67329 0.836644 0.547748i \(-0.184515\pi\)
0.836644 + 0.547748i \(0.184515\pi\)
\(138\) −15.7630 −1.34184
\(139\) −12.1467 −1.03027 −0.515135 0.857109i \(-0.672258\pi\)
−0.515135 + 0.857109i \(0.672258\pi\)
\(140\) 0.532083 0.0449692
\(141\) −28.4985 −2.40001
\(142\) 1.34074 0.112512
\(143\) 0 0
\(144\) 5.14154 0.428461
\(145\) −4.36170 −0.362220
\(146\) 11.2652 0.932312
\(147\) 2.85334 0.235339
\(148\) 6.00763 0.493824
\(149\) 7.13948 0.584889 0.292444 0.956283i \(-0.405531\pi\)
0.292444 + 0.956283i \(0.405531\pi\)
\(150\) −13.4589 −1.09891
\(151\) −9.61643 −0.782574 −0.391287 0.920269i \(-0.627970\pi\)
−0.391287 + 0.920269i \(0.627970\pi\)
\(152\) 5.83604 0.473365
\(153\) −15.1237 −1.22268
\(154\) 2.71490 0.218773
\(155\) 1.82088 0.146256
\(156\) 0 0
\(157\) −19.5652 −1.56147 −0.780736 0.624861i \(-0.785156\pi\)
−0.780736 + 0.624861i \(0.785156\pi\)
\(158\) 7.62525 0.606632
\(159\) 36.7620 2.91542
\(160\) 0.532083 0.0420648
\(161\) −5.52440 −0.435384
\(162\) 2.01079 0.157983
\(163\) −12.9875 −1.01726 −0.508628 0.860986i \(-0.669847\pi\)
−0.508628 + 0.860986i \(0.669847\pi\)
\(164\) −7.76238 −0.606140
\(165\) 4.12179 0.320881
\(166\) −3.49046 −0.270912
\(167\) 17.7973 1.37719 0.688597 0.725144i \(-0.258227\pi\)
0.688597 + 0.725144i \(0.258227\pi\)
\(168\) 2.85334 0.220140
\(169\) 0 0
\(170\) −1.56511 −0.120039
\(171\) 30.0062 2.29463
\(172\) −9.13544 −0.696570
\(173\) 4.08496 0.310574 0.155287 0.987869i \(-0.450370\pi\)
0.155287 + 0.987869i \(0.450370\pi\)
\(174\) −23.3900 −1.77319
\(175\) −4.71689 −0.356563
\(176\) 2.71490 0.204643
\(177\) −3.55594 −0.267281
\(178\) −14.5067 −1.08732
\(179\) 4.10649 0.306934 0.153467 0.988154i \(-0.450956\pi\)
0.153467 + 0.988154i \(0.450956\pi\)
\(180\) 2.73572 0.203909
\(181\) 20.3643 1.51367 0.756834 0.653607i \(-0.226745\pi\)
0.756834 + 0.653607i \(0.226745\pi\)
\(182\) 0 0
\(183\) 3.89664 0.288048
\(184\) −5.52440 −0.407264
\(185\) 3.19656 0.235015
\(186\) 9.76460 0.715975
\(187\) −7.98582 −0.583981
\(188\) −9.98779 −0.728435
\(189\) 6.11053 0.444476
\(190\) 3.10526 0.225279
\(191\) 3.10166 0.224429 0.112214 0.993684i \(-0.464206\pi\)
0.112214 + 0.993684i \(0.464206\pi\)
\(192\) 2.85334 0.205922
\(193\) −5.26716 −0.379138 −0.189569 0.981867i \(-0.560709\pi\)
−0.189569 + 0.981867i \(0.560709\pi\)
\(194\) 7.63555 0.548201
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −15.0025 −1.06889 −0.534443 0.845204i \(-0.679479\pi\)
−0.534443 + 0.845204i \(0.679479\pi\)
\(198\) 13.9587 0.992005
\(199\) 9.16998 0.650043 0.325021 0.945707i \(-0.394628\pi\)
0.325021 + 0.945707i \(0.394628\pi\)
\(200\) −4.71689 −0.333534
\(201\) −27.1000 −1.91148
\(202\) 9.28861 0.653545
\(203\) −8.19741 −0.575345
\(204\) −8.39305 −0.587631
\(205\) −4.13023 −0.288468
\(206\) 11.8102 0.822854
\(207\) −28.4039 −1.97421
\(208\) 0 0
\(209\) 15.8443 1.09597
\(210\) 1.51821 0.104767
\(211\) −24.5871 −1.69264 −0.846321 0.532673i \(-0.821188\pi\)
−0.846321 + 0.532673i \(0.821188\pi\)
\(212\) 12.8839 0.884867
\(213\) 3.82557 0.262124
\(214\) 14.9803 1.02404
\(215\) −4.86081 −0.331504
\(216\) 6.11053 0.415769
\(217\) 3.42217 0.232312
\(218\) 12.9227 0.875234
\(219\) 32.1433 2.17204
\(220\) 1.44455 0.0973915
\(221\) 0 0
\(222\) 17.1418 1.15048
\(223\) 2.77472 0.185809 0.0929045 0.995675i \(-0.470385\pi\)
0.0929045 + 0.995675i \(0.470385\pi\)
\(224\) 1.00000 0.0668153
\(225\) −24.2521 −1.61680
\(226\) −13.9606 −0.928642
\(227\) −19.6685 −1.30544 −0.652721 0.757598i \(-0.726373\pi\)
−0.652721 + 0.757598i \(0.726373\pi\)
\(228\) 16.6522 1.10282
\(229\) −24.2762 −1.60422 −0.802109 0.597178i \(-0.796289\pi\)
−0.802109 + 0.597178i \(0.796289\pi\)
\(230\) −2.93944 −0.193821
\(231\) 7.74652 0.509683
\(232\) −8.19741 −0.538186
\(233\) 16.5986 1.08741 0.543706 0.839276i \(-0.317021\pi\)
0.543706 + 0.839276i \(0.317021\pi\)
\(234\) 0 0
\(235\) −5.31433 −0.346669
\(236\) −1.24624 −0.0811232
\(237\) 21.7574 1.41330
\(238\) −2.94148 −0.190668
\(239\) −3.69206 −0.238820 −0.119410 0.992845i \(-0.538100\pi\)
−0.119410 + 0.992845i \(0.538100\pi\)
\(240\) 1.51821 0.0980002
\(241\) 6.84568 0.440969 0.220485 0.975390i \(-0.429236\pi\)
0.220485 + 0.975390i \(0.429236\pi\)
\(242\) −3.62934 −0.233303
\(243\) −12.5941 −0.807913
\(244\) 1.36564 0.0874262
\(245\) 0.532083 0.0339935
\(246\) −22.1487 −1.41215
\(247\) 0 0
\(248\) 3.42217 0.217308
\(249\) −9.95947 −0.631156
\(250\) −5.17019 −0.326992
\(251\) 2.48250 0.156694 0.0783470 0.996926i \(-0.475036\pi\)
0.0783470 + 0.996926i \(0.475036\pi\)
\(252\) 5.14154 0.323886
\(253\) −14.9982 −0.942928
\(254\) 5.30082 0.332603
\(255\) −4.46580 −0.279659
\(256\) 1.00000 0.0625000
\(257\) −23.6908 −1.47779 −0.738895 0.673820i \(-0.764652\pi\)
−0.738895 + 0.673820i \(0.764652\pi\)
\(258\) −26.0665 −1.62283
\(259\) 6.00763 0.373296
\(260\) 0 0
\(261\) −42.1473 −2.60885
\(262\) −10.7726 −0.665536
\(263\) −12.4047 −0.764908 −0.382454 0.923975i \(-0.624921\pi\)
−0.382454 + 0.923975i \(0.624921\pi\)
\(264\) 7.74652 0.476765
\(265\) 6.85528 0.421116
\(266\) 5.83604 0.357831
\(267\) −41.3926 −2.53318
\(268\) −9.49764 −0.580161
\(269\) −19.4334 −1.18487 −0.592437 0.805617i \(-0.701834\pi\)
−0.592437 + 0.805617i \(0.701834\pi\)
\(270\) 3.25131 0.197868
\(271\) 27.4623 1.66822 0.834108 0.551602i \(-0.185983\pi\)
0.834108 + 0.551602i \(0.185983\pi\)
\(272\) −2.94148 −0.178354
\(273\) 0 0
\(274\) 19.5853 1.18319
\(275\) −12.8059 −0.772223
\(276\) −15.7630 −0.948821
\(277\) −11.6541 −0.700227 −0.350114 0.936707i \(-0.613857\pi\)
−0.350114 + 0.936707i \(0.613857\pi\)
\(278\) −12.1467 −0.728511
\(279\) 17.5952 1.05340
\(280\) 0.532083 0.0317980
\(281\) 22.4177 1.33733 0.668663 0.743566i \(-0.266867\pi\)
0.668663 + 0.743566i \(0.266867\pi\)
\(282\) −28.4985 −1.69706
\(283\) −22.7926 −1.35488 −0.677439 0.735579i \(-0.736910\pi\)
−0.677439 + 0.735579i \(0.736910\pi\)
\(284\) 1.34074 0.0795580
\(285\) 8.86035 0.524842
\(286\) 0 0
\(287\) −7.76238 −0.458199
\(288\) 5.14154 0.302968
\(289\) −8.34767 −0.491040
\(290\) −4.36170 −0.256128
\(291\) 21.7868 1.27717
\(292\) 11.2652 0.659244
\(293\) 6.47704 0.378393 0.189196 0.981939i \(-0.439412\pi\)
0.189196 + 0.981939i \(0.439412\pi\)
\(294\) 2.85334 0.166410
\(295\) −0.663102 −0.0386073
\(296\) 6.00763 0.349186
\(297\) 16.5895 0.962618
\(298\) 7.13948 0.413579
\(299\) 0 0
\(300\) −13.4589 −0.777048
\(301\) −9.13544 −0.526558
\(302\) −9.61643 −0.553363
\(303\) 26.5036 1.52259
\(304\) 5.83604 0.334720
\(305\) 0.726635 0.0416070
\(306\) −15.1237 −0.864567
\(307\) 12.8345 0.732505 0.366253 0.930515i \(-0.380641\pi\)
0.366253 + 0.930515i \(0.380641\pi\)
\(308\) 2.71490 0.154696
\(309\) 33.6984 1.91704
\(310\) 1.82088 0.103419
\(311\) −7.16543 −0.406314 −0.203157 0.979146i \(-0.565120\pi\)
−0.203157 + 0.979146i \(0.565120\pi\)
\(312\) 0 0
\(313\) 20.0799 1.13498 0.567491 0.823380i \(-0.307914\pi\)
0.567491 + 0.823380i \(0.307914\pi\)
\(314\) −19.5652 −1.10413
\(315\) 2.73572 0.154141
\(316\) 7.62525 0.428954
\(317\) 18.5590 1.04238 0.521190 0.853441i \(-0.325488\pi\)
0.521190 + 0.853441i \(0.325488\pi\)
\(318\) 36.7620 2.06151
\(319\) −22.2551 −1.24605
\(320\) 0.532083 0.0297443
\(321\) 42.7440 2.38574
\(322\) −5.52440 −0.307863
\(323\) −17.1666 −0.955176
\(324\) 2.01079 0.111711
\(325\) 0 0
\(326\) −12.9875 −0.719308
\(327\) 36.8728 2.03907
\(328\) −7.76238 −0.428606
\(329\) −9.98779 −0.550645
\(330\) 4.12179 0.226897
\(331\) 27.2308 1.49674 0.748371 0.663280i \(-0.230836\pi\)
0.748371 + 0.663280i \(0.230836\pi\)
\(332\) −3.49046 −0.191564
\(333\) 30.8884 1.69268
\(334\) 17.7973 0.973823
\(335\) −5.05353 −0.276104
\(336\) 2.85334 0.155662
\(337\) −0.559670 −0.0304872 −0.0152436 0.999884i \(-0.504852\pi\)
−0.0152436 + 0.999884i \(0.504852\pi\)
\(338\) 0 0
\(339\) −39.8342 −2.16350
\(340\) −1.56511 −0.0848802
\(341\) 9.29083 0.503127
\(342\) 30.0062 1.62255
\(343\) 1.00000 0.0539949
\(344\) −9.13544 −0.492550
\(345\) −8.38722 −0.451553
\(346\) 4.08496 0.219609
\(347\) −10.2001 −0.547573 −0.273786 0.961791i \(-0.588276\pi\)
−0.273786 + 0.961791i \(0.588276\pi\)
\(348\) −23.3900 −1.25383
\(349\) −2.44922 −0.131104 −0.0655519 0.997849i \(-0.520881\pi\)
−0.0655519 + 0.997849i \(0.520881\pi\)
\(350\) −4.71689 −0.252128
\(351\) 0 0
\(352\) 2.71490 0.144704
\(353\) 0.674466 0.0358982 0.0179491 0.999839i \(-0.494286\pi\)
0.0179491 + 0.999839i \(0.494286\pi\)
\(354\) −3.55594 −0.188996
\(355\) 0.713383 0.0378624
\(356\) −14.5067 −0.768854
\(357\) −8.39305 −0.444207
\(358\) 4.10649 0.217035
\(359\) −14.9727 −0.790230 −0.395115 0.918632i \(-0.629295\pi\)
−0.395115 + 0.918632i \(0.629295\pi\)
\(360\) 2.73572 0.144185
\(361\) 15.0594 0.792599
\(362\) 20.3643 1.07033
\(363\) −10.3557 −0.543534
\(364\) 0 0
\(365\) 5.99400 0.313740
\(366\) 3.89664 0.203680
\(367\) −26.8987 −1.40410 −0.702050 0.712128i \(-0.747732\pi\)
−0.702050 + 0.712128i \(0.747732\pi\)
\(368\) −5.52440 −0.287979
\(369\) −39.9106 −2.07766
\(370\) 3.19656 0.166181
\(371\) 12.8839 0.668896
\(372\) 9.76460 0.506271
\(373\) 26.4013 1.36701 0.683504 0.729947i \(-0.260455\pi\)
0.683504 + 0.729947i \(0.260455\pi\)
\(374\) −7.98582 −0.412937
\(375\) −14.7523 −0.761805
\(376\) −9.98779 −0.515081
\(377\) 0 0
\(378\) 6.11053 0.314292
\(379\) 1.23207 0.0632872 0.0316436 0.999499i \(-0.489926\pi\)
0.0316436 + 0.999499i \(0.489926\pi\)
\(380\) 3.10526 0.159296
\(381\) 15.1250 0.774879
\(382\) 3.10166 0.158695
\(383\) −10.7559 −0.549602 −0.274801 0.961501i \(-0.588612\pi\)
−0.274801 + 0.961501i \(0.588612\pi\)
\(384\) 2.85334 0.145609
\(385\) 1.44455 0.0736211
\(386\) −5.26716 −0.268091
\(387\) −46.9702 −2.38763
\(388\) 7.63555 0.387636
\(389\) 24.5394 1.24420 0.622099 0.782938i \(-0.286280\pi\)
0.622099 + 0.782938i \(0.286280\pi\)
\(390\) 0 0
\(391\) 16.2499 0.821795
\(392\) 1.00000 0.0505076
\(393\) −30.7380 −1.55053
\(394\) −15.0025 −0.755817
\(395\) 4.05726 0.204143
\(396\) 13.9587 0.701453
\(397\) −29.1779 −1.46440 −0.732199 0.681091i \(-0.761506\pi\)
−0.732199 + 0.681091i \(0.761506\pi\)
\(398\) 9.16998 0.459650
\(399\) 16.6522 0.833653
\(400\) −4.71689 −0.235844
\(401\) 11.9570 0.597106 0.298553 0.954393i \(-0.403496\pi\)
0.298553 + 0.954393i \(0.403496\pi\)
\(402\) −27.1000 −1.35162
\(403\) 0 0
\(404\) 9.28861 0.462126
\(405\) 1.06991 0.0531642
\(406\) −8.19741 −0.406831
\(407\) 16.3101 0.808461
\(408\) −8.39305 −0.415518
\(409\) 32.0698 1.58575 0.792874 0.609386i \(-0.208584\pi\)
0.792874 + 0.609386i \(0.208584\pi\)
\(410\) −4.13023 −0.203977
\(411\) 55.8835 2.75653
\(412\) 11.8102 0.581846
\(413\) −1.24624 −0.0613234
\(414\) −28.4039 −1.39598
\(415\) −1.85722 −0.0911671
\(416\) 0 0
\(417\) −34.6587 −1.69724
\(418\) 15.8443 0.774968
\(419\) 30.4134 1.48579 0.742895 0.669408i \(-0.233452\pi\)
0.742895 + 0.669408i \(0.233452\pi\)
\(420\) 1.51821 0.0740812
\(421\) 31.4025 1.53046 0.765232 0.643755i \(-0.222624\pi\)
0.765232 + 0.643755i \(0.222624\pi\)
\(422\) −24.5871 −1.19688
\(423\) −51.3526 −2.49685
\(424\) 12.8839 0.625695
\(425\) 13.8746 0.673019
\(426\) 3.82557 0.185350
\(427\) 1.36564 0.0660880
\(428\) 14.9803 0.724102
\(429\) 0 0
\(430\) −4.86081 −0.234409
\(431\) −7.96279 −0.383554 −0.191777 0.981439i \(-0.561425\pi\)
−0.191777 + 0.981439i \(0.561425\pi\)
\(432\) 6.11053 0.293993
\(433\) −12.7044 −0.610533 −0.305266 0.952267i \(-0.598746\pi\)
−0.305266 + 0.952267i \(0.598746\pi\)
\(434\) 3.42217 0.164269
\(435\) −12.4454 −0.596712
\(436\) 12.9227 0.618884
\(437\) −32.2407 −1.54228
\(438\) 32.1433 1.53587
\(439\) 22.4990 1.07382 0.536910 0.843640i \(-0.319592\pi\)
0.536910 + 0.843640i \(0.319592\pi\)
\(440\) 1.44455 0.0688662
\(441\) 5.14154 0.244835
\(442\) 0 0
\(443\) 9.31651 0.442641 0.221320 0.975201i \(-0.428963\pi\)
0.221320 + 0.975201i \(0.428963\pi\)
\(444\) 17.1418 0.813513
\(445\) −7.71877 −0.365905
\(446\) 2.77472 0.131387
\(447\) 20.3713 0.963531
\(448\) 1.00000 0.0472456
\(449\) 6.54442 0.308850 0.154425 0.988004i \(-0.450647\pi\)
0.154425 + 0.988004i \(0.450647\pi\)
\(450\) −24.2521 −1.14325
\(451\) −21.0741 −0.992339
\(452\) −13.9606 −0.656649
\(453\) −27.4389 −1.28919
\(454\) −19.6685 −0.923087
\(455\) 0 0
\(456\) 16.6522 0.779811
\(457\) −14.8031 −0.692459 −0.346230 0.938150i \(-0.612538\pi\)
−0.346230 + 0.938150i \(0.612538\pi\)
\(458\) −24.2762 −1.13435
\(459\) −17.9740 −0.838956
\(460\) −2.93944 −0.137052
\(461\) 1.50317 0.0700097 0.0350048 0.999387i \(-0.488855\pi\)
0.0350048 + 0.999387i \(0.488855\pi\)
\(462\) 7.74652 0.360401
\(463\) 32.7578 1.52238 0.761192 0.648526i \(-0.224614\pi\)
0.761192 + 0.648526i \(0.224614\pi\)
\(464\) −8.19741 −0.380555
\(465\) 5.19558 0.240939
\(466\) 16.5986 0.768916
\(467\) 16.7557 0.775361 0.387681 0.921794i \(-0.373276\pi\)
0.387681 + 0.921794i \(0.373276\pi\)
\(468\) 0 0
\(469\) −9.49764 −0.438560
\(470\) −5.31433 −0.245132
\(471\) −55.8261 −2.57233
\(472\) −1.24624 −0.0573628
\(473\) −24.8018 −1.14039
\(474\) 21.7574 0.999351
\(475\) −27.5280 −1.26307
\(476\) −2.94148 −0.134823
\(477\) 66.2428 3.03305
\(478\) −3.69206 −0.168871
\(479\) −5.95833 −0.272243 −0.136122 0.990692i \(-0.543464\pi\)
−0.136122 + 0.990692i \(0.543464\pi\)
\(480\) 1.51821 0.0692966
\(481\) 0 0
\(482\) 6.84568 0.311812
\(483\) −15.7630 −0.717241
\(484\) −3.62934 −0.164970
\(485\) 4.06275 0.184480
\(486\) −12.5941 −0.571281
\(487\) 16.3486 0.740827 0.370413 0.928867i \(-0.379216\pi\)
0.370413 + 0.928867i \(0.379216\pi\)
\(488\) 1.36564 0.0618197
\(489\) −37.0576 −1.67580
\(490\) 0.532083 0.0240371
\(491\) −21.9658 −0.991304 −0.495652 0.868521i \(-0.665071\pi\)
−0.495652 + 0.868521i \(0.665071\pi\)
\(492\) −22.1487 −0.998540
\(493\) 24.1126 1.08597
\(494\) 0 0
\(495\) 7.42721 0.333828
\(496\) 3.42217 0.153660
\(497\) 1.34074 0.0601402
\(498\) −9.95947 −0.446294
\(499\) 10.0994 0.452112 0.226056 0.974114i \(-0.427417\pi\)
0.226056 + 0.974114i \(0.427417\pi\)
\(500\) −5.17019 −0.231218
\(501\) 50.7816 2.26876
\(502\) 2.48250 0.110799
\(503\) 13.4575 0.600038 0.300019 0.953933i \(-0.403007\pi\)
0.300019 + 0.953933i \(0.403007\pi\)
\(504\) 5.14154 0.229022
\(505\) 4.94231 0.219930
\(506\) −14.9982 −0.666751
\(507\) 0 0
\(508\) 5.30082 0.235186
\(509\) −24.2795 −1.07617 −0.538086 0.842890i \(-0.680852\pi\)
−0.538086 + 0.842890i \(0.680852\pi\)
\(510\) −4.46580 −0.197749
\(511\) 11.2652 0.498342
\(512\) 1.00000 0.0441942
\(513\) 35.6613 1.57449
\(514\) −23.6908 −1.04496
\(515\) 6.28399 0.276906
\(516\) −26.0665 −1.14751
\(517\) −27.1158 −1.19255
\(518\) 6.00763 0.263960
\(519\) 11.6558 0.511632
\(520\) 0 0
\(521\) −27.6257 −1.21030 −0.605151 0.796110i \(-0.706887\pi\)
−0.605151 + 0.796110i \(0.706887\pi\)
\(522\) −42.1473 −1.84474
\(523\) −5.32290 −0.232754 −0.116377 0.993205i \(-0.537128\pi\)
−0.116377 + 0.993205i \(0.537128\pi\)
\(524\) −10.7726 −0.470605
\(525\) −13.4589 −0.587393
\(526\) −12.4047 −0.540872
\(527\) −10.0662 −0.438493
\(528\) 7.74652 0.337124
\(529\) 7.51904 0.326915
\(530\) 6.85528 0.297774
\(531\) −6.40758 −0.278065
\(532\) 5.83604 0.253024
\(533\) 0 0
\(534\) −41.3926 −1.79123
\(535\) 7.97078 0.344607
\(536\) −9.49764 −0.410235
\(537\) 11.7172 0.505635
\(538\) −19.4334 −0.837832
\(539\) 2.71490 0.116939
\(540\) 3.25131 0.139914
\(541\) 27.5719 1.18541 0.592704 0.805420i \(-0.298060\pi\)
0.592704 + 0.805420i \(0.298060\pi\)
\(542\) 27.4623 1.17961
\(543\) 58.1063 2.49358
\(544\) −2.94148 −0.126115
\(545\) 6.87594 0.294533
\(546\) 0 0
\(547\) 28.4744 1.21748 0.608738 0.793371i \(-0.291676\pi\)
0.608738 + 0.793371i \(0.291676\pi\)
\(548\) 19.5853 0.836644
\(549\) 7.02150 0.299670
\(550\) −12.8059 −0.546044
\(551\) −47.8404 −2.03807
\(552\) −15.7630 −0.670918
\(553\) 7.62525 0.324258
\(554\) −11.6541 −0.495135
\(555\) 9.12085 0.387159
\(556\) −12.1467 −0.515135
\(557\) 2.56189 0.108551 0.0542753 0.998526i \(-0.482715\pi\)
0.0542753 + 0.998526i \(0.482715\pi\)
\(558\) 17.5952 0.744864
\(559\) 0 0
\(560\) 0.532083 0.0224846
\(561\) −22.7863 −0.962037
\(562\) 22.4177 0.945632
\(563\) 23.5957 0.994442 0.497221 0.867624i \(-0.334354\pi\)
0.497221 + 0.867624i \(0.334354\pi\)
\(564\) −28.4985 −1.20001
\(565\) −7.42817 −0.312506
\(566\) −22.7926 −0.958044
\(567\) 2.01079 0.0844454
\(568\) 1.34074 0.0562560
\(569\) 7.62433 0.319629 0.159814 0.987147i \(-0.448910\pi\)
0.159814 + 0.987147i \(0.448910\pi\)
\(570\) 8.86035 0.371119
\(571\) 15.4711 0.647444 0.323722 0.946152i \(-0.395066\pi\)
0.323722 + 0.946152i \(0.395066\pi\)
\(572\) 0 0
\(573\) 8.85010 0.369718
\(574\) −7.76238 −0.323995
\(575\) 26.0580 1.08669
\(576\) 5.14154 0.214231
\(577\) −2.37245 −0.0987665 −0.0493832 0.998780i \(-0.515726\pi\)
−0.0493832 + 0.998780i \(0.515726\pi\)
\(578\) −8.34767 −0.347217
\(579\) −15.0290 −0.624583
\(580\) −4.36170 −0.181110
\(581\) −3.49046 −0.144809
\(582\) 21.7868 0.903092
\(583\) 34.9783 1.44865
\(584\) 11.2652 0.466156
\(585\) 0 0
\(586\) 6.47704 0.267564
\(587\) −22.2865 −0.919864 −0.459932 0.887954i \(-0.652126\pi\)
−0.459932 + 0.887954i \(0.652126\pi\)
\(588\) 2.85334 0.117670
\(589\) 19.9719 0.822928
\(590\) −0.663102 −0.0272995
\(591\) −42.8073 −1.76086
\(592\) 6.00763 0.246912
\(593\) −12.2613 −0.503513 −0.251757 0.967791i \(-0.581008\pi\)
−0.251757 + 0.967791i \(0.581008\pi\)
\(594\) 16.5895 0.680674
\(595\) −1.56511 −0.0641634
\(596\) 7.13948 0.292444
\(597\) 26.1651 1.07086
\(598\) 0 0
\(599\) 22.5567 0.921641 0.460820 0.887493i \(-0.347555\pi\)
0.460820 + 0.887493i \(0.347555\pi\)
\(600\) −13.4589 −0.549456
\(601\) −23.8571 −0.973153 −0.486576 0.873638i \(-0.661754\pi\)
−0.486576 + 0.873638i \(0.661754\pi\)
\(602\) −9.13544 −0.372333
\(603\) −48.8325 −1.98861
\(604\) −9.61643 −0.391287
\(605\) −1.93111 −0.0785107
\(606\) 26.5036 1.07663
\(607\) −14.0867 −0.571760 −0.285880 0.958265i \(-0.592286\pi\)
−0.285880 + 0.958265i \(0.592286\pi\)
\(608\) 5.83604 0.236683
\(609\) −23.3900 −0.947810
\(610\) 0.726635 0.0294206
\(611\) 0 0
\(612\) −15.1237 −0.611341
\(613\) −10.2670 −0.414681 −0.207341 0.978269i \(-0.566481\pi\)
−0.207341 + 0.978269i \(0.566481\pi\)
\(614\) 12.8345 0.517959
\(615\) −11.7849 −0.475215
\(616\) 2.71490 0.109386
\(617\) −8.82812 −0.355407 −0.177703 0.984084i \(-0.556867\pi\)
−0.177703 + 0.984084i \(0.556867\pi\)
\(618\) 33.6984 1.35555
\(619\) −16.5151 −0.663799 −0.331899 0.943315i \(-0.607689\pi\)
−0.331899 + 0.943315i \(0.607689\pi\)
\(620\) 1.82088 0.0731282
\(621\) −33.7570 −1.35462
\(622\) −7.16543 −0.287308
\(623\) −14.5067 −0.581199
\(624\) 0 0
\(625\) 20.8335 0.833339
\(626\) 20.0799 0.802553
\(627\) 45.2090 1.80547
\(628\) −19.5652 −0.780736
\(629\) −17.6713 −0.704602
\(630\) 2.73572 0.108994
\(631\) 16.0493 0.638913 0.319456 0.947601i \(-0.396500\pi\)
0.319456 + 0.947601i \(0.396500\pi\)
\(632\) 7.62525 0.303316
\(633\) −70.1552 −2.78842
\(634\) 18.5590 0.737074
\(635\) 2.82048 0.111927
\(636\) 36.7620 1.45771
\(637\) 0 0
\(638\) −22.2551 −0.881089
\(639\) 6.89344 0.272700
\(640\) 0.532083 0.0210324
\(641\) −15.2785 −0.603464 −0.301732 0.953393i \(-0.597565\pi\)
−0.301732 + 0.953393i \(0.597565\pi\)
\(642\) 42.7440 1.68697
\(643\) −31.7804 −1.25330 −0.626649 0.779302i \(-0.715574\pi\)
−0.626649 + 0.779302i \(0.715574\pi\)
\(644\) −5.52440 −0.217692
\(645\) −13.8695 −0.546112
\(646\) −17.1666 −0.675412
\(647\) −24.2231 −0.952309 −0.476155 0.879362i \(-0.657970\pi\)
−0.476155 + 0.879362i \(0.657970\pi\)
\(648\) 2.01079 0.0789914
\(649\) −3.38341 −0.132810
\(650\) 0 0
\(651\) 9.76460 0.382705
\(652\) −12.9875 −0.508628
\(653\) −10.6301 −0.415989 −0.207994 0.978130i \(-0.566694\pi\)
−0.207994 + 0.978130i \(0.566694\pi\)
\(654\) 36.8728 1.44184
\(655\) −5.73193 −0.223965
\(656\) −7.76238 −0.303070
\(657\) 57.9203 2.25968
\(658\) −9.98779 −0.389365
\(659\) 23.3239 0.908571 0.454285 0.890856i \(-0.349895\pi\)
0.454285 + 0.890856i \(0.349895\pi\)
\(660\) 4.12179 0.160440
\(661\) 2.32110 0.0902803 0.0451401 0.998981i \(-0.485627\pi\)
0.0451401 + 0.998981i \(0.485627\pi\)
\(662\) 27.2308 1.05836
\(663\) 0 0
\(664\) −3.49046 −0.135456
\(665\) 3.10526 0.120417
\(666\) 30.8884 1.19690
\(667\) 45.2858 1.75347
\(668\) 17.7973 0.688597
\(669\) 7.91721 0.306097
\(670\) −5.05353 −0.195235
\(671\) 3.70758 0.143129
\(672\) 2.85334 0.110070
\(673\) −22.1349 −0.853237 −0.426619 0.904432i \(-0.640295\pi\)
−0.426619 + 0.904432i \(0.640295\pi\)
\(674\) −0.559670 −0.0215577
\(675\) −28.8227 −1.10939
\(676\) 0 0
\(677\) −27.8052 −1.06864 −0.534320 0.845282i \(-0.679432\pi\)
−0.534320 + 0.845282i \(0.679432\pi\)
\(678\) −39.8342 −1.52982
\(679\) 7.63555 0.293026
\(680\) −1.56511 −0.0600194
\(681\) −56.1208 −2.15055
\(682\) 9.29083 0.355764
\(683\) 36.3786 1.39199 0.695994 0.718048i \(-0.254964\pi\)
0.695994 + 0.718048i \(0.254964\pi\)
\(684\) 30.0062 1.14732
\(685\) 10.4210 0.398167
\(686\) 1.00000 0.0381802
\(687\) −69.2683 −2.64275
\(688\) −9.13544 −0.348285
\(689\) 0 0
\(690\) −8.38722 −0.319296
\(691\) −19.4303 −0.739163 −0.369581 0.929198i \(-0.620499\pi\)
−0.369581 + 0.929198i \(0.620499\pi\)
\(692\) 4.08496 0.155287
\(693\) 13.9587 0.530249
\(694\) −10.2001 −0.387192
\(695\) −6.46306 −0.245158
\(696\) −23.3900 −0.886595
\(697\) 22.8329 0.864858
\(698\) −2.44922 −0.0927044
\(699\) 47.3615 1.79138
\(700\) −4.71689 −0.178282
\(701\) −36.0908 −1.36313 −0.681566 0.731757i \(-0.738701\pi\)
−0.681566 + 0.731757i \(0.738701\pi\)
\(702\) 0 0
\(703\) 35.0608 1.32234
\(704\) 2.71490 0.102322
\(705\) −15.1636 −0.571094
\(706\) 0.674466 0.0253839
\(707\) 9.28861 0.349334
\(708\) −3.55594 −0.133640
\(709\) −42.3319 −1.58981 −0.794905 0.606734i \(-0.792479\pi\)
−0.794905 + 0.606734i \(0.792479\pi\)
\(710\) 0.713383 0.0267728
\(711\) 39.2055 1.47032
\(712\) −14.5067 −0.543662
\(713\) −18.9054 −0.708014
\(714\) −8.39305 −0.314102
\(715\) 0 0
\(716\) 4.10649 0.153467
\(717\) −10.5347 −0.393425
\(718\) −14.9727 −0.558777
\(719\) −3.73654 −0.139350 −0.0696748 0.997570i \(-0.522196\pi\)
−0.0696748 + 0.997570i \(0.522196\pi\)
\(720\) 2.73572 0.101954
\(721\) 11.8102 0.439834
\(722\) 15.0594 0.560452
\(723\) 19.5330 0.726442
\(724\) 20.3643 0.756834
\(725\) 38.6663 1.43603
\(726\) −10.3557 −0.384337
\(727\) −41.0128 −1.52108 −0.760540 0.649291i \(-0.775066\pi\)
−0.760540 + 0.649291i \(0.775066\pi\)
\(728\) 0 0
\(729\) −41.9676 −1.55436
\(730\) 5.99400 0.221848
\(731\) 26.8717 0.993887
\(732\) 3.89664 0.144024
\(733\) 6.15408 0.227306 0.113653 0.993521i \(-0.463745\pi\)
0.113653 + 0.993521i \(0.463745\pi\)
\(734\) −26.8987 −0.992849
\(735\) 1.51821 0.0560001
\(736\) −5.52440 −0.203632
\(737\) −25.7851 −0.949806
\(738\) −39.9106 −1.46913
\(739\) −19.5498 −0.719149 −0.359575 0.933116i \(-0.617078\pi\)
−0.359575 + 0.933116i \(0.617078\pi\)
\(740\) 3.19656 0.117508
\(741\) 0 0
\(742\) 12.8839 0.472981
\(743\) 16.6884 0.612239 0.306119 0.951993i \(-0.400969\pi\)
0.306119 + 0.951993i \(0.400969\pi\)
\(744\) 9.76460 0.357988
\(745\) 3.79879 0.139177
\(746\) 26.4013 0.966620
\(747\) −17.9463 −0.656622
\(748\) −7.98582 −0.291991
\(749\) 14.9803 0.547370
\(750\) −14.7523 −0.538678
\(751\) 7.63652 0.278661 0.139330 0.990246i \(-0.455505\pi\)
0.139330 + 0.990246i \(0.455505\pi\)
\(752\) −9.98779 −0.364217
\(753\) 7.08341 0.258134
\(754\) 0 0
\(755\) −5.11674 −0.186217
\(756\) 6.11053 0.222238
\(757\) −8.74215 −0.317739 −0.158870 0.987300i \(-0.550785\pi\)
−0.158870 + 0.987300i \(0.550785\pi\)
\(758\) 1.23207 0.0447508
\(759\) −42.7949 −1.55336
\(760\) 3.10526 0.112640
\(761\) 1.38527 0.0502160 0.0251080 0.999685i \(-0.492007\pi\)
0.0251080 + 0.999685i \(0.492007\pi\)
\(762\) 15.1250 0.547922
\(763\) 12.9227 0.467832
\(764\) 3.10166 0.112214
\(765\) −8.04709 −0.290943
\(766\) −10.7559 −0.388627
\(767\) 0 0
\(768\) 2.85334 0.102961
\(769\) 29.5853 1.06687 0.533436 0.845840i \(-0.320900\pi\)
0.533436 + 0.845840i \(0.320900\pi\)
\(770\) 1.44455 0.0520580
\(771\) −67.5978 −2.43448
\(772\) −5.26716 −0.189569
\(773\) −4.51998 −0.162572 −0.0812862 0.996691i \(-0.525903\pi\)
−0.0812862 + 0.996691i \(0.525903\pi\)
\(774\) −46.9702 −1.68831
\(775\) −16.1420 −0.579837
\(776\) 7.63555 0.274100
\(777\) 17.1418 0.614958
\(778\) 24.5394 0.879781
\(779\) −45.3016 −1.62310
\(780\) 0 0
\(781\) 3.63996 0.130248
\(782\) 16.2499 0.581097
\(783\) −50.0905 −1.79009
\(784\) 1.00000 0.0357143
\(785\) −10.4103 −0.371560
\(786\) −30.7380 −1.09639
\(787\) 3.37079 0.120156 0.0600779 0.998194i \(-0.480865\pi\)
0.0600779 + 0.998194i \(0.480865\pi\)
\(788\) −15.0025 −0.534443
\(789\) −35.3949 −1.26009
\(790\) 4.05726 0.144351
\(791\) −13.9606 −0.496380
\(792\) 13.9587 0.496002
\(793\) 0 0
\(794\) −29.1779 −1.03549
\(795\) 19.5604 0.693737
\(796\) 9.16998 0.325021
\(797\) 12.2603 0.434281 0.217140 0.976140i \(-0.430327\pi\)
0.217140 + 0.976140i \(0.430327\pi\)
\(798\) 16.6522 0.589481
\(799\) 29.3789 1.03935
\(800\) −4.71689 −0.166767
\(801\) −74.5868 −2.63540
\(802\) 11.9570 0.422217
\(803\) 30.5838 1.07928
\(804\) −27.1000 −0.955742
\(805\) −2.93944 −0.103602
\(806\) 0 0
\(807\) −55.4500 −1.95193
\(808\) 9.28861 0.326772
\(809\) 23.6424 0.831224 0.415612 0.909542i \(-0.363567\pi\)
0.415612 + 0.909542i \(0.363567\pi\)
\(810\) 1.06991 0.0375928
\(811\) 56.5089 1.98430 0.992148 0.125071i \(-0.0399159\pi\)
0.992148 + 0.125071i \(0.0399159\pi\)
\(812\) −8.19741 −0.287673
\(813\) 78.3592 2.74818
\(814\) 16.3101 0.571668
\(815\) −6.91040 −0.242061
\(816\) −8.39305 −0.293815
\(817\) −53.3148 −1.86525
\(818\) 32.0698 1.12129
\(819\) 0 0
\(820\) −4.13023 −0.144234
\(821\) 21.8291 0.761840 0.380920 0.924608i \(-0.375607\pi\)
0.380920 + 0.924608i \(0.375607\pi\)
\(822\) 55.8835 1.94916
\(823\) 41.6120 1.45050 0.725251 0.688484i \(-0.241724\pi\)
0.725251 + 0.688484i \(0.241724\pi\)
\(824\) 11.8102 0.411427
\(825\) −36.5395 −1.27214
\(826\) −1.24624 −0.0433622
\(827\) 23.0557 0.801726 0.400863 0.916138i \(-0.368710\pi\)
0.400863 + 0.916138i \(0.368710\pi\)
\(828\) −28.4039 −0.987105
\(829\) 30.1019 1.04548 0.522741 0.852492i \(-0.324910\pi\)
0.522741 + 0.852492i \(0.324910\pi\)
\(830\) −1.85722 −0.0644649
\(831\) −33.2531 −1.15354
\(832\) 0 0
\(833\) −2.94148 −0.101916
\(834\) −34.6587 −1.20013
\(835\) 9.46962 0.327710
\(836\) 15.8443 0.547985
\(837\) 20.9113 0.722799
\(838\) 30.4134 1.05061
\(839\) 13.0262 0.449714 0.224857 0.974392i \(-0.427808\pi\)
0.224857 + 0.974392i \(0.427808\pi\)
\(840\) 1.51821 0.0523833
\(841\) 38.1976 1.31716
\(842\) 31.4025 1.08220
\(843\) 63.9651 2.20308
\(844\) −24.5871 −0.846321
\(845\) 0 0
\(846\) −51.3526 −1.76554
\(847\) −3.62934 −0.124705
\(848\) 12.8839 0.442433
\(849\) −65.0350 −2.23199
\(850\) 13.8746 0.475897
\(851\) −33.1886 −1.13769
\(852\) 3.82557 0.131062
\(853\) 35.1170 1.20238 0.601191 0.799105i \(-0.294693\pi\)
0.601191 + 0.799105i \(0.294693\pi\)
\(854\) 1.36564 0.0467313
\(855\) 15.9658 0.546019
\(856\) 14.9803 0.512018
\(857\) −37.6715 −1.28683 −0.643416 0.765516i \(-0.722484\pi\)
−0.643416 + 0.765516i \(0.722484\pi\)
\(858\) 0 0
\(859\) −42.9068 −1.46396 −0.731981 0.681325i \(-0.761404\pi\)
−0.731981 + 0.681325i \(0.761404\pi\)
\(860\) −4.86081 −0.165752
\(861\) −22.1487 −0.754825
\(862\) −7.96279 −0.271214
\(863\) −39.5392 −1.34593 −0.672965 0.739674i \(-0.734980\pi\)
−0.672965 + 0.739674i \(0.734980\pi\)
\(864\) 6.11053 0.207884
\(865\) 2.17354 0.0739025
\(866\) −12.7044 −0.431712
\(867\) −23.8187 −0.808926
\(868\) 3.42217 0.116156
\(869\) 20.7018 0.702259
\(870\) −12.4454 −0.421939
\(871\) 0 0
\(872\) 12.9227 0.437617
\(873\) 39.2585 1.32870
\(874\) −32.2407 −1.09056
\(875\) −5.17019 −0.174784
\(876\) 32.1433 1.08602
\(877\) 20.1984 0.682051 0.341026 0.940054i \(-0.389226\pi\)
0.341026 + 0.940054i \(0.389226\pi\)
\(878\) 22.4990 0.759305
\(879\) 18.4812 0.623355
\(880\) 1.44455 0.0486958
\(881\) 17.7169 0.596899 0.298449 0.954425i \(-0.403531\pi\)
0.298449 + 0.954425i \(0.403531\pi\)
\(882\) 5.14154 0.173125
\(883\) 31.8330 1.07127 0.535633 0.844451i \(-0.320073\pi\)
0.535633 + 0.844451i \(0.320073\pi\)
\(884\) 0 0
\(885\) −1.89206 −0.0636007
\(886\) 9.31651 0.312994
\(887\) −30.0786 −1.00994 −0.504970 0.863137i \(-0.668496\pi\)
−0.504970 + 0.863137i \(0.668496\pi\)
\(888\) 17.1418 0.575241
\(889\) 5.30082 0.177784
\(890\) −7.71877 −0.258734
\(891\) 5.45910 0.182887
\(892\) 2.77472 0.0929045
\(893\) −58.2892 −1.95057
\(894\) 20.3713 0.681319
\(895\) 2.18499 0.0730363
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 6.54442 0.218390
\(899\) −28.0529 −0.935617
\(900\) −24.2521 −0.808402
\(901\) −37.8976 −1.26255
\(902\) −21.0741 −0.701689
\(903\) −26.0665 −0.867438
\(904\) −13.9606 −0.464321
\(905\) 10.8355 0.360185
\(906\) −27.4389 −0.911597
\(907\) −47.4949 −1.57704 −0.788521 0.615008i \(-0.789153\pi\)
−0.788521 + 0.615008i \(0.789153\pi\)
\(908\) −19.6685 −0.652721
\(909\) 47.7578 1.58402
\(910\) 0 0
\(911\) 42.6543 1.41320 0.706600 0.707613i \(-0.250228\pi\)
0.706600 + 0.707613i \(0.250228\pi\)
\(912\) 16.6522 0.551409
\(913\) −9.47625 −0.313618
\(914\) −14.8031 −0.489642
\(915\) 2.07333 0.0685423
\(916\) −24.2762 −0.802109
\(917\) −10.7726 −0.355744
\(918\) −17.9740 −0.593231
\(919\) 0.153611 0.00506716 0.00253358 0.999997i \(-0.499194\pi\)
0.00253358 + 0.999997i \(0.499194\pi\)
\(920\) −2.93944 −0.0969105
\(921\) 36.6212 1.20671
\(922\) 1.50317 0.0495043
\(923\) 0 0
\(924\) 7.74652 0.254842
\(925\) −28.3373 −0.931725
\(926\) 32.7578 1.07649
\(927\) 60.7225 1.99439
\(928\) −8.19741 −0.269093
\(929\) 54.1539 1.77673 0.888366 0.459136i \(-0.151841\pi\)
0.888366 + 0.459136i \(0.151841\pi\)
\(930\) 5.19558 0.170370
\(931\) 5.83604 0.191269
\(932\) 16.5986 0.543706
\(933\) −20.4454 −0.669352
\(934\) 16.7557 0.548263
\(935\) −4.24912 −0.138961
\(936\) 0 0
\(937\) 46.1549 1.50781 0.753907 0.656981i \(-0.228167\pi\)
0.753907 + 0.656981i \(0.228167\pi\)
\(938\) −9.49764 −0.310109
\(939\) 57.2947 1.86974
\(940\) −5.31433 −0.173334
\(941\) −10.2273 −0.333402 −0.166701 0.986008i \(-0.553311\pi\)
−0.166701 + 0.986008i \(0.553311\pi\)
\(942\) −55.8261 −1.81891
\(943\) 42.8825 1.39645
\(944\) −1.24624 −0.0405616
\(945\) 3.25131 0.105765
\(946\) −24.8018 −0.806375
\(947\) 8.29170 0.269444 0.134722 0.990883i \(-0.456986\pi\)
0.134722 + 0.990883i \(0.456986\pi\)
\(948\) 21.7574 0.706648
\(949\) 0 0
\(950\) −27.5280 −0.893125
\(951\) 52.9552 1.71719
\(952\) −2.94148 −0.0953340
\(953\) 52.5932 1.70366 0.851830 0.523818i \(-0.175493\pi\)
0.851830 + 0.523818i \(0.175493\pi\)
\(954\) 66.2428 2.14469
\(955\) 1.65034 0.0534038
\(956\) −3.69206 −0.119410
\(957\) −63.5014 −2.05271
\(958\) −5.95833 −0.192505
\(959\) 19.5853 0.632443
\(960\) 1.51821 0.0490001
\(961\) −19.2888 −0.622219
\(962\) 0 0
\(963\) 77.0220 2.48200
\(964\) 6.84568 0.220485
\(965\) −2.80256 −0.0902177
\(966\) −15.7630 −0.507166
\(967\) −44.2570 −1.42321 −0.711605 0.702580i \(-0.752031\pi\)
−0.711605 + 0.702580i \(0.752031\pi\)
\(968\) −3.62934 −0.116651
\(969\) −48.9822 −1.57353
\(970\) 4.06275 0.130447
\(971\) −27.7388 −0.890182 −0.445091 0.895485i \(-0.646829\pi\)
−0.445091 + 0.895485i \(0.646829\pi\)
\(972\) −12.5941 −0.403956
\(973\) −12.1467 −0.389406
\(974\) 16.3486 0.523844
\(975\) 0 0
\(976\) 1.36564 0.0437131
\(977\) −10.4341 −0.333817 −0.166908 0.985972i \(-0.553378\pi\)
−0.166908 + 0.985972i \(0.553378\pi\)
\(978\) −37.0576 −1.18497
\(979\) −39.3842 −1.25873
\(980\) 0.532083 0.0169968
\(981\) 66.4424 2.12134
\(982\) −21.9658 −0.700958
\(983\) −26.7410 −0.852906 −0.426453 0.904510i \(-0.640237\pi\)
−0.426453 + 0.904510i \(0.640237\pi\)
\(984\) −22.1487 −0.706074
\(985\) −7.98259 −0.254347
\(986\) 24.1126 0.767900
\(987\) −28.4985 −0.907119
\(988\) 0 0
\(989\) 50.4678 1.60478
\(990\) 7.42721 0.236052
\(991\) 7.10312 0.225638 0.112819 0.993616i \(-0.464012\pi\)
0.112819 + 0.993616i \(0.464012\pi\)
\(992\) 3.42217 0.108654
\(993\) 77.6988 2.46570
\(994\) 1.34074 0.0425256
\(995\) 4.87919 0.154681
\(996\) −9.95947 −0.315578
\(997\) −13.6792 −0.433223 −0.216612 0.976258i \(-0.569501\pi\)
−0.216612 + 0.976258i \(0.569501\pi\)
\(998\) 10.0994 0.319691
\(999\) 36.7098 1.16145
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.2.a.bg.1.6 yes 6
13.5 odd 4 2366.2.d.q.337.6 12
13.8 odd 4 2366.2.d.q.337.12 12
13.12 even 2 2366.2.a.be.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2366.2.a.be.1.6 6 13.12 even 2
2366.2.a.bg.1.6 yes 6 1.1 even 1 trivial
2366.2.d.q.337.6 12 13.5 odd 4
2366.2.d.q.337.12 12 13.8 odd 4