Properties

Label 2366.2.a.bg.1.4
Level $2366$
Weight $2$
Character 2366.1
Self dual yes
Analytic conductor $18.893$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2366,2,Mod(1,2366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2366.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2366 = 2 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,1,6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.8926051182\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6052921.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 11x^{4} + 7x^{3} + 33x^{2} - 9x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.21736\) of defining polynomial
Character \(\chi\) \(=\) 2366.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.21736 q^{3} +1.00000 q^{4} -3.44059 q^{5} +1.21736 q^{6} +1.00000 q^{7} +1.00000 q^{8} -1.51803 q^{9} -3.44059 q^{10} +4.99555 q^{11} +1.21736 q^{12} +1.00000 q^{14} -4.18845 q^{15} +1.00000 q^{16} -7.06822 q^{17} -1.51803 q^{18} +4.99523 q^{19} -3.44059 q^{20} +1.21736 q^{21} +4.99555 q^{22} +5.66813 q^{23} +1.21736 q^{24} +6.83767 q^{25} -5.50008 q^{27} +1.00000 q^{28} +4.73054 q^{29} -4.18845 q^{30} +2.16328 q^{31} +1.00000 q^{32} +6.08140 q^{33} -7.06822 q^{34} -3.44059 q^{35} -1.51803 q^{36} +11.8278 q^{37} +4.99523 q^{38} -3.44059 q^{40} +6.00397 q^{41} +1.21736 q^{42} +7.89705 q^{43} +4.99555 q^{44} +5.22291 q^{45} +5.66813 q^{46} +5.79519 q^{47} +1.21736 q^{48} +1.00000 q^{49} +6.83767 q^{50} -8.60459 q^{51} -3.79017 q^{53} -5.50008 q^{54} -17.1877 q^{55} +1.00000 q^{56} +6.08101 q^{57} +4.73054 q^{58} +0.563865 q^{59} -4.18845 q^{60} -9.60172 q^{61} +2.16328 q^{62} -1.51803 q^{63} +1.00000 q^{64} +6.08140 q^{66} -7.50096 q^{67} -7.06822 q^{68} +6.90017 q^{69} -3.44059 q^{70} -4.20475 q^{71} -1.51803 q^{72} +7.63802 q^{73} +11.8278 q^{74} +8.32393 q^{75} +4.99523 q^{76} +4.99555 q^{77} +0.0666888 q^{79} -3.44059 q^{80} -2.14151 q^{81} +6.00397 q^{82} -9.86513 q^{83} +1.21736 q^{84} +24.3189 q^{85} +7.89705 q^{86} +5.75879 q^{87} +4.99555 q^{88} -6.16227 q^{89} +5.22291 q^{90} +5.66813 q^{92} +2.63350 q^{93} +5.79519 q^{94} -17.1866 q^{95} +1.21736 q^{96} +13.8364 q^{97} +1.00000 q^{98} -7.58338 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + q^{3} + 6 q^{4} + 4 q^{5} + q^{6} + 6 q^{7} + 6 q^{8} + 5 q^{9} + 4 q^{10} + 6 q^{11} + q^{12} + 6 q^{14} - 5 q^{15} + 6 q^{16} - 9 q^{17} + 5 q^{18} + 10 q^{19} + 4 q^{20} + q^{21}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.21736 0.702845 0.351422 0.936217i \(-0.385698\pi\)
0.351422 + 0.936217i \(0.385698\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.44059 −1.53868 −0.769340 0.638840i \(-0.779415\pi\)
−0.769340 + 0.638840i \(0.779415\pi\)
\(6\) 1.21736 0.496986
\(7\) 1.00000 0.377964
\(8\) 1.00000 0.353553
\(9\) −1.51803 −0.506009
\(10\) −3.44059 −1.08801
\(11\) 4.99555 1.50622 0.753108 0.657897i \(-0.228554\pi\)
0.753108 + 0.657897i \(0.228554\pi\)
\(12\) 1.21736 0.351422
\(13\) 0 0
\(14\) 1.00000 0.267261
\(15\) −4.18845 −1.08145
\(16\) 1.00000 0.250000
\(17\) −7.06822 −1.71429 −0.857147 0.515071i \(-0.827765\pi\)
−0.857147 + 0.515071i \(0.827765\pi\)
\(18\) −1.51803 −0.357802
\(19\) 4.99523 1.14599 0.572993 0.819561i \(-0.305782\pi\)
0.572993 + 0.819561i \(0.305782\pi\)
\(20\) −3.44059 −0.769340
\(21\) 1.21736 0.265650
\(22\) 4.99555 1.06505
\(23\) 5.66813 1.18189 0.590943 0.806713i \(-0.298756\pi\)
0.590943 + 0.806713i \(0.298756\pi\)
\(24\) 1.21736 0.248493
\(25\) 6.83767 1.36753
\(26\) 0 0
\(27\) −5.50008 −1.05849
\(28\) 1.00000 0.188982
\(29\) 4.73054 0.878440 0.439220 0.898380i \(-0.355255\pi\)
0.439220 + 0.898380i \(0.355255\pi\)
\(30\) −4.18845 −0.764703
\(31\) 2.16328 0.388537 0.194269 0.980948i \(-0.437767\pi\)
0.194269 + 0.980948i \(0.437767\pi\)
\(32\) 1.00000 0.176777
\(33\) 6.08140 1.05864
\(34\) −7.06822 −1.21219
\(35\) −3.44059 −0.581566
\(36\) −1.51803 −0.253004
\(37\) 11.8278 1.94448 0.972241 0.233983i \(-0.0751761\pi\)
0.972241 + 0.233983i \(0.0751761\pi\)
\(38\) 4.99523 0.810334
\(39\) 0 0
\(40\) −3.44059 −0.544005
\(41\) 6.00397 0.937662 0.468831 0.883288i \(-0.344675\pi\)
0.468831 + 0.883288i \(0.344675\pi\)
\(42\) 1.21736 0.187843
\(43\) 7.89705 1.20429 0.602144 0.798387i \(-0.294313\pi\)
0.602144 + 0.798387i \(0.294313\pi\)
\(44\) 4.99555 0.753108
\(45\) 5.22291 0.778586
\(46\) 5.66813 0.835720
\(47\) 5.79519 0.845316 0.422658 0.906289i \(-0.361097\pi\)
0.422658 + 0.906289i \(0.361097\pi\)
\(48\) 1.21736 0.175711
\(49\) 1.00000 0.142857
\(50\) 6.83767 0.966993
\(51\) −8.60459 −1.20488
\(52\) 0 0
\(53\) −3.79017 −0.520620 −0.260310 0.965525i \(-0.583825\pi\)
−0.260310 + 0.965525i \(0.583825\pi\)
\(54\) −5.50008 −0.748466
\(55\) −17.1877 −2.31758
\(56\) 1.00000 0.133631
\(57\) 6.08101 0.805450
\(58\) 4.73054 0.621151
\(59\) 0.563865 0.0734090 0.0367045 0.999326i \(-0.488314\pi\)
0.0367045 + 0.999326i \(0.488314\pi\)
\(60\) −4.18845 −0.540727
\(61\) −9.60172 −1.22937 −0.614687 0.788771i \(-0.710718\pi\)
−0.614687 + 0.788771i \(0.710718\pi\)
\(62\) 2.16328 0.274737
\(63\) −1.51803 −0.191253
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 6.08140 0.748568
\(67\) −7.50096 −0.916389 −0.458194 0.888852i \(-0.651504\pi\)
−0.458194 + 0.888852i \(0.651504\pi\)
\(68\) −7.06822 −0.857147
\(69\) 6.90017 0.830683
\(70\) −3.44059 −0.411229
\(71\) −4.20475 −0.499013 −0.249506 0.968373i \(-0.580268\pi\)
−0.249506 + 0.968373i \(0.580268\pi\)
\(72\) −1.51803 −0.178901
\(73\) 7.63802 0.893963 0.446981 0.894543i \(-0.352499\pi\)
0.446981 + 0.894543i \(0.352499\pi\)
\(74\) 11.8278 1.37496
\(75\) 8.32393 0.961165
\(76\) 4.99523 0.572993
\(77\) 4.99555 0.569296
\(78\) 0 0
\(79\) 0.0666888 0.00750307 0.00375154 0.999993i \(-0.498806\pi\)
0.00375154 + 0.999993i \(0.498806\pi\)
\(80\) −3.44059 −0.384670
\(81\) −2.14151 −0.237946
\(82\) 6.00397 0.663027
\(83\) −9.86513 −1.08284 −0.541420 0.840753i \(-0.682113\pi\)
−0.541420 + 0.840753i \(0.682113\pi\)
\(84\) 1.21736 0.132825
\(85\) 24.3189 2.63775
\(86\) 7.89705 0.851561
\(87\) 5.75879 0.617407
\(88\) 4.99555 0.532527
\(89\) −6.16227 −0.653199 −0.326600 0.945163i \(-0.605903\pi\)
−0.326600 + 0.945163i \(0.605903\pi\)
\(90\) 5.22291 0.550543
\(91\) 0 0
\(92\) 5.66813 0.590943
\(93\) 2.63350 0.273081
\(94\) 5.79519 0.597729
\(95\) −17.1866 −1.76330
\(96\) 1.21736 0.124247
\(97\) 13.8364 1.40487 0.702437 0.711746i \(-0.252095\pi\)
0.702437 + 0.711746i \(0.252095\pi\)
\(98\) 1.00000 0.101015
\(99\) −7.58338 −0.762158
\(100\) 6.83767 0.683767
\(101\) −6.41713 −0.638528 −0.319264 0.947666i \(-0.603436\pi\)
−0.319264 + 0.947666i \(0.603436\pi\)
\(102\) −8.60459 −0.851981
\(103\) 5.68463 0.560124 0.280062 0.959982i \(-0.409645\pi\)
0.280062 + 0.959982i \(0.409645\pi\)
\(104\) 0 0
\(105\) −4.18845 −0.408751
\(106\) −3.79017 −0.368134
\(107\) −19.2643 −1.86235 −0.931174 0.364574i \(-0.881215\pi\)
−0.931174 + 0.364574i \(0.881215\pi\)
\(108\) −5.50008 −0.529245
\(109\) −10.0195 −0.959690 −0.479845 0.877353i \(-0.659307\pi\)
−0.479845 + 0.877353i \(0.659307\pi\)
\(110\) −17.1877 −1.63878
\(111\) 14.3987 1.36667
\(112\) 1.00000 0.0944911
\(113\) 8.77533 0.825514 0.412757 0.910841i \(-0.364566\pi\)
0.412757 + 0.910841i \(0.364566\pi\)
\(114\) 6.08101 0.569539
\(115\) −19.5017 −1.81855
\(116\) 4.73054 0.439220
\(117\) 0 0
\(118\) 0.563865 0.0519080
\(119\) −7.06822 −0.647943
\(120\) −4.18845 −0.382351
\(121\) 13.9555 1.26868
\(122\) −9.60172 −0.869299
\(123\) 7.30901 0.659031
\(124\) 2.16328 0.194269
\(125\) −6.32269 −0.565518
\(126\) −1.51803 −0.135237
\(127\) 5.37806 0.477226 0.238613 0.971115i \(-0.423307\pi\)
0.238613 + 0.971115i \(0.423307\pi\)
\(128\) 1.00000 0.0883883
\(129\) 9.61358 0.846428
\(130\) 0 0
\(131\) 16.0652 1.40362 0.701812 0.712362i \(-0.252374\pi\)
0.701812 + 0.712362i \(0.252374\pi\)
\(132\) 6.08140 0.529318
\(133\) 4.99523 0.433142
\(134\) −7.50096 −0.647985
\(135\) 18.9235 1.62868
\(136\) −7.06822 −0.606095
\(137\) −9.66486 −0.825725 −0.412862 0.910793i \(-0.635471\pi\)
−0.412862 + 0.910793i \(0.635471\pi\)
\(138\) 6.90017 0.587382
\(139\) 7.87367 0.667836 0.333918 0.942602i \(-0.391629\pi\)
0.333918 + 0.942602i \(0.391629\pi\)
\(140\) −3.44059 −0.290783
\(141\) 7.05486 0.594126
\(142\) −4.20475 −0.352855
\(143\) 0 0
\(144\) −1.51803 −0.126502
\(145\) −16.2759 −1.35164
\(146\) 7.63802 0.632127
\(147\) 1.21736 0.100406
\(148\) 11.8278 0.972241
\(149\) 21.5447 1.76501 0.882505 0.470303i \(-0.155855\pi\)
0.882505 + 0.470303i \(0.155855\pi\)
\(150\) 8.32393 0.679646
\(151\) 3.22714 0.262621 0.131311 0.991341i \(-0.458081\pi\)
0.131311 + 0.991341i \(0.458081\pi\)
\(152\) 4.99523 0.405167
\(153\) 10.7297 0.867449
\(154\) 4.99555 0.402553
\(155\) −7.44298 −0.597834
\(156\) 0 0
\(157\) −1.29645 −0.103468 −0.0517340 0.998661i \(-0.516475\pi\)
−0.0517340 + 0.998661i \(0.516475\pi\)
\(158\) 0.0666888 0.00530547
\(159\) −4.61402 −0.365915
\(160\) −3.44059 −0.272003
\(161\) 5.66813 0.446711
\(162\) −2.14151 −0.168253
\(163\) −15.5019 −1.21420 −0.607099 0.794626i \(-0.707667\pi\)
−0.607099 + 0.794626i \(0.707667\pi\)
\(164\) 6.00397 0.468831
\(165\) −20.9236 −1.62890
\(166\) −9.86513 −0.765683
\(167\) 1.56822 0.121352 0.0606761 0.998158i \(-0.480674\pi\)
0.0606761 + 0.998158i \(0.480674\pi\)
\(168\) 1.21736 0.0939216
\(169\) 0 0
\(170\) 24.3189 1.86517
\(171\) −7.58290 −0.579879
\(172\) 7.89705 0.602144
\(173\) 9.37327 0.712636 0.356318 0.934365i \(-0.384032\pi\)
0.356318 + 0.934365i \(0.384032\pi\)
\(174\) 5.75879 0.436573
\(175\) 6.83767 0.516880
\(176\) 4.99555 0.376554
\(177\) 0.686429 0.0515951
\(178\) −6.16227 −0.461882
\(179\) 3.92185 0.293133 0.146567 0.989201i \(-0.453178\pi\)
0.146567 + 0.989201i \(0.453178\pi\)
\(180\) 5.22291 0.389293
\(181\) 0.917236 0.0681776 0.0340888 0.999419i \(-0.489147\pi\)
0.0340888 + 0.999419i \(0.489147\pi\)
\(182\) 0 0
\(183\) −11.6888 −0.864060
\(184\) 5.66813 0.417860
\(185\) −40.6947 −2.99193
\(186\) 2.63350 0.193098
\(187\) −35.3096 −2.58210
\(188\) 5.79519 0.422658
\(189\) −5.50008 −0.400072
\(190\) −17.1866 −1.24684
\(191\) 7.86239 0.568903 0.284451 0.958690i \(-0.408189\pi\)
0.284451 + 0.958690i \(0.408189\pi\)
\(192\) 1.21736 0.0878556
\(193\) 12.1952 0.877830 0.438915 0.898529i \(-0.355363\pi\)
0.438915 + 0.898529i \(0.355363\pi\)
\(194\) 13.8364 0.993396
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 0.499938 0.0356191 0.0178096 0.999841i \(-0.494331\pi\)
0.0178096 + 0.999841i \(0.494331\pi\)
\(198\) −7.58338 −0.538927
\(199\) −18.7772 −1.33108 −0.665541 0.746361i \(-0.731799\pi\)
−0.665541 + 0.746361i \(0.731799\pi\)
\(200\) 6.83767 0.483497
\(201\) −9.13140 −0.644079
\(202\) −6.41713 −0.451508
\(203\) 4.73054 0.332019
\(204\) −8.60459 −0.602442
\(205\) −20.6572 −1.44276
\(206\) 5.68463 0.396067
\(207\) −8.60437 −0.598045
\(208\) 0 0
\(209\) 24.9539 1.72610
\(210\) −4.18845 −0.289031
\(211\) −5.77056 −0.397262 −0.198631 0.980074i \(-0.563649\pi\)
−0.198631 + 0.980074i \(0.563649\pi\)
\(212\) −3.79017 −0.260310
\(213\) −5.11871 −0.350728
\(214\) −19.2643 −1.31688
\(215\) −27.1705 −1.85301
\(216\) −5.50008 −0.374233
\(217\) 2.16328 0.146853
\(218\) −10.0195 −0.678603
\(219\) 9.29824 0.628317
\(220\) −17.1877 −1.15879
\(221\) 0 0
\(222\) 14.3987 0.966381
\(223\) 3.21980 0.215614 0.107807 0.994172i \(-0.465617\pi\)
0.107807 + 0.994172i \(0.465617\pi\)
\(224\) 1.00000 0.0668153
\(225\) −10.3798 −0.691985
\(226\) 8.77533 0.583726
\(227\) −20.6879 −1.37310 −0.686552 0.727081i \(-0.740877\pi\)
−0.686552 + 0.727081i \(0.740877\pi\)
\(228\) 6.08101 0.402725
\(229\) −4.86398 −0.321421 −0.160710 0.987002i \(-0.551379\pi\)
−0.160710 + 0.987002i \(0.551379\pi\)
\(230\) −19.5017 −1.28591
\(231\) 6.08140 0.400127
\(232\) 4.73054 0.310575
\(233\) −25.8858 −1.69583 −0.847917 0.530129i \(-0.822143\pi\)
−0.847917 + 0.530129i \(0.822143\pi\)
\(234\) 0 0
\(235\) −19.9389 −1.30067
\(236\) 0.563865 0.0367045
\(237\) 0.0811845 0.00527350
\(238\) −7.06822 −0.458165
\(239\) −9.15450 −0.592155 −0.296078 0.955164i \(-0.595679\pi\)
−0.296078 + 0.955164i \(0.595679\pi\)
\(240\) −4.18845 −0.270363
\(241\) 1.83019 0.117893 0.0589463 0.998261i \(-0.481226\pi\)
0.0589463 + 0.998261i \(0.481226\pi\)
\(242\) 13.9555 0.897095
\(243\) 13.8932 0.891252
\(244\) −9.60172 −0.614687
\(245\) −3.44059 −0.219811
\(246\) 7.30901 0.466005
\(247\) 0 0
\(248\) 2.16328 0.137369
\(249\) −12.0095 −0.761068
\(250\) −6.32269 −0.399882
\(251\) 10.7479 0.678402 0.339201 0.940714i \(-0.389843\pi\)
0.339201 + 0.940714i \(0.389843\pi\)
\(252\) −1.51803 −0.0956267
\(253\) 28.3154 1.78018
\(254\) 5.37806 0.337450
\(255\) 29.6049 1.85393
\(256\) 1.00000 0.0625000
\(257\) −28.6797 −1.78899 −0.894496 0.447075i \(-0.852466\pi\)
−0.894496 + 0.447075i \(0.852466\pi\)
\(258\) 9.61358 0.598515
\(259\) 11.8278 0.734945
\(260\) 0 0
\(261\) −7.18109 −0.444499
\(262\) 16.0652 0.992513
\(263\) 11.5007 0.709163 0.354581 0.935025i \(-0.384623\pi\)
0.354581 + 0.935025i \(0.384623\pi\)
\(264\) 6.08140 0.374284
\(265\) 13.0404 0.801068
\(266\) 4.99523 0.306277
\(267\) −7.50172 −0.459098
\(268\) −7.50096 −0.458194
\(269\) −13.9265 −0.849113 −0.424556 0.905402i \(-0.639570\pi\)
−0.424556 + 0.905402i \(0.639570\pi\)
\(270\) 18.9235 1.15165
\(271\) 7.54822 0.458522 0.229261 0.973365i \(-0.426369\pi\)
0.229261 + 0.973365i \(0.426369\pi\)
\(272\) −7.06822 −0.428574
\(273\) 0 0
\(274\) −9.66486 −0.583876
\(275\) 34.1579 2.05980
\(276\) 6.90017 0.415342
\(277\) −26.8940 −1.61591 −0.807953 0.589247i \(-0.799424\pi\)
−0.807953 + 0.589247i \(0.799424\pi\)
\(278\) 7.87367 0.472231
\(279\) −3.28392 −0.196603
\(280\) −3.44059 −0.205615
\(281\) −15.1097 −0.901370 −0.450685 0.892683i \(-0.648820\pi\)
−0.450685 + 0.892683i \(0.648820\pi\)
\(282\) 7.05486 0.420111
\(283\) −23.0460 −1.36994 −0.684971 0.728570i \(-0.740185\pi\)
−0.684971 + 0.728570i \(0.740185\pi\)
\(284\) −4.20475 −0.249506
\(285\) −20.9223 −1.23933
\(286\) 0 0
\(287\) 6.00397 0.354403
\(288\) −1.51803 −0.0894506
\(289\) 32.9597 1.93881
\(290\) −16.2759 −0.955752
\(291\) 16.8439 0.987409
\(292\) 7.63802 0.446981
\(293\) −6.96795 −0.407072 −0.203536 0.979067i \(-0.565243\pi\)
−0.203536 + 0.979067i \(0.565243\pi\)
\(294\) 1.21736 0.0709981
\(295\) −1.94003 −0.112953
\(296\) 11.8278 0.687478
\(297\) −27.4759 −1.59431
\(298\) 21.5447 1.24805
\(299\) 0 0
\(300\) 8.32393 0.480582
\(301\) 7.89705 0.455178
\(302\) 3.22714 0.185701
\(303\) −7.81198 −0.448786
\(304\) 4.99523 0.286496
\(305\) 33.0356 1.89161
\(306\) 10.7297 0.613379
\(307\) 26.4284 1.50835 0.754174 0.656675i \(-0.228038\pi\)
0.754174 + 0.656675i \(0.228038\pi\)
\(308\) 4.99555 0.284648
\(309\) 6.92026 0.393680
\(310\) −7.44298 −0.422733
\(311\) −25.1099 −1.42385 −0.711925 0.702256i \(-0.752176\pi\)
−0.711925 + 0.702256i \(0.752176\pi\)
\(312\) 0 0
\(313\) −0.185816 −0.0105030 −0.00525148 0.999986i \(-0.501672\pi\)
−0.00525148 + 0.999986i \(0.501672\pi\)
\(314\) −1.29645 −0.0731629
\(315\) 5.22291 0.294278
\(316\) 0.0666888 0.00375154
\(317\) −26.0136 −1.46107 −0.730533 0.682877i \(-0.760729\pi\)
−0.730533 + 0.682877i \(0.760729\pi\)
\(318\) −4.61402 −0.258741
\(319\) 23.6317 1.32312
\(320\) −3.44059 −0.192335
\(321\) −23.4516 −1.30894
\(322\) 5.66813 0.315873
\(323\) −35.3074 −1.96456
\(324\) −2.14151 −0.118973
\(325\) 0 0
\(326\) −15.5019 −0.858568
\(327\) −12.1973 −0.674513
\(328\) 6.00397 0.331514
\(329\) 5.79519 0.319499
\(330\) −20.9236 −1.15181
\(331\) −10.2263 −0.562089 −0.281044 0.959695i \(-0.590681\pi\)
−0.281044 + 0.959695i \(0.590681\pi\)
\(332\) −9.86513 −0.541420
\(333\) −17.9549 −0.983925
\(334\) 1.56822 0.0858090
\(335\) 25.8078 1.41003
\(336\) 1.21736 0.0664126
\(337\) −18.9120 −1.03020 −0.515101 0.857130i \(-0.672245\pi\)
−0.515101 + 0.857130i \(0.672245\pi\)
\(338\) 0 0
\(339\) 10.6828 0.580208
\(340\) 24.3189 1.31888
\(341\) 10.8068 0.585221
\(342\) −7.58290 −0.410036
\(343\) 1.00000 0.0539949
\(344\) 7.89705 0.425780
\(345\) −23.7407 −1.27816
\(346\) 9.37327 0.503910
\(347\) −7.34260 −0.394171 −0.197086 0.980386i \(-0.563148\pi\)
−0.197086 + 0.980386i \(0.563148\pi\)
\(348\) 5.75879 0.308704
\(349\) 22.0790 1.18186 0.590930 0.806723i \(-0.298761\pi\)
0.590930 + 0.806723i \(0.298761\pi\)
\(350\) 6.83767 0.365489
\(351\) 0 0
\(352\) 4.99555 0.266264
\(353\) −6.30884 −0.335785 −0.167893 0.985805i \(-0.553696\pi\)
−0.167893 + 0.985805i \(0.553696\pi\)
\(354\) 0.686429 0.0364833
\(355\) 14.4668 0.767820
\(356\) −6.16227 −0.326600
\(357\) −8.60459 −0.455403
\(358\) 3.92185 0.207276
\(359\) 35.6786 1.88304 0.941521 0.336954i \(-0.109397\pi\)
0.941521 + 0.336954i \(0.109397\pi\)
\(360\) 5.22291 0.275272
\(361\) 5.95235 0.313282
\(362\) 0.917236 0.0482089
\(363\) 16.9889 0.891688
\(364\) 0 0
\(365\) −26.2793 −1.37552
\(366\) −11.6888 −0.610983
\(367\) 5.35362 0.279457 0.139728 0.990190i \(-0.455377\pi\)
0.139728 + 0.990190i \(0.455377\pi\)
\(368\) 5.66813 0.295472
\(369\) −9.11419 −0.474466
\(370\) −40.6947 −2.11562
\(371\) −3.79017 −0.196776
\(372\) 2.63350 0.136541
\(373\) 31.7744 1.64522 0.822609 0.568607i \(-0.192518\pi\)
0.822609 + 0.568607i \(0.192518\pi\)
\(374\) −35.3096 −1.82582
\(375\) −7.69701 −0.397472
\(376\) 5.79519 0.298864
\(377\) 0 0
\(378\) −5.50008 −0.282894
\(379\) −15.5529 −0.798900 −0.399450 0.916755i \(-0.630799\pi\)
−0.399450 + 0.916755i \(0.630799\pi\)
\(380\) −17.1866 −0.881652
\(381\) 6.54706 0.335416
\(382\) 7.86239 0.402275
\(383\) −18.5061 −0.945618 −0.472809 0.881165i \(-0.656760\pi\)
−0.472809 + 0.881165i \(0.656760\pi\)
\(384\) 1.21736 0.0621233
\(385\) −17.1877 −0.875964
\(386\) 12.1952 0.620720
\(387\) −11.9879 −0.609381
\(388\) 13.8364 0.702437
\(389\) 23.3415 1.18346 0.591731 0.806136i \(-0.298445\pi\)
0.591731 + 0.806136i \(0.298445\pi\)
\(390\) 0 0
\(391\) −40.0636 −2.02610
\(392\) 1.00000 0.0505076
\(393\) 19.5572 0.986531
\(394\) 0.499938 0.0251865
\(395\) −0.229449 −0.0115448
\(396\) −7.58338 −0.381079
\(397\) 3.18220 0.159710 0.0798551 0.996806i \(-0.474554\pi\)
0.0798551 + 0.996806i \(0.474554\pi\)
\(398\) −18.7772 −0.941217
\(399\) 6.08101 0.304431
\(400\) 6.83767 0.341884
\(401\) −28.6480 −1.43061 −0.715307 0.698811i \(-0.753713\pi\)
−0.715307 + 0.698811i \(0.753713\pi\)
\(402\) −9.13140 −0.455433
\(403\) 0 0
\(404\) −6.41713 −0.319264
\(405\) 7.36807 0.366122
\(406\) 4.73054 0.234773
\(407\) 59.0865 2.92881
\(408\) −8.60459 −0.425991
\(409\) 2.03868 0.100806 0.0504031 0.998729i \(-0.483949\pi\)
0.0504031 + 0.998729i \(0.483949\pi\)
\(410\) −20.6572 −1.02019
\(411\) −11.7656 −0.580357
\(412\) 5.68463 0.280062
\(413\) 0.563865 0.0277460
\(414\) −8.60437 −0.422882
\(415\) 33.9419 1.66614
\(416\) 0 0
\(417\) 9.58511 0.469385
\(418\) 24.9539 1.22054
\(419\) −3.58445 −0.175112 −0.0875560 0.996160i \(-0.527906\pi\)
−0.0875560 + 0.996160i \(0.527906\pi\)
\(420\) −4.18845 −0.204375
\(421\) 6.57788 0.320586 0.160293 0.987069i \(-0.448756\pi\)
0.160293 + 0.987069i \(0.448756\pi\)
\(422\) −5.77056 −0.280906
\(423\) −8.79726 −0.427738
\(424\) −3.79017 −0.184067
\(425\) −48.3302 −2.34436
\(426\) −5.11871 −0.248002
\(427\) −9.60172 −0.464660
\(428\) −19.2643 −0.931174
\(429\) 0 0
\(430\) −27.1705 −1.31028
\(431\) −4.97080 −0.239435 −0.119718 0.992808i \(-0.538199\pi\)
−0.119718 + 0.992808i \(0.538199\pi\)
\(432\) −5.50008 −0.264623
\(433\) 24.2077 1.16335 0.581674 0.813422i \(-0.302398\pi\)
0.581674 + 0.813422i \(0.302398\pi\)
\(434\) 2.16328 0.103841
\(435\) −19.8137 −0.949992
\(436\) −10.0195 −0.479845
\(437\) 28.3136 1.35442
\(438\) 9.29824 0.444287
\(439\) −14.0986 −0.672891 −0.336446 0.941703i \(-0.609225\pi\)
−0.336446 + 0.941703i \(0.609225\pi\)
\(440\) −17.1877 −0.819389
\(441\) −1.51803 −0.0722870
\(442\) 0 0
\(443\) −9.14216 −0.434357 −0.217178 0.976132i \(-0.569685\pi\)
−0.217178 + 0.976132i \(0.569685\pi\)
\(444\) 14.3987 0.683334
\(445\) 21.2019 1.00506
\(446\) 3.21980 0.152462
\(447\) 26.2277 1.24053
\(448\) 1.00000 0.0472456
\(449\) 8.29350 0.391395 0.195697 0.980664i \(-0.437303\pi\)
0.195697 + 0.980664i \(0.437303\pi\)
\(450\) −10.3798 −0.489307
\(451\) 29.9931 1.41232
\(452\) 8.77533 0.412757
\(453\) 3.92860 0.184582
\(454\) −20.6879 −0.970931
\(455\) 0 0
\(456\) 6.08101 0.284770
\(457\) 5.72999 0.268037 0.134019 0.990979i \(-0.457212\pi\)
0.134019 + 0.990979i \(0.457212\pi\)
\(458\) −4.86398 −0.227279
\(459\) 38.8758 1.81457
\(460\) −19.5017 −0.909273
\(461\) −17.7249 −0.825531 −0.412766 0.910837i \(-0.635437\pi\)
−0.412766 + 0.910837i \(0.635437\pi\)
\(462\) 6.08140 0.282932
\(463\) −15.0103 −0.697589 −0.348794 0.937199i \(-0.613409\pi\)
−0.348794 + 0.937199i \(0.613409\pi\)
\(464\) 4.73054 0.219610
\(465\) −9.06080 −0.420185
\(466\) −25.8858 −1.19914
\(467\) −22.1003 −1.02268 −0.511341 0.859378i \(-0.670851\pi\)
−0.511341 + 0.859378i \(0.670851\pi\)
\(468\) 0 0
\(469\) −7.50096 −0.346362
\(470\) −19.9389 −0.919713
\(471\) −1.57825 −0.0727220
\(472\) 0.563865 0.0259540
\(473\) 39.4501 1.81392
\(474\) 0.0811845 0.00372893
\(475\) 34.1558 1.56717
\(476\) −7.06822 −0.323971
\(477\) 5.75359 0.263439
\(478\) −9.15450 −0.418717
\(479\) −8.29945 −0.379212 −0.189606 0.981860i \(-0.560721\pi\)
−0.189606 + 0.981860i \(0.560721\pi\)
\(480\) −4.18845 −0.191176
\(481\) 0 0
\(482\) 1.83019 0.0833627
\(483\) 6.90017 0.313969
\(484\) 13.9555 0.634342
\(485\) −47.6054 −2.16165
\(486\) 13.8932 0.630210
\(487\) 4.99054 0.226143 0.113071 0.993587i \(-0.463931\pi\)
0.113071 + 0.993587i \(0.463931\pi\)
\(488\) −9.60172 −0.434650
\(489\) −18.8714 −0.853394
\(490\) −3.44059 −0.155430
\(491\) 2.67530 0.120735 0.0603673 0.998176i \(-0.480773\pi\)
0.0603673 + 0.998176i \(0.480773\pi\)
\(492\) 7.30901 0.329516
\(493\) −33.4365 −1.50591
\(494\) 0 0
\(495\) 26.0913 1.17272
\(496\) 2.16328 0.0971343
\(497\) −4.20475 −0.188609
\(498\) −12.0095 −0.538156
\(499\) 10.6656 0.477456 0.238728 0.971086i \(-0.423270\pi\)
0.238728 + 0.971086i \(0.423270\pi\)
\(500\) −6.32269 −0.282759
\(501\) 1.90909 0.0852918
\(502\) 10.7479 0.479703
\(503\) 2.72009 0.121283 0.0606414 0.998160i \(-0.480685\pi\)
0.0606414 + 0.998160i \(0.480685\pi\)
\(504\) −1.51803 −0.0676183
\(505\) 22.0787 0.982491
\(506\) 28.3154 1.25877
\(507\) 0 0
\(508\) 5.37806 0.238613
\(509\) 34.8622 1.54524 0.772620 0.634869i \(-0.218946\pi\)
0.772620 + 0.634869i \(0.218946\pi\)
\(510\) 29.6049 1.31093
\(511\) 7.63802 0.337886
\(512\) 1.00000 0.0441942
\(513\) −27.4742 −1.21301
\(514\) −28.6797 −1.26501
\(515\) −19.5585 −0.861851
\(516\) 9.61358 0.423214
\(517\) 28.9502 1.27323
\(518\) 11.8278 0.519684
\(519\) 11.4107 0.500873
\(520\) 0 0
\(521\) −0.0242185 −0.00106103 −0.000530515 1.00000i \(-0.500169\pi\)
−0.000530515 1.00000i \(0.500169\pi\)
\(522\) −7.18109 −0.314308
\(523\) −27.6711 −1.20997 −0.604986 0.796236i \(-0.706821\pi\)
−0.604986 + 0.796236i \(0.706821\pi\)
\(524\) 16.0652 0.701812
\(525\) 8.32393 0.363286
\(526\) 11.5007 0.501454
\(527\) −15.2906 −0.666067
\(528\) 6.08140 0.264659
\(529\) 9.12769 0.396856
\(530\) 13.0404 0.566441
\(531\) −0.855962 −0.0371456
\(532\) 4.99523 0.216571
\(533\) 0 0
\(534\) −7.50172 −0.324631
\(535\) 66.2806 2.86556
\(536\) −7.50096 −0.323992
\(537\) 4.77432 0.206027
\(538\) −13.9265 −0.600413
\(539\) 4.99555 0.215174
\(540\) 18.9235 0.814339
\(541\) 42.6311 1.83285 0.916426 0.400204i \(-0.131061\pi\)
0.916426 + 0.400204i \(0.131061\pi\)
\(542\) 7.54822 0.324224
\(543\) 1.11661 0.0479183
\(544\) −7.06822 −0.303047
\(545\) 34.4729 1.47666
\(546\) 0 0
\(547\) −31.9332 −1.36536 −0.682682 0.730716i \(-0.739186\pi\)
−0.682682 + 0.730716i \(0.739186\pi\)
\(548\) −9.66486 −0.412862
\(549\) 14.5757 0.622075
\(550\) 34.1579 1.45650
\(551\) 23.6302 1.00668
\(552\) 6.90017 0.293691
\(553\) 0.0666888 0.00283590
\(554\) −26.8940 −1.14262
\(555\) −49.5402 −2.10287
\(556\) 7.87367 0.333918
\(557\) 36.4922 1.54622 0.773112 0.634269i \(-0.218699\pi\)
0.773112 + 0.634269i \(0.218699\pi\)
\(558\) −3.28392 −0.139020
\(559\) 0 0
\(560\) −3.44059 −0.145392
\(561\) −42.9847 −1.81481
\(562\) −15.1097 −0.637365
\(563\) 21.5178 0.906866 0.453433 0.891290i \(-0.350199\pi\)
0.453433 + 0.891290i \(0.350199\pi\)
\(564\) 7.05486 0.297063
\(565\) −30.1923 −1.27020
\(566\) −23.0460 −0.968695
\(567\) −2.14151 −0.0899351
\(568\) −4.20475 −0.176428
\(569\) 18.9443 0.794185 0.397092 0.917779i \(-0.370019\pi\)
0.397092 + 0.917779i \(0.370019\pi\)
\(570\) −20.9223 −0.876338
\(571\) −30.3868 −1.27165 −0.635824 0.771834i \(-0.719340\pi\)
−0.635824 + 0.771834i \(0.719340\pi\)
\(572\) 0 0
\(573\) 9.57139 0.399850
\(574\) 6.00397 0.250601
\(575\) 38.7568 1.61627
\(576\) −1.51803 −0.0632511
\(577\) 10.5080 0.437455 0.218728 0.975786i \(-0.429809\pi\)
0.218728 + 0.975786i \(0.429809\pi\)
\(578\) 32.9597 1.37094
\(579\) 14.8460 0.616978
\(580\) −16.2759 −0.675819
\(581\) −9.86513 −0.409275
\(582\) 16.8439 0.698203
\(583\) −18.9340 −0.784166
\(584\) 7.63802 0.316064
\(585\) 0 0
\(586\) −6.96795 −0.287843
\(587\) −42.6299 −1.75952 −0.879762 0.475413i \(-0.842298\pi\)
−0.879762 + 0.475413i \(0.842298\pi\)
\(588\) 1.21736 0.0502032
\(589\) 10.8061 0.445258
\(590\) −1.94003 −0.0798698
\(591\) 0.608606 0.0250347
\(592\) 11.8278 0.486120
\(593\) −47.1372 −1.93569 −0.967846 0.251542i \(-0.919062\pi\)
−0.967846 + 0.251542i \(0.919062\pi\)
\(594\) −27.4759 −1.12735
\(595\) 24.3189 0.996976
\(596\) 21.5447 0.882505
\(597\) −22.8587 −0.935544
\(598\) 0 0
\(599\) 14.4525 0.590513 0.295257 0.955418i \(-0.404595\pi\)
0.295257 + 0.955418i \(0.404595\pi\)
\(600\) 8.32393 0.339823
\(601\) 29.0649 1.18558 0.592791 0.805356i \(-0.298026\pi\)
0.592791 + 0.805356i \(0.298026\pi\)
\(602\) 7.89705 0.321860
\(603\) 11.3867 0.463701
\(604\) 3.22714 0.131311
\(605\) −48.0153 −1.95210
\(606\) −7.81198 −0.317340
\(607\) 3.44281 0.139740 0.0698698 0.997556i \(-0.477742\pi\)
0.0698698 + 0.997556i \(0.477742\pi\)
\(608\) 4.99523 0.202583
\(609\) 5.75879 0.233358
\(610\) 33.0356 1.33757
\(611\) 0 0
\(612\) 10.7297 0.433724
\(613\) 3.41510 0.137935 0.0689674 0.997619i \(-0.478030\pi\)
0.0689674 + 0.997619i \(0.478030\pi\)
\(614\) 26.4284 1.06656
\(615\) −25.1473 −1.01404
\(616\) 4.99555 0.201276
\(617\) −22.8471 −0.919791 −0.459896 0.887973i \(-0.652113\pi\)
−0.459896 + 0.887973i \(0.652113\pi\)
\(618\) 6.92026 0.278374
\(619\) 24.6009 0.988792 0.494396 0.869237i \(-0.335389\pi\)
0.494396 + 0.869237i \(0.335389\pi\)
\(620\) −7.44298 −0.298917
\(621\) −31.1752 −1.25102
\(622\) −25.1099 −1.00681
\(623\) −6.16227 −0.246886
\(624\) 0 0
\(625\) −12.4346 −0.497383
\(626\) −0.185816 −0.00742672
\(627\) 30.3780 1.21318
\(628\) −1.29645 −0.0517340
\(629\) −83.6016 −3.33341
\(630\) 5.22291 0.208086
\(631\) −28.6454 −1.14035 −0.570177 0.821522i \(-0.693125\pi\)
−0.570177 + 0.821522i \(0.693125\pi\)
\(632\) 0.0666888 0.00265274
\(633\) −7.02487 −0.279213
\(634\) −26.0136 −1.03313
\(635\) −18.5037 −0.734298
\(636\) −4.61402 −0.182958
\(637\) 0 0
\(638\) 23.6317 0.935587
\(639\) 6.38293 0.252505
\(640\) −3.44059 −0.136001
\(641\) −21.0942 −0.833170 −0.416585 0.909097i \(-0.636773\pi\)
−0.416585 + 0.909097i \(0.636773\pi\)
\(642\) −23.4516 −0.925562
\(643\) 31.1503 1.22845 0.614224 0.789132i \(-0.289469\pi\)
0.614224 + 0.789132i \(0.289469\pi\)
\(644\) 5.66813 0.223356
\(645\) −33.0764 −1.30238
\(646\) −35.3074 −1.38915
\(647\) 39.1390 1.53871 0.769356 0.638820i \(-0.220577\pi\)
0.769356 + 0.638820i \(0.220577\pi\)
\(648\) −2.14151 −0.0841266
\(649\) 2.81682 0.110570
\(650\) 0 0
\(651\) 2.63350 0.103215
\(652\) −15.5019 −0.607099
\(653\) 47.3177 1.85168 0.925842 0.377910i \(-0.123357\pi\)
0.925842 + 0.377910i \(0.123357\pi\)
\(654\) −12.1973 −0.476953
\(655\) −55.2739 −2.15973
\(656\) 6.00397 0.234416
\(657\) −11.5947 −0.452353
\(658\) 5.79519 0.225920
\(659\) −49.1219 −1.91352 −0.956758 0.290884i \(-0.906051\pi\)
−0.956758 + 0.290884i \(0.906051\pi\)
\(660\) −20.9236 −0.814451
\(661\) 22.7833 0.886168 0.443084 0.896480i \(-0.353884\pi\)
0.443084 + 0.896480i \(0.353884\pi\)
\(662\) −10.2263 −0.397457
\(663\) 0 0
\(664\) −9.86513 −0.382841
\(665\) −17.1866 −0.666466
\(666\) −17.9549 −0.695740
\(667\) 26.8133 1.03822
\(668\) 1.56822 0.0606761
\(669\) 3.91967 0.151543
\(670\) 25.8078 0.997041
\(671\) −47.9659 −1.85170
\(672\) 1.21736 0.0469608
\(673\) −11.7325 −0.452255 −0.226128 0.974098i \(-0.572607\pi\)
−0.226128 + 0.974098i \(0.572607\pi\)
\(674\) −18.9120 −0.728462
\(675\) −37.6078 −1.44752
\(676\) 0 0
\(677\) −7.16323 −0.275305 −0.137653 0.990481i \(-0.543956\pi\)
−0.137653 + 0.990481i \(0.543956\pi\)
\(678\) 10.6828 0.410269
\(679\) 13.8364 0.530993
\(680\) 24.3189 0.932586
\(681\) −25.1847 −0.965079
\(682\) 10.8068 0.413813
\(683\) 4.14299 0.158527 0.0792636 0.996854i \(-0.474743\pi\)
0.0792636 + 0.996854i \(0.474743\pi\)
\(684\) −7.58290 −0.289939
\(685\) 33.2528 1.27053
\(686\) 1.00000 0.0381802
\(687\) −5.92123 −0.225909
\(688\) 7.89705 0.301072
\(689\) 0 0
\(690\) −23.7407 −0.903792
\(691\) 23.5827 0.897129 0.448564 0.893751i \(-0.351936\pi\)
0.448564 + 0.893751i \(0.351936\pi\)
\(692\) 9.37327 0.356318
\(693\) −7.58338 −0.288069
\(694\) −7.34260 −0.278721
\(695\) −27.0901 −1.02759
\(696\) 5.75879 0.218286
\(697\) −42.4374 −1.60743
\(698\) 22.0790 0.835702
\(699\) −31.5124 −1.19191
\(700\) 6.83767 0.258440
\(701\) 36.8468 1.39168 0.695842 0.718195i \(-0.255032\pi\)
0.695842 + 0.718195i \(0.255032\pi\)
\(702\) 0 0
\(703\) 59.0827 2.22835
\(704\) 4.99555 0.188277
\(705\) −24.2729 −0.914170
\(706\) −6.30884 −0.237436
\(707\) −6.41713 −0.241341
\(708\) 0.686429 0.0257976
\(709\) 25.1620 0.944979 0.472489 0.881336i \(-0.343356\pi\)
0.472489 + 0.881336i \(0.343356\pi\)
\(710\) 14.4668 0.542931
\(711\) −0.101235 −0.00379662
\(712\) −6.16227 −0.230941
\(713\) 12.2618 0.459207
\(714\) −8.60459 −0.322019
\(715\) 0 0
\(716\) 3.92185 0.146567
\(717\) −11.1443 −0.416193
\(718\) 35.6786 1.33151
\(719\) −3.37059 −0.125702 −0.0628509 0.998023i \(-0.520019\pi\)
−0.0628509 + 0.998023i \(0.520019\pi\)
\(720\) 5.22291 0.194646
\(721\) 5.68463 0.211707
\(722\) 5.95235 0.221524
\(723\) 2.22800 0.0828602
\(724\) 0.917236 0.0340888
\(725\) 32.3459 1.20130
\(726\) 16.9889 0.630519
\(727\) 27.0316 1.00255 0.501273 0.865289i \(-0.332865\pi\)
0.501273 + 0.865289i \(0.332865\pi\)
\(728\) 0 0
\(729\) 23.3377 0.864358
\(730\) −26.2793 −0.972641
\(731\) −55.8181 −2.06451
\(732\) −11.6888 −0.432030
\(733\) 35.2989 1.30380 0.651898 0.758307i \(-0.273973\pi\)
0.651898 + 0.758307i \(0.273973\pi\)
\(734\) 5.35362 0.197606
\(735\) −4.18845 −0.154493
\(736\) 5.66813 0.208930
\(737\) −37.4714 −1.38028
\(738\) −9.11419 −0.335498
\(739\) −21.5248 −0.791801 −0.395901 0.918293i \(-0.629568\pi\)
−0.395901 + 0.918293i \(0.629568\pi\)
\(740\) −40.6947 −1.49597
\(741\) 0 0
\(742\) −3.79017 −0.139142
\(743\) 35.7822 1.31272 0.656362 0.754446i \(-0.272095\pi\)
0.656362 + 0.754446i \(0.272095\pi\)
\(744\) 2.63350 0.0965488
\(745\) −74.1265 −2.71578
\(746\) 31.7744 1.16335
\(747\) 14.9755 0.547926
\(748\) −35.3096 −1.29105
\(749\) −19.2643 −0.703902
\(750\) −7.69701 −0.281055
\(751\) −47.4173 −1.73028 −0.865141 0.501529i \(-0.832771\pi\)
−0.865141 + 0.501529i \(0.832771\pi\)
\(752\) 5.79519 0.211329
\(753\) 13.0841 0.476812
\(754\) 0 0
\(755\) −11.1033 −0.404090
\(756\) −5.50008 −0.200036
\(757\) 21.0476 0.764989 0.382494 0.923958i \(-0.375065\pi\)
0.382494 + 0.923958i \(0.375065\pi\)
\(758\) −15.5529 −0.564908
\(759\) 34.4702 1.25119
\(760\) −17.1866 −0.623422
\(761\) −51.4526 −1.86516 −0.932578 0.360969i \(-0.882446\pi\)
−0.932578 + 0.360969i \(0.882446\pi\)
\(762\) 6.54706 0.237175
\(763\) −10.0195 −0.362729
\(764\) 7.86239 0.284451
\(765\) −36.9167 −1.33473
\(766\) −18.5061 −0.668653
\(767\) 0 0
\(768\) 1.21736 0.0439278
\(769\) −46.3035 −1.66975 −0.834873 0.550443i \(-0.814459\pi\)
−0.834873 + 0.550443i \(0.814459\pi\)
\(770\) −17.1877 −0.619400
\(771\) −34.9136 −1.25738
\(772\) 12.1952 0.438915
\(773\) −22.2161 −0.799057 −0.399529 0.916721i \(-0.630826\pi\)
−0.399529 + 0.916721i \(0.630826\pi\)
\(774\) −11.9879 −0.430897
\(775\) 14.7918 0.531338
\(776\) 13.8364 0.496698
\(777\) 14.3987 0.516552
\(778\) 23.3415 0.836833
\(779\) 29.9912 1.07455
\(780\) 0 0
\(781\) −21.0051 −0.751620
\(782\) −40.0636 −1.43267
\(783\) −26.0184 −0.929821
\(784\) 1.00000 0.0357143
\(785\) 4.46056 0.159204
\(786\) 19.5572 0.697582
\(787\) 24.3469 0.867875 0.433937 0.900943i \(-0.357124\pi\)
0.433937 + 0.900943i \(0.357124\pi\)
\(788\) 0.499938 0.0178096
\(789\) 14.0005 0.498431
\(790\) −0.229449 −0.00816343
\(791\) 8.77533 0.312015
\(792\) −7.58338 −0.269464
\(793\) 0 0
\(794\) 3.18220 0.112932
\(795\) 15.8750 0.563027
\(796\) −18.7772 −0.665541
\(797\) 16.0966 0.570172 0.285086 0.958502i \(-0.407978\pi\)
0.285086 + 0.958502i \(0.407978\pi\)
\(798\) 6.08101 0.215266
\(799\) −40.9617 −1.44912
\(800\) 6.83767 0.241748
\(801\) 9.35449 0.330525
\(802\) −28.6480 −1.01160
\(803\) 38.1561 1.34650
\(804\) −9.13140 −0.322040
\(805\) −19.5017 −0.687345
\(806\) 0 0
\(807\) −16.9536 −0.596794
\(808\) −6.41713 −0.225754
\(809\) −7.31827 −0.257297 −0.128648 0.991690i \(-0.541064\pi\)
−0.128648 + 0.991690i \(0.541064\pi\)
\(810\) 7.36807 0.258888
\(811\) 28.6079 1.00456 0.502279 0.864706i \(-0.332495\pi\)
0.502279 + 0.864706i \(0.332495\pi\)
\(812\) 4.73054 0.166010
\(813\) 9.18893 0.322270
\(814\) 59.0865 2.07098
\(815\) 53.3356 1.86826
\(816\) −8.60459 −0.301221
\(817\) 39.4476 1.38010
\(818\) 2.03868 0.0712807
\(819\) 0 0
\(820\) −20.6572 −0.721381
\(821\) −4.79864 −0.167474 −0.0837368 0.996488i \(-0.526686\pi\)
−0.0837368 + 0.996488i \(0.526686\pi\)
\(822\) −11.7656 −0.410374
\(823\) 2.13782 0.0745199 0.0372599 0.999306i \(-0.488137\pi\)
0.0372599 + 0.999306i \(0.488137\pi\)
\(824\) 5.68463 0.198034
\(825\) 41.5826 1.44772
\(826\) 0.563865 0.0196194
\(827\) −48.8135 −1.69741 −0.848706 0.528865i \(-0.822618\pi\)
−0.848706 + 0.528865i \(0.822618\pi\)
\(828\) −8.60437 −0.299023
\(829\) −44.2561 −1.53708 −0.768539 0.639803i \(-0.779016\pi\)
−0.768539 + 0.639803i \(0.779016\pi\)
\(830\) 33.9419 1.17814
\(831\) −32.7398 −1.13573
\(832\) 0 0
\(833\) −7.06822 −0.244899
\(834\) 9.58511 0.331905
\(835\) −5.39560 −0.186722
\(836\) 24.9539 0.863050
\(837\) −11.8982 −0.411263
\(838\) −3.58445 −0.123823
\(839\) 24.8798 0.858947 0.429474 0.903079i \(-0.358699\pi\)
0.429474 + 0.903079i \(0.358699\pi\)
\(840\) −4.18845 −0.144515
\(841\) −6.62195 −0.228343
\(842\) 6.57788 0.226689
\(843\) −18.3940 −0.633523
\(844\) −5.77056 −0.198631
\(845\) 0 0
\(846\) −8.79726 −0.302456
\(847\) 13.9555 0.479517
\(848\) −3.79017 −0.130155
\(849\) −28.0553 −0.962857
\(850\) −48.3302 −1.65771
\(851\) 67.0416 2.29816
\(852\) −5.11871 −0.175364
\(853\) 28.2180 0.966166 0.483083 0.875574i \(-0.339517\pi\)
0.483083 + 0.875574i \(0.339517\pi\)
\(854\) −9.60172 −0.328564
\(855\) 26.0897 0.892248
\(856\) −19.2643 −0.658440
\(857\) −21.0991 −0.720733 −0.360366 0.932811i \(-0.617348\pi\)
−0.360366 + 0.932811i \(0.617348\pi\)
\(858\) 0 0
\(859\) −6.80121 −0.232054 −0.116027 0.993246i \(-0.537016\pi\)
−0.116027 + 0.993246i \(0.537016\pi\)
\(860\) −27.1705 −0.926507
\(861\) 7.30901 0.249090
\(862\) −4.97080 −0.169306
\(863\) 23.1097 0.786665 0.393332 0.919396i \(-0.371322\pi\)
0.393332 + 0.919396i \(0.371322\pi\)
\(864\) −5.50008 −0.187117
\(865\) −32.2496 −1.09652
\(866\) 24.2077 0.822611
\(867\) 40.1239 1.36268
\(868\) 2.16328 0.0734266
\(869\) 0.333147 0.0113012
\(870\) −19.8137 −0.671746
\(871\) 0 0
\(872\) −10.0195 −0.339302
\(873\) −21.0040 −0.710879
\(874\) 28.3136 0.957723
\(875\) −6.32269 −0.213746
\(876\) 9.29824 0.314159
\(877\) −27.3273 −0.922777 −0.461388 0.887198i \(-0.652649\pi\)
−0.461388 + 0.887198i \(0.652649\pi\)
\(878\) −14.0986 −0.475806
\(879\) −8.48253 −0.286109
\(880\) −17.1877 −0.579396
\(881\) −39.2815 −1.32343 −0.661714 0.749756i \(-0.730171\pi\)
−0.661714 + 0.749756i \(0.730171\pi\)
\(882\) −1.51803 −0.0511146
\(883\) 52.7338 1.77463 0.887316 0.461161i \(-0.152567\pi\)
0.887316 + 0.461161i \(0.152567\pi\)
\(884\) 0 0
\(885\) −2.36172 −0.0793884
\(886\) −9.14216 −0.307137
\(887\) 41.3835 1.38952 0.694762 0.719240i \(-0.255510\pi\)
0.694762 + 0.719240i \(0.255510\pi\)
\(888\) 14.3987 0.483190
\(889\) 5.37806 0.180374
\(890\) 21.2019 0.710688
\(891\) −10.6980 −0.358398
\(892\) 3.21980 0.107807
\(893\) 28.9483 0.968720
\(894\) 26.2277 0.877186
\(895\) −13.4935 −0.451038
\(896\) 1.00000 0.0334077
\(897\) 0 0
\(898\) 8.29350 0.276758
\(899\) 10.2335 0.341307
\(900\) −10.3798 −0.345992
\(901\) 26.7898 0.892497
\(902\) 29.9931 0.998662
\(903\) 9.61358 0.319920
\(904\) 8.77533 0.291863
\(905\) −3.15584 −0.104904
\(906\) 3.92860 0.130519
\(907\) 39.8937 1.32465 0.662325 0.749217i \(-0.269570\pi\)
0.662325 + 0.749217i \(0.269570\pi\)
\(908\) −20.6879 −0.686552
\(909\) 9.74138 0.323101
\(910\) 0 0
\(911\) 32.3922 1.07320 0.536601 0.843836i \(-0.319708\pi\)
0.536601 + 0.843836i \(0.319708\pi\)
\(912\) 6.08101 0.201362
\(913\) −49.2818 −1.63099
\(914\) 5.72999 0.189531
\(915\) 40.2163 1.32951
\(916\) −4.86398 −0.160710
\(917\) 16.0652 0.530520
\(918\) 38.8758 1.28309
\(919\) 17.1296 0.565053 0.282527 0.959259i \(-0.408827\pi\)
0.282527 + 0.959259i \(0.408827\pi\)
\(920\) −19.5017 −0.642953
\(921\) 32.1729 1.06013
\(922\) −17.7249 −0.583739
\(923\) 0 0
\(924\) 6.08140 0.200063
\(925\) 80.8748 2.65915
\(926\) −15.0103 −0.493270
\(927\) −8.62943 −0.283428
\(928\) 4.73054 0.155288
\(929\) 13.8576 0.454652 0.227326 0.973819i \(-0.427002\pi\)
0.227326 + 0.973819i \(0.427002\pi\)
\(930\) −9.06080 −0.297115
\(931\) 4.99523 0.163712
\(932\) −25.8858 −0.847917
\(933\) −30.5678 −1.00075
\(934\) −22.1003 −0.723145
\(935\) 121.486 3.97302
\(936\) 0 0
\(937\) −16.2426 −0.530622 −0.265311 0.964163i \(-0.585475\pi\)
−0.265311 + 0.964163i \(0.585475\pi\)
\(938\) −7.50096 −0.244915
\(939\) −0.226206 −0.00738196
\(940\) −19.9389 −0.650335
\(941\) −14.0746 −0.458819 −0.229410 0.973330i \(-0.573680\pi\)
−0.229410 + 0.973330i \(0.573680\pi\)
\(942\) −1.57825 −0.0514222
\(943\) 34.0313 1.10821
\(944\) 0.563865 0.0183522
\(945\) 18.9235 0.615582
\(946\) 39.4501 1.28263
\(947\) 3.18365 0.103455 0.0517274 0.998661i \(-0.483527\pi\)
0.0517274 + 0.998661i \(0.483527\pi\)
\(948\) 0.0811845 0.00263675
\(949\) 0 0
\(950\) 34.1558 1.10816
\(951\) −31.6679 −1.02690
\(952\) −7.06822 −0.229082
\(953\) −26.5590 −0.860329 −0.430165 0.902750i \(-0.641544\pi\)
−0.430165 + 0.902750i \(0.641544\pi\)
\(954\) 5.75359 0.186279
\(955\) −27.0513 −0.875359
\(956\) −9.15450 −0.296078
\(957\) 28.7683 0.929948
\(958\) −8.29945 −0.268143
\(959\) −9.66486 −0.312095
\(960\) −4.18845 −0.135182
\(961\) −26.3202 −0.849039
\(962\) 0 0
\(963\) 29.2437 0.942365
\(964\) 1.83019 0.0589463
\(965\) −41.9587 −1.35070
\(966\) 6.90017 0.222009
\(967\) −24.5993 −0.791061 −0.395531 0.918453i \(-0.629439\pi\)
−0.395531 + 0.918453i \(0.629439\pi\)
\(968\) 13.9555 0.448547
\(969\) −42.9819 −1.38078
\(970\) −47.6054 −1.52852
\(971\) 15.0671 0.483525 0.241763 0.970335i \(-0.422274\pi\)
0.241763 + 0.970335i \(0.422274\pi\)
\(972\) 13.8932 0.445626
\(973\) 7.87367 0.252418
\(974\) 4.99054 0.159907
\(975\) 0 0
\(976\) −9.60172 −0.307344
\(977\) 14.3564 0.459301 0.229651 0.973273i \(-0.426242\pi\)
0.229651 + 0.973273i \(0.426242\pi\)
\(978\) −18.8714 −0.603440
\(979\) −30.7839 −0.983859
\(980\) −3.44059 −0.109906
\(981\) 15.2098 0.485612
\(982\) 2.67530 0.0853723
\(983\) −31.2374 −0.996319 −0.498160 0.867085i \(-0.665991\pi\)
−0.498160 + 0.867085i \(0.665991\pi\)
\(984\) 7.30901 0.233003
\(985\) −1.72008 −0.0548064
\(986\) −33.4365 −1.06484
\(987\) 7.05486 0.224559
\(988\) 0 0
\(989\) 44.7615 1.42333
\(990\) 26.0913 0.829237
\(991\) −22.7952 −0.724113 −0.362056 0.932156i \(-0.617925\pi\)
−0.362056 + 0.932156i \(0.617925\pi\)
\(992\) 2.16328 0.0686843
\(993\) −12.4491 −0.395061
\(994\) −4.20475 −0.133367
\(995\) 64.6047 2.04811
\(996\) −12.0095 −0.380534
\(997\) −2.30401 −0.0729688 −0.0364844 0.999334i \(-0.511616\pi\)
−0.0364844 + 0.999334i \(0.511616\pi\)
\(998\) 10.6656 0.337612
\(999\) −65.0539 −2.05822
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2366.2.a.bg.1.4 yes 6
13.5 odd 4 2366.2.d.q.337.4 12
13.8 odd 4 2366.2.d.q.337.10 12
13.12 even 2 2366.2.a.be.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2366.2.a.be.1.4 6 13.12 even 2
2366.2.a.bg.1.4 yes 6 1.1 even 1 trivial
2366.2.d.q.337.4 12 13.5 odd 4
2366.2.d.q.337.10 12 13.8 odd 4