Defining parameters
Level: | \( N \) | \(=\) | \( 2349 = 3^{4} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 2349.h (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 261 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(270\) | ||
Trace bound: | \(8\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(2349, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 40 | 20 | 20 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 24 | 4 | 20 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 16 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(2349, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
2349.1.h.a | $2$ | $1.172$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-87}) \) | None | \(-1\) | \(0\) | \(0\) | \(1\) | \(q-\zeta_{6}q^{2}+\zeta_{6}q^{7}-q^{8}-\zeta_{6}q^{11}-\zeta_{6}^{2}q^{13}+\cdots\) |
2349.1.h.b | $2$ | $1.172$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-87}) \) | None | \(1\) | \(0\) | \(0\) | \(1\) | \(q+\zeta_{6}q^{2}+\zeta_{6}q^{7}+q^{8}+\zeta_{6}q^{11}-\zeta_{6}^{2}q^{13}+\cdots\) |
2349.1.h.c | $6$ | $1.172$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-87}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{18}^{4}+\zeta_{18}^{8})q^{2}+(-\zeta_{18}^{3}-\zeta_{18}^{7}+\cdots)q^{4}+\cdots\) |
2349.1.h.d | $6$ | $1.172$ | \(\Q(\zeta_{18})\) | $D_{9}$ | \(\Q(\sqrt{-87}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\zeta_{18}-\zeta_{18}^{2})q^{2}+(\zeta_{18}^{2}-\zeta_{18}^{3}+\cdots)q^{4}+\cdots\) |