Properties

Label 2349.1.h
Level $2349$
Weight $1$
Character orbit 2349.h
Rep. character $\chi_{2349}(782,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $4$
Sturm bound $270$
Trace bound $8$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2349 = 3^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2349.h (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 261 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 4 \)
Sturm bound: \(270\)
Trace bound: \(8\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2349, [\chi])\).

Total New Old
Modular forms 40 20 20
Cusp forms 16 16 0
Eisenstein series 24 4 20

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - 6 q^{4} + 2 q^{7} + 2 q^{13} - 4 q^{16} + 4 q^{22} - 8 q^{25} - 12 q^{28} + 4 q^{34} - 6 q^{49} + 6 q^{52} + 2 q^{58} + 4 q^{64} + 2 q^{67} - 8 q^{82} + 8 q^{88} - 8 q^{91} + 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(2349, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2349.1.h.a 2349.h 261.h $2$ $1.172$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-87}) \) None 87.1.d.a \(-1\) \(0\) \(0\) \(1\) \(q-\zeta_{6}q^{2}+\zeta_{6}q^{7}-q^{8}-\zeta_{6}q^{11}-\zeta_{6}^{2}q^{13}+\cdots\)
2349.1.h.b 2349.h 261.h $2$ $1.172$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-87}) \) None 87.1.d.a \(1\) \(0\) \(0\) \(1\) \(q+\zeta_{6}q^{2}+\zeta_{6}q^{7}+q^{8}+\zeta_{6}q^{11}-\zeta_{6}^{2}q^{13}+\cdots\)
2349.1.h.c 2349.h 261.h $6$ $1.172$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-87}) \) None 783.1.d.a \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{18}^{4}+\zeta_{18}^{8})q^{2}+(-\zeta_{18}^{3}-\zeta_{18}^{7}+\cdots)q^{4}+\cdots\)
2349.1.h.d 2349.h 261.h $6$ $1.172$ \(\Q(\zeta_{18})\) $D_{9}$ \(\Q(\sqrt{-87}) \) None 783.1.d.a \(0\) \(0\) \(0\) \(0\) \(q+(\zeta_{18}-\zeta_{18}^{2})q^{2}+(\zeta_{18}^{2}-\zeta_{18}^{3}+\cdots)q^{4}+\cdots\)