Properties

Label 2349.1.d
Level $2349$
Weight $1$
Character orbit 2349.d
Rep. character $\chi_{2349}(2348,\cdot)$
Character field $\Q$
Dimension $0$
Newform subspaces $0$
Sturm bound $270$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2349 = 3^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2349.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 87 \)
Character field: \(\Q\)
Newform subspaces: \( 0 \)
Sturm bound: \(270\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(2349, [\chi])\).

Total New Old
Modular forms 32 4 28
Cusp forms 20 0 20
Eisenstein series 12 4 8

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 0

Decomposition of \(S_{1}^{\mathrm{old}}(2349, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(2349, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(783, [\chi])\)\(^{\oplus 2}\)