Properties

Label 2340.2.y.b.53.9
Level $2340$
Weight $2$
Character 2340.53
Analytic conductor $18.685$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(53,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 53.9
Character \(\chi\) \(=\) 2340.53
Dual form 2340.2.y.b.1457.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80799 - 1.31574i) q^{5} +(-0.602482 + 0.602482i) q^{7} -1.84724i q^{11} +(-0.707107 - 0.707107i) q^{13} +(3.70666 + 3.70666i) q^{17} -7.06758i q^{19} +(-0.688512 + 0.688512i) q^{23} +(1.53765 - 4.75769i) q^{25} -5.94680 q^{29} -0.288098 q^{31} +(-0.296571 + 1.88199i) q^{35} +(5.56293 - 5.56293i) q^{37} -5.63302i q^{41} +(5.76366 + 5.76366i) q^{43} +(-4.61312 - 4.61312i) q^{47} +6.27403i q^{49} +(7.46699 - 7.46699i) q^{53} +(-2.43049 - 3.33979i) q^{55} -9.07941 q^{59} +9.04798 q^{61} +(-2.20881 - 0.348072i) q^{65} +(0.873903 - 0.873903i) q^{67} -6.96605i q^{71} +(-4.12147 - 4.12147i) q^{73} +(1.11293 + 1.11293i) q^{77} -6.25959i q^{79} +(3.77666 - 3.77666i) q^{83} +(11.5786 + 1.82460i) q^{85} -9.52370 q^{89} +0.852038 q^{91} +(-9.29910 - 12.7781i) q^{95} +(7.80599 - 7.80599i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{5} - 8 q^{7} + 8 q^{17} + 8 q^{23} + 16 q^{25} - 32 q^{29} - 8 q^{35} + 16 q^{37} - 8 q^{43} + 40 q^{47} + 8 q^{53} + 8 q^{55} - 56 q^{59} + 8 q^{61} + 4 q^{65} - 16 q^{67} + 72 q^{77} + 32 q^{83}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.80799 1.31574i 0.808557 0.588417i
\(6\) 0 0
\(7\) −0.602482 + 0.602482i −0.227717 + 0.227717i −0.811738 0.584021i \(-0.801478\pi\)
0.584021 + 0.811738i \(0.301478\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.84724i 0.556964i −0.960441 0.278482i \(-0.910169\pi\)
0.960441 0.278482i \(-0.0898313\pi\)
\(12\) 0 0
\(13\) −0.707107 0.707107i −0.196116 0.196116i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.70666 + 3.70666i 0.898997 + 0.898997i 0.995347 0.0963503i \(-0.0307169\pi\)
−0.0963503 + 0.995347i \(0.530717\pi\)
\(18\) 0 0
\(19\) 7.06758i 1.62141i −0.585452 0.810707i \(-0.699083\pi\)
0.585452 0.810707i \(-0.300917\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.688512 + 0.688512i −0.143565 + 0.143565i −0.775236 0.631672i \(-0.782369\pi\)
0.631672 + 0.775236i \(0.282369\pi\)
\(24\) 0 0
\(25\) 1.53765 4.75769i 0.307530 0.951538i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.94680 −1.10429 −0.552147 0.833747i \(-0.686191\pi\)
−0.552147 + 0.833747i \(0.686191\pi\)
\(30\) 0 0
\(31\) −0.288098 −0.0517440 −0.0258720 0.999665i \(-0.508236\pi\)
−0.0258720 + 0.999665i \(0.508236\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.296571 + 1.88199i −0.0501296 + 0.318115i
\(36\) 0 0
\(37\) 5.56293 5.56293i 0.914540 0.914540i −0.0820856 0.996625i \(-0.526158\pi\)
0.996625 + 0.0820856i \(0.0261581\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.63302i 0.879731i −0.898064 0.439865i \(-0.855026\pi\)
0.898064 0.439865i \(-0.144974\pi\)
\(42\) 0 0
\(43\) 5.76366 + 5.76366i 0.878950 + 0.878950i 0.993426 0.114476i \(-0.0365188\pi\)
−0.114476 + 0.993426i \(0.536519\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.61312 4.61312i −0.672893 0.672893i 0.285489 0.958382i \(-0.407844\pi\)
−0.958382 + 0.285489i \(0.907844\pi\)
\(48\) 0 0
\(49\) 6.27403i 0.896290i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.46699 7.46699i 1.02567 1.02567i 0.0260084 0.999662i \(-0.491720\pi\)
0.999662 0.0260084i \(-0.00827967\pi\)
\(54\) 0 0
\(55\) −2.43049 3.33979i −0.327727 0.450337i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.07941 −1.18204 −0.591019 0.806657i \(-0.701274\pi\)
−0.591019 + 0.806657i \(0.701274\pi\)
\(60\) 0 0
\(61\) 9.04798 1.15848 0.579238 0.815159i \(-0.303350\pi\)
0.579238 + 0.815159i \(0.303350\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.20881 0.348072i −0.273969 0.0431731i
\(66\) 0 0
\(67\) 0.873903 0.873903i 0.106764 0.106764i −0.651707 0.758471i \(-0.725947\pi\)
0.758471 + 0.651707i \(0.225947\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.96605i 0.826719i −0.910568 0.413359i \(-0.864355\pi\)
0.910568 0.413359i \(-0.135645\pi\)
\(72\) 0 0
\(73\) −4.12147 4.12147i −0.482382 0.482382i 0.423510 0.905892i \(-0.360798\pi\)
−0.905892 + 0.423510i \(0.860798\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.11293 + 1.11293i 0.126830 + 0.126830i
\(78\) 0 0
\(79\) 6.25959i 0.704259i −0.935951 0.352130i \(-0.885458\pi\)
0.935951 0.352130i \(-0.114542\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.77666 3.77666i 0.414542 0.414542i −0.468775 0.883317i \(-0.655305\pi\)
0.883317 + 0.468775i \(0.155305\pi\)
\(84\) 0 0
\(85\) 11.5786 + 1.82460i 1.25588 + 0.197905i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.52370 −1.00951 −0.504755 0.863262i \(-0.668417\pi\)
−0.504755 + 0.863262i \(0.668417\pi\)
\(90\) 0 0
\(91\) 0.852038 0.0893179
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −9.29910 12.7781i −0.954068 1.31101i
\(96\) 0 0
\(97\) 7.80599 7.80599i 0.792579 0.792579i −0.189334 0.981913i \(-0.560633\pi\)
0.981913 + 0.189334i \(0.0606329\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.2033i 1.21427i 0.794599 + 0.607135i \(0.207681\pi\)
−0.794599 + 0.607135i \(0.792319\pi\)
\(102\) 0 0
\(103\) −5.92683 5.92683i −0.583988 0.583988i 0.352009 0.935997i \(-0.385499\pi\)
−0.935997 + 0.352009i \(0.885499\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.63355 1.63355i −0.157922 0.157922i 0.623723 0.781645i \(-0.285619\pi\)
−0.781645 + 0.623723i \(0.785619\pi\)
\(108\) 0 0
\(109\) 15.6407i 1.49810i 0.662511 + 0.749052i \(0.269491\pi\)
−0.662511 + 0.749052i \(0.730509\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.40592 + 9.40592i −0.884834 + 0.884834i −0.994021 0.109187i \(-0.965175\pi\)
0.109187 + 0.994021i \(0.465175\pi\)
\(114\) 0 0
\(115\) −0.338919 + 2.15072i −0.0316043 + 0.200556i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.46639 −0.409434
\(120\) 0 0
\(121\) 7.58770 0.689791
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.47983 10.6250i −0.311246 0.950330i
\(126\) 0 0
\(127\) 12.5316 12.5316i 1.11200 1.11200i 0.119121 0.992880i \(-0.461992\pi\)
0.992880 0.119121i \(-0.0380076\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17.7964i 1.55488i 0.628959 + 0.777438i \(0.283481\pi\)
−0.628959 + 0.777438i \(0.716519\pi\)
\(132\) 0 0
\(133\) 4.25809 + 4.25809i 0.369223 + 0.369223i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.37742 3.37742i −0.288553 0.288553i 0.547955 0.836508i \(-0.315406\pi\)
−0.836508 + 0.547955i \(0.815406\pi\)
\(138\) 0 0
\(139\) 17.4464i 1.47978i −0.672727 0.739891i \(-0.734877\pi\)
0.672727 0.739891i \(-0.265123\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.30620 + 1.30620i −0.109230 + 0.109230i
\(144\) 0 0
\(145\) −10.7518 + 7.82445i −0.892885 + 0.649785i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.07747 0.743655 0.371828 0.928302i \(-0.378731\pi\)
0.371828 + 0.928302i \(0.378731\pi\)
\(150\) 0 0
\(151\) 9.41290 0.766011 0.383005 0.923746i \(-0.374889\pi\)
0.383005 + 0.923746i \(0.374889\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.520879 + 0.379063i −0.0418380 + 0.0304471i
\(156\) 0 0
\(157\) −0.252047 + 0.252047i −0.0201156 + 0.0201156i −0.717093 0.696977i \(-0.754528\pi\)
0.696977 + 0.717093i \(0.254528\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.829632i 0.0653841i
\(162\) 0 0
\(163\) −9.55132 9.55132i −0.748117 0.748117i 0.226009 0.974125i \(-0.427432\pi\)
−0.974125 + 0.226009i \(0.927432\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.83233 9.83233i −0.760849 0.760849i 0.215627 0.976476i \(-0.430820\pi\)
−0.976476 + 0.215627i \(0.930820\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.76048 5.76048i 0.437961 0.437961i −0.453364 0.891325i \(-0.649776\pi\)
0.891325 + 0.453364i \(0.149776\pi\)
\(174\) 0 0
\(175\) 1.94002 + 3.79283i 0.146651 + 0.286711i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.45699 0.407875 0.203937 0.978984i \(-0.434626\pi\)
0.203937 + 0.978984i \(0.434626\pi\)
\(180\) 0 0
\(181\) 14.7259 1.09456 0.547282 0.836948i \(-0.315662\pi\)
0.547282 + 0.836948i \(0.315662\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.73834 17.3771i 0.201327 1.27759i
\(186\) 0 0
\(187\) 6.84709 6.84709i 0.500709 0.500709i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.91868i 0.500618i −0.968166 0.250309i \(-0.919468\pi\)
0.968166 0.250309i \(-0.0805322\pi\)
\(192\) 0 0
\(193\) 5.42143 + 5.42143i 0.390243 + 0.390243i 0.874774 0.484531i \(-0.161010\pi\)
−0.484531 + 0.874774i \(0.661010\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3.27122 3.27122i −0.233065 0.233065i 0.580906 0.813971i \(-0.302698\pi\)
−0.813971 + 0.580906i \(0.802698\pi\)
\(198\) 0 0
\(199\) 7.36799i 0.522303i 0.965298 + 0.261151i \(0.0841022\pi\)
−0.965298 + 0.261151i \(0.915898\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.58284 3.58284i 0.251466 0.251466i
\(204\) 0 0
\(205\) −7.41160 10.1844i −0.517649 0.711313i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −13.0555 −0.903069
\(210\) 0 0
\(211\) −24.1786 −1.66452 −0.832262 0.554383i \(-0.812954\pi\)
−0.832262 + 0.554383i \(0.812954\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 18.0041 + 2.83715i 1.22787 + 0.193492i
\(216\) 0 0
\(217\) 0.173574 0.173574i 0.0117830 0.0117830i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.24201i 0.352616i
\(222\) 0 0
\(223\) −9.59310 9.59310i −0.642401 0.642401i 0.308744 0.951145i \(-0.400091\pi\)
−0.951145 + 0.308744i \(0.900091\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.5278 + 16.5278i 1.09699 + 1.09699i 0.994761 + 0.102230i \(0.0325978\pi\)
0.102230 + 0.994761i \(0.467402\pi\)
\(228\) 0 0
\(229\) 2.99487i 0.197907i 0.995092 + 0.0989533i \(0.0315495\pi\)
−0.995092 + 0.0989533i \(0.968451\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.6481 12.6481i 0.828604 0.828604i −0.158720 0.987324i \(-0.550737\pi\)
0.987324 + 0.158720i \(0.0507367\pi\)
\(234\) 0 0
\(235\) −14.4101 2.27080i −0.940014 0.148131i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −23.7098 −1.53366 −0.766830 0.641850i \(-0.778167\pi\)
−0.766830 + 0.641850i \(0.778167\pi\)
\(240\) 0 0
\(241\) 9.45090 0.608786 0.304393 0.952547i \(-0.401546\pi\)
0.304393 + 0.952547i \(0.401546\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.25500 + 11.3434i 0.527393 + 0.724702i
\(246\) 0 0
\(247\) −4.99753 + 4.99753i −0.317985 + 0.317985i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3.37759i 0.213192i −0.994302 0.106596i \(-0.966005\pi\)
0.994302 0.106596i \(-0.0339951\pi\)
\(252\) 0 0
\(253\) 1.27185 + 1.27185i 0.0799603 + 0.0799603i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.6865 + 18.6865i 1.16563 + 1.16563i 0.983223 + 0.182407i \(0.0583889\pi\)
0.182407 + 0.983223i \(0.441611\pi\)
\(258\) 0 0
\(259\) 6.70313i 0.416512i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −20.3943 + 20.3943i −1.25757 + 1.25757i −0.305314 + 0.952252i \(0.598761\pi\)
−0.952252 + 0.305314i \(0.901239\pi\)
\(264\) 0 0
\(265\) 3.67562 23.3249i 0.225791 1.43284i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.53030 −0.215246 −0.107623 0.994192i \(-0.534324\pi\)
−0.107623 + 0.994192i \(0.534324\pi\)
\(270\) 0 0
\(271\) 18.3887 1.11703 0.558517 0.829493i \(-0.311370\pi\)
0.558517 + 0.829493i \(0.311370\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.78860 2.84041i −0.529973 0.171283i
\(276\) 0 0
\(277\) 21.6436 21.6436i 1.30044 1.30044i 0.372338 0.928097i \(-0.378556\pi\)
0.928097 0.372338i \(-0.121444\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.20362i 0.310422i −0.987881 0.155211i \(-0.950394\pi\)
0.987881 0.155211i \(-0.0496057\pi\)
\(282\) 0 0
\(283\) −6.10331 6.10331i −0.362804 0.362804i 0.502040 0.864844i \(-0.332583\pi\)
−0.864844 + 0.502040i \(0.832583\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.39380 + 3.39380i 0.200329 + 0.200329i
\(288\) 0 0
\(289\) 10.4787i 0.616392i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.10324 9.10324i 0.531817 0.531817i −0.389296 0.921113i \(-0.627282\pi\)
0.921113 + 0.389296i \(0.127282\pi\)
\(294\) 0 0
\(295\) −16.4155 + 11.9462i −0.955746 + 0.695532i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.973702 0.0563107
\(300\) 0 0
\(301\) −6.94501 −0.400303
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 16.3587 11.9048i 0.936694 0.681667i
\(306\) 0 0
\(307\) −4.99152 + 4.99152i −0.284881 + 0.284881i −0.835052 0.550171i \(-0.814563\pi\)
0.550171 + 0.835052i \(0.314563\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 28.5978i 1.62163i 0.585303 + 0.810815i \(0.300976\pi\)
−0.585303 + 0.810815i \(0.699024\pi\)
\(312\) 0 0
\(313\) 10.9280 + 10.9280i 0.617686 + 0.617686i 0.944937 0.327251i \(-0.106122\pi\)
−0.327251 + 0.944937i \(0.606122\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.52481 + 2.52481i 0.141807 + 0.141807i 0.774447 0.632639i \(-0.218028\pi\)
−0.632639 + 0.774447i \(0.718028\pi\)
\(318\) 0 0
\(319\) 10.9852i 0.615052i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.1971 26.1971i 1.45765 1.45765i
\(324\) 0 0
\(325\) −4.45148 + 2.27691i −0.246924 + 0.126300i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 5.55865 0.306458
\(330\) 0 0
\(331\) 30.2207 1.66108 0.830540 0.556959i \(-0.188032\pi\)
0.830540 + 0.556959i \(0.188032\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.430177 2.72984i 0.0235031 0.149147i
\(336\) 0 0
\(337\) −9.34379 + 9.34379i −0.508989 + 0.508989i −0.914216 0.405227i \(-0.867192\pi\)
0.405227 + 0.914216i \(0.367192\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.532187i 0.0288195i
\(342\) 0 0
\(343\) −7.99737 7.99737i −0.431817 0.431817i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 21.9364 + 21.9364i 1.17761 + 1.17761i 0.980352 + 0.197254i \(0.0632025\pi\)
0.197254 + 0.980352i \(0.436798\pi\)
\(348\) 0 0
\(349\) 22.4475i 1.20159i 0.799404 + 0.600794i \(0.205149\pi\)
−0.799404 + 0.600794i \(0.794851\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.83825 + 7.83825i −0.417188 + 0.417188i −0.884233 0.467045i \(-0.845318\pi\)
0.467045 + 0.884233i \(0.345318\pi\)
\(354\) 0 0
\(355\) −9.16552 12.5946i −0.486455 0.668449i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −16.8249 −0.887986 −0.443993 0.896030i \(-0.646439\pi\)
−0.443993 + 0.896030i \(0.646439\pi\)
\(360\) 0 0
\(361\) −30.9507 −1.62898
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −12.8744 2.02879i −0.673876 0.106192i
\(366\) 0 0
\(367\) 0.897642 0.897642i 0.0468565 0.0468565i −0.683290 0.730147i \(-0.739452\pi\)
0.730147 + 0.683290i \(0.239452\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.99746i 0.467125i
\(372\) 0 0
\(373\) 1.22114 + 1.22114i 0.0632282 + 0.0632282i 0.738014 0.674786i \(-0.235764\pi\)
−0.674786 + 0.738014i \(0.735764\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.20503 + 4.20503i 0.216570 + 0.216570i
\(378\) 0 0
\(379\) 19.8416i 1.01919i 0.860413 + 0.509597i \(0.170205\pi\)
−0.860413 + 0.509597i \(0.829795\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −23.4176 + 23.4176i −1.19658 + 1.19658i −0.221398 + 0.975183i \(0.571062\pi\)
−0.975183 + 0.221398i \(0.928938\pi\)
\(384\) 0 0
\(385\) 3.47649 + 0.547838i 0.177178 + 0.0279204i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.66508 −0.490039 −0.245020 0.969518i \(-0.578794\pi\)
−0.245020 + 0.969518i \(0.578794\pi\)
\(390\) 0 0
\(391\) −5.10416 −0.258128
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.23600 11.3173i −0.414398 0.569434i
\(396\) 0 0
\(397\) −17.3437 + 17.3437i −0.870454 + 0.870454i −0.992522 0.122068i \(-0.961047\pi\)
0.122068 + 0.992522i \(0.461047\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.4796i 0.922829i −0.887185 0.461414i \(-0.847342\pi\)
0.887185 0.461414i \(-0.152658\pi\)
\(402\) 0 0
\(403\) 0.203716 + 0.203716i 0.0101478 + 0.0101478i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.2761 10.2761i −0.509366 0.509366i
\(408\) 0 0
\(409\) 11.6714i 0.577111i 0.957463 + 0.288556i \(0.0931750\pi\)
−0.957463 + 0.288556i \(0.906825\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.47018 5.47018i 0.269170 0.269170i
\(414\) 0 0
\(415\) 1.85905 11.7973i 0.0912574 0.579105i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.09067 0.199842 0.0999211 0.994995i \(-0.468141\pi\)
0.0999211 + 0.994995i \(0.468141\pi\)
\(420\) 0 0
\(421\) −19.0414 −0.928020 −0.464010 0.885830i \(-0.653590\pi\)
−0.464010 + 0.885830i \(0.653590\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 23.3347 11.9356i 1.13190 0.578961i
\(426\) 0 0
\(427\) −5.45125 + 5.45125i −0.263804 + 0.263804i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 29.8642i 1.43851i 0.694748 + 0.719253i \(0.255516\pi\)
−0.694748 + 0.719253i \(0.744484\pi\)
\(432\) 0 0
\(433\) 28.6328 + 28.6328i 1.37601 + 1.37601i 0.851259 + 0.524746i \(0.175840\pi\)
0.524746 + 0.851259i \(0.324160\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.86611 + 4.86611i 0.232778 + 0.232778i
\(438\) 0 0
\(439\) 10.9991i 0.524958i −0.964938 0.262479i \(-0.915460\pi\)
0.964938 0.262479i \(-0.0845401\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.63354 + 5.63354i −0.267658 + 0.267658i −0.828156 0.560498i \(-0.810610\pi\)
0.560498 + 0.828156i \(0.310610\pi\)
\(444\) 0 0
\(445\) −17.2188 + 12.5307i −0.816247 + 0.594013i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5.26470 −0.248456 −0.124228 0.992254i \(-0.539645\pi\)
−0.124228 + 0.992254i \(0.539645\pi\)
\(450\) 0 0
\(451\) −10.4056 −0.489978
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.54048 1.12106i 0.0722186 0.0525562i
\(456\) 0 0
\(457\) −22.5847 + 22.5847i −1.05647 + 1.05647i −0.0581605 + 0.998307i \(0.518524\pi\)
−0.998307 + 0.0581605i \(0.981476\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.4945i 0.535351i 0.963509 + 0.267676i \(0.0862555\pi\)
−0.963509 + 0.267676i \(0.913744\pi\)
\(462\) 0 0
\(463\) 9.39919 + 9.39919i 0.436817 + 0.436817i 0.890939 0.454122i \(-0.150047\pi\)
−0.454122 + 0.890939i \(0.650047\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.1247 + 12.1247i 0.561065 + 0.561065i 0.929610 0.368545i \(-0.120144\pi\)
−0.368545 + 0.929610i \(0.620144\pi\)
\(468\) 0 0
\(469\) 1.05302i 0.0486240i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.6469 10.6469i 0.489544 0.489544i
\(474\) 0 0
\(475\) −33.6254 10.8675i −1.54284 0.498634i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −29.7812 −1.36074 −0.680368 0.732871i \(-0.738180\pi\)
−0.680368 + 0.732871i \(0.738180\pi\)
\(480\) 0 0
\(481\) −7.86717 −0.358712
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.84249 24.3838i 0.174478 1.10721i
\(486\) 0 0
\(487\) 5.76865 5.76865i 0.261403 0.261403i −0.564221 0.825624i \(-0.690823\pi\)
0.825624 + 0.564221i \(0.190823\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 32.7290i 1.47704i 0.674231 + 0.738520i \(0.264475\pi\)
−0.674231 + 0.738520i \(0.735525\pi\)
\(492\) 0 0
\(493\) −22.0428 22.0428i −0.992757 0.992757i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.19692 + 4.19692i 0.188258 + 0.188258i
\(498\) 0 0
\(499\) 13.7824i 0.616984i 0.951227 + 0.308492i \(0.0998243\pi\)
−0.951227 + 0.308492i \(0.900176\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.0930 19.0930i 0.851316 0.851316i −0.138980 0.990295i \(-0.544382\pi\)
0.990295 + 0.138980i \(0.0443823\pi\)
\(504\) 0 0
\(505\) 16.0563 + 22.0634i 0.714498 + 0.981807i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −26.6927 −1.18313 −0.591566 0.806257i \(-0.701490\pi\)
−0.591566 + 0.806257i \(0.701490\pi\)
\(510\) 0 0
\(511\) 4.96623 0.219693
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −18.5138 2.91747i −0.815816 0.128559i
\(516\) 0 0
\(517\) −8.52155 + 8.52155i −0.374777 + 0.374777i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 25.5958i 1.12137i 0.828029 + 0.560686i \(0.189462\pi\)
−0.828029 + 0.560686i \(0.810538\pi\)
\(522\) 0 0
\(523\) −20.1731 20.1731i −0.882109 0.882109i 0.111640 0.993749i \(-0.464390\pi\)
−0.993749 + 0.111640i \(0.964390\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.06788 1.06788i −0.0465177 0.0465177i
\(528\) 0 0
\(529\) 22.0519i 0.958778i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.98315 + 3.98315i −0.172529 + 0.172529i
\(534\) 0 0
\(535\) −5.10278 0.804114i −0.220612 0.0347649i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 11.5896 0.499201
\(540\) 0 0
\(541\) 22.9905 0.988439 0.494219 0.869337i \(-0.335454\pi\)
0.494219 + 0.869337i \(0.335454\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 20.5791 + 28.2782i 0.881510 + 1.21130i
\(546\) 0 0
\(547\) −22.1104 + 22.1104i −0.945372 + 0.945372i −0.998583 0.0532109i \(-0.983054\pi\)
0.0532109 + 0.998583i \(0.483054\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 42.0295i 1.79052i
\(552\) 0 0
\(553\) 3.77129 + 3.77129i 0.160372 + 0.160372i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3.02215 + 3.02215i 0.128053 + 0.128053i 0.768228 0.640176i \(-0.221138\pi\)
−0.640176 + 0.768228i \(0.721138\pi\)
\(558\) 0 0
\(559\) 8.15105i 0.344753i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.11590 1.11590i 0.0470295 0.0470295i −0.683201 0.730230i \(-0.739413\pi\)
0.730230 + 0.683201i \(0.239413\pi\)
\(564\) 0 0
\(565\) −4.63005 + 29.3816i −0.194788 + 1.23609i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.7682 −0.954494 −0.477247 0.878769i \(-0.658365\pi\)
−0.477247 + 0.878769i \(0.658365\pi\)
\(570\) 0 0
\(571\) 9.81292 0.410658 0.205329 0.978693i \(-0.434174\pi\)
0.205329 + 0.978693i \(0.434174\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.21703 + 4.33442i 0.0924567 + 0.180758i
\(576\) 0 0
\(577\) 6.19318 6.19318i 0.257825 0.257825i −0.566344 0.824169i \(-0.691643\pi\)
0.824169 + 0.566344i \(0.191643\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.55074i 0.188796i
\(582\) 0 0
\(583\) −13.7933 13.7933i −0.571261 0.571261i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 20.8904 + 20.8904i 0.862237 + 0.862237i 0.991598 0.129360i \(-0.0412924\pi\)
−0.129360 + 0.991598i \(0.541292\pi\)
\(588\) 0 0
\(589\) 2.03616i 0.0838984i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.5358 12.5358i 0.514784 0.514784i −0.401204 0.915989i \(-0.631408\pi\)
0.915989 + 0.401204i \(0.131408\pi\)
\(594\) 0 0
\(595\) −8.07519 + 5.87662i −0.331051 + 0.240918i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 27.7828 1.13517 0.567586 0.823314i \(-0.307877\pi\)
0.567586 + 0.823314i \(0.307877\pi\)
\(600\) 0 0
\(601\) −5.32627 −0.217263 −0.108631 0.994082i \(-0.534647\pi\)
−0.108631 + 0.994082i \(0.534647\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 13.7185 9.98345i 0.557736 0.405885i
\(606\) 0 0
\(607\) 17.0913 17.0913i 0.693713 0.693713i −0.269334 0.963047i \(-0.586804\pi\)
0.963047 + 0.269334i \(0.0868036\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.52394i 0.263930i
\(612\) 0 0
\(613\) −14.9039 14.9039i −0.601964 0.601964i 0.338869 0.940833i \(-0.389956\pi\)
−0.940833 + 0.338869i \(0.889956\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.84901 + 9.84901i 0.396506 + 0.396506i 0.876999 0.480493i \(-0.159542\pi\)
−0.480493 + 0.876999i \(0.659542\pi\)
\(618\) 0 0
\(619\) 27.5240i 1.10628i 0.833087 + 0.553142i \(0.186571\pi\)
−0.833087 + 0.553142i \(0.813429\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 5.73786 5.73786i 0.229883 0.229883i
\(624\) 0 0
\(625\) −20.2713 14.6313i −0.810850 0.585254i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 41.2398 1.64434
\(630\) 0 0
\(631\) 24.6061 0.979552 0.489776 0.871848i \(-0.337078\pi\)
0.489776 + 0.871848i \(0.337078\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.16867 39.1454i 0.244796 1.55344i
\(636\) 0 0
\(637\) 4.43641 4.43641i 0.175777 0.175777i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22.4148i 0.885333i −0.896686 0.442666i \(-0.854033\pi\)
0.896686 0.442666i \(-0.145967\pi\)
\(642\) 0 0
\(643\) −10.9106 10.9106i −0.430272 0.430272i 0.458449 0.888721i \(-0.348405\pi\)
−0.888721 + 0.458449i \(0.848405\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.2179 + 11.2179i 0.441021 + 0.441021i 0.892355 0.451334i \(-0.149052\pi\)
−0.451334 + 0.892355i \(0.649052\pi\)
\(648\) 0 0
\(649\) 16.7719i 0.658353i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.60922 2.60922i 0.102107 0.102107i −0.654208 0.756315i \(-0.726998\pi\)
0.756315 + 0.654208i \(0.226998\pi\)
\(654\) 0 0
\(655\) 23.4154 + 32.1757i 0.914916 + 1.25721i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −19.2611 −0.750307 −0.375153 0.926963i \(-0.622410\pi\)
−0.375153 + 0.926963i \(0.622410\pi\)
\(660\) 0 0
\(661\) 23.7674 0.924443 0.462222 0.886764i \(-0.347052\pi\)
0.462222 + 0.886764i \(0.347052\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.3011 + 2.09604i 0.515795 + 0.0812809i
\(666\) 0 0
\(667\) 4.09444 4.09444i 0.158537 0.158537i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.7138i 0.645229i
\(672\) 0 0
\(673\) −5.05692 5.05692i −0.194930 0.194930i 0.602892 0.797822i \(-0.294015\pi\)
−0.797822 + 0.602892i \(0.794015\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.2619 + 11.2619i 0.432828 + 0.432828i 0.889589 0.456761i \(-0.150991\pi\)
−0.456761 + 0.889589i \(0.650991\pi\)
\(678\) 0 0
\(679\) 9.40594i 0.360967i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.0195 + 10.0195i −0.383387 + 0.383387i −0.872321 0.488934i \(-0.837386\pi\)
0.488934 + 0.872321i \(0.337386\pi\)
\(684\) 0 0
\(685\) −10.5502 1.66253i −0.403101 0.0635221i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −10.5599 −0.402301
\(690\) 0 0
\(691\) −38.7442 −1.47390 −0.736950 0.675947i \(-0.763735\pi\)
−0.736950 + 0.675947i \(0.763735\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −22.9549 31.5428i −0.870729 1.19649i
\(696\) 0 0
\(697\) 20.8797 20.8797i 0.790875 0.790875i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.1981i 0.951718i −0.879522 0.475859i \(-0.842137\pi\)
0.879522 0.475859i \(-0.157863\pi\)
\(702\) 0 0
\(703\) −39.3164 39.3164i −1.48285 1.48285i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7.35225 7.35225i −0.276510 0.276510i
\(708\) 0 0
\(709\) 0.867835i 0.0325922i 0.999867 + 0.0162961i \(0.00518744\pi\)
−0.999867 + 0.0162961i \(0.994813\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.198359 0.198359i 0.00742860 0.00742860i
\(714\) 0 0
\(715\) −0.642973 + 4.08021i −0.0240458 + 0.152591i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.6503 0.844712 0.422356 0.906430i \(-0.361203\pi\)
0.422356 + 0.906430i \(0.361203\pi\)
\(720\) 0 0
\(721\) 7.14162 0.265968
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9.14411 + 28.2931i −0.339604 + 1.05078i
\(726\) 0 0
\(727\) 1.04875 1.04875i 0.0388959 0.0388959i −0.687391 0.726287i \(-0.741244\pi\)
0.726287 + 0.687391i \(0.241244\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 42.7279i 1.58035i
\(732\) 0 0
\(733\) 24.0927 + 24.0927i 0.889883 + 0.889883i 0.994511 0.104628i \(-0.0333653\pi\)
−0.104628 + 0.994511i \(0.533365\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.61431 1.61431i −0.0594638 0.0594638i
\(738\) 0 0
\(739\) 31.6768i 1.16525i −0.812741 0.582625i \(-0.802026\pi\)
0.812741 0.582625i \(-0.197974\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.5692 20.5692i 0.754610 0.754610i −0.220726 0.975336i \(-0.570843\pi\)
0.975336 + 0.220726i \(0.0708427\pi\)
\(744\) 0 0
\(745\) 16.4120 11.9436i 0.601288 0.437579i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.96837 0.0719228
\(750\) 0 0
\(751\) −46.4299 −1.69425 −0.847125 0.531394i \(-0.821668\pi\)
−0.847125 + 0.531394i \(0.821668\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 17.0184 12.3849i 0.619364 0.450734i
\(756\) 0 0
\(757\) −6.96008 + 6.96008i −0.252968 + 0.252968i −0.822187 0.569218i \(-0.807246\pi\)
0.569218 + 0.822187i \(0.307246\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.8968i 0.830007i 0.909820 + 0.415003i \(0.136220\pi\)
−0.909820 + 0.415003i \(0.863780\pi\)
\(762\) 0 0
\(763\) −9.42322 9.42322i −0.341143 0.341143i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.42011 + 6.42011i 0.231817 + 0.231817i
\(768\) 0 0
\(769\) 3.62371i 0.130674i 0.997863 + 0.0653372i \(0.0208123\pi\)
−0.997863 + 0.0653372i \(0.979188\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 28.1093 28.1093i 1.01102 1.01102i 0.0110835 0.999939i \(-0.496472\pi\)
0.999939 0.0110835i \(-0.00352805\pi\)
\(774\) 0 0
\(775\) −0.442995 + 1.37068i −0.0159128 + 0.0492364i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −39.8118 −1.42641
\(780\) 0 0
\(781\) −12.8680 −0.460452
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.124070 + 0.787327i −0.00442824 + 0.0281009i
\(786\) 0 0
\(787\) 15.6625 15.6625i 0.558308 0.558308i −0.370518 0.928825i \(-0.620820\pi\)
0.928825 + 0.370518i \(0.120820\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.3338i 0.402983i
\(792\) 0 0
\(793\) −6.39789 6.39789i −0.227196 0.227196i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.74981 2.74981i −0.0974034 0.0974034i 0.656726 0.754129i \(-0.271941\pi\)
−0.754129 + 0.656726i \(0.771941\pi\)
\(798\) 0 0
\(799\) 34.1985i 1.20986i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.61336 + 7.61336i −0.268669 + 0.268669i
\(804\) 0 0
\(805\) −1.09158 1.49997i −0.0384732 0.0528668i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 7.24173 0.254606 0.127303 0.991864i \(-0.459368\pi\)
0.127303 + 0.991864i \(0.459368\pi\)
\(810\) 0 0
\(811\) −30.3509 −1.06576 −0.532882 0.846190i \(-0.678891\pi\)
−0.532882 + 0.846190i \(0.678891\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −29.8357 4.70162i −1.04510 0.164691i
\(816\) 0 0
\(817\) 40.7351 40.7351i 1.42514 1.42514i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 23.0636i 0.804927i 0.915436 + 0.402463i \(0.131846\pi\)
−0.915436 + 0.402463i \(0.868154\pi\)
\(822\) 0 0
\(823\) 35.4963 + 35.4963i 1.23732 + 1.23732i 0.961091 + 0.276231i \(0.0890853\pi\)
0.276231 + 0.961091i \(0.410915\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 29.8095 + 29.8095i 1.03658 + 1.03658i 0.999305 + 0.0372711i \(0.0118665\pi\)
0.0372711 + 0.999305i \(0.488133\pi\)
\(828\) 0 0
\(829\) 22.4727i 0.780509i 0.920707 + 0.390255i \(0.127613\pi\)
−0.920707 + 0.390255i \(0.872387\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −23.2557 + 23.2557i −0.805762 + 0.805762i
\(834\) 0 0
\(835\) −30.7135 4.83995i −1.06289 0.167493i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −26.4975 −0.914797 −0.457398 0.889262i \(-0.651219\pi\)
−0.457398 + 0.889262i \(0.651219\pi\)
\(840\) 0 0
\(841\) 6.36448 0.219465
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.31574 + 1.80799i 0.0452629 + 0.0621967i
\(846\) 0 0
\(847\) −4.57145 + 4.57145i −0.157077 + 0.157077i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 7.66028i 0.262591i
\(852\) 0 0
\(853\) 34.6170 + 34.6170i 1.18526 + 1.18526i 0.978362 + 0.206901i \(0.0663378\pi\)
0.206901 + 0.978362i \(0.433662\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.42393 3.42393i −0.116959 0.116959i 0.646205 0.763164i \(-0.276355\pi\)
−0.763164 + 0.646205i \(0.776355\pi\)
\(858\) 0 0
\(859\) 34.0583i 1.16205i 0.813885 + 0.581026i \(0.197349\pi\)
−0.813885 + 0.581026i \(0.802651\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.89592 6.89592i 0.234740 0.234740i −0.579928 0.814668i \(-0.696919\pi\)
0.814668 + 0.579928i \(0.196919\pi\)
\(864\) 0 0
\(865\) 2.83559 17.9942i 0.0964129 0.611821i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.5630 −0.392247
\(870\) 0 0
\(871\) −1.23589 −0.0418764
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 8.49791 + 4.30484i 0.287282 + 0.145530i
\(876\) 0 0
\(877\) 17.4440 17.4440i 0.589042 0.589042i −0.348330 0.937372i \(-0.613251\pi\)
0.937372 + 0.348330i \(0.113251\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 37.4924i 1.26315i −0.775314 0.631576i \(-0.782408\pi\)
0.775314 0.631576i \(-0.217592\pi\)
\(882\) 0 0
\(883\) 28.4948 + 28.4948i 0.958925 + 0.958925i 0.999189 0.0402637i \(-0.0128198\pi\)
−0.0402637 + 0.999189i \(0.512820\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −24.7368 24.7368i −0.830579 0.830579i 0.157017 0.987596i \(-0.449812\pi\)
−0.987596 + 0.157017i \(0.949812\pi\)
\(888\) 0 0
\(889\) 15.1001i 0.506442i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −32.6036 + 32.6036i −1.09104 + 1.09104i
\(894\) 0 0
\(895\) 9.86618 7.17999i 0.329790 0.240001i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1.71326 0.0571406
\(900\) 0 0
\(901\) 55.3552 1.84415
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 26.6242 19.3754i 0.885018 0.644060i
\(906\) 0 0
\(907\) −36.5118 + 36.5118i −1.21235 + 1.21235i −0.242103 + 0.970251i \(0.577837\pi\)
−0.970251 + 0.242103i \(0.922163\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.1238i 0.832389i −0.909276 0.416195i \(-0.863364\pi\)
0.909276 0.416195i \(-0.136636\pi\)
\(912\) 0 0
\(913\) −6.97640 6.97640i −0.230885 0.230885i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.7220 10.7220i −0.354072 0.354072i
\(918\) 0 0
\(919\) 13.0767i 0.431360i 0.976464 + 0.215680i \(0.0691968\pi\)
−0.976464 + 0.215680i \(0.930803\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.92574 + 4.92574i −0.162133 + 0.162133i
\(924\) 0 0
\(925\) −17.9128 35.0205i −0.588971 1.15147i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −41.7052 −1.36830 −0.684152 0.729340i \(-0.739827\pi\)
−0.684152 + 0.729340i \(0.739827\pi\)
\(930\) 0 0
\(931\) 44.3422 1.45326
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.37047 21.3885i 0.110226 0.699478i
\(936\) 0 0
\(937\) −6.66046 + 6.66046i −0.217588 + 0.217588i −0.807481 0.589893i \(-0.799170\pi\)
0.589893 + 0.807481i \(0.299170\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.7498i 0.676423i −0.941070 0.338212i \(-0.890178\pi\)
0.941070 0.338212i \(-0.109822\pi\)
\(942\) 0 0
\(943\) 3.87840 + 3.87840i 0.126298 + 0.126298i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.2802 + 18.2802i 0.594025 + 0.594025i 0.938716 0.344691i \(-0.112016\pi\)
−0.344691 + 0.938716i \(0.612016\pi\)
\(948\) 0 0
\(949\) 5.82865i 0.189206i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14.5264 14.5264i 0.470556 0.470556i −0.431538 0.902095i \(-0.642029\pi\)
0.902095 + 0.431538i \(0.142029\pi\)
\(954\) 0 0
\(955\) −9.10319 12.5089i −0.294572 0.404778i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.06967 0.131417
\(960\) 0 0
\(961\) −30.9170 −0.997323
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.9351 + 2.66869i 0.545160 + 0.0859082i
\(966\) 0 0
\(967\) 27.8492 27.8492i 0.895571 0.895571i −0.0994693 0.995041i \(-0.531714\pi\)
0.995041 + 0.0994693i \(0.0317145\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.5289i 0.626713i −0.949636 0.313356i \(-0.898547\pi\)
0.949636 0.313356i \(-0.101453\pi\)
\(972\) 0 0
\(973\) 10.5111 + 10.5111i 0.336971 + 0.336971i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.7523 + 24.7523i 0.791897 + 0.791897i 0.981802 0.189905i \(-0.0608181\pi\)
−0.189905 + 0.981802i \(0.560818\pi\)
\(978\) 0 0
\(979\) 17.5926i 0.562261i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.1796 17.1796i 0.547943 0.547943i −0.377902 0.925845i \(-0.623355\pi\)
0.925845 + 0.377902i \(0.123355\pi\)
\(984\) 0 0
\(985\) −10.2184 1.61025i −0.325586 0.0513070i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7.93670 −0.252372
\(990\) 0 0
\(991\) 45.8404 1.45617 0.728085 0.685487i \(-0.240411\pi\)
0.728085 + 0.685487i \(0.240411\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 9.69437 + 13.3212i 0.307332 + 0.422312i
\(996\) 0 0
\(997\) −7.26377 + 7.26377i −0.230046 + 0.230046i −0.812712 0.582666i \(-0.802010\pi\)
0.582666 + 0.812712i \(0.302010\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.y.b.53.9 yes 24
3.2 odd 2 2340.2.y.a.53.4 24
5.2 odd 4 2340.2.y.a.1457.4 yes 24
15.2 even 4 inner 2340.2.y.b.1457.9 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.y.a.53.4 24 3.2 odd 2
2340.2.y.a.1457.4 yes 24 5.2 odd 4
2340.2.y.b.53.9 yes 24 1.1 even 1 trivial
2340.2.y.b.1457.9 yes 24 15.2 even 4 inner