Properties

Label 2340.2.y.b.53.7
Level $2340$
Weight $2$
Character 2340.53
Analytic conductor $18.685$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(53,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 53.7
Character \(\chi\) \(=\) 2340.53
Dual form 2340.2.y.b.1457.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.17829 - 1.90043i) q^{5} +(-0.865311 + 0.865311i) q^{7} +3.06508i q^{11} +(0.707107 + 0.707107i) q^{13} +(3.38200 + 3.38200i) q^{17} -1.24957i q^{19} +(3.64321 - 3.64321i) q^{23} +(-2.22328 - 4.47851i) q^{25} -5.13854 q^{29} +8.10633 q^{31} +(0.624880 + 2.66405i) q^{35} +(-2.71262 + 2.71262i) q^{37} +12.0573i q^{41} +(-2.22668 - 2.22668i) q^{43} +(5.86992 + 5.86992i) q^{47} +5.50247i q^{49} +(-7.51155 + 7.51155i) q^{53} +(5.82497 + 3.61154i) q^{55} +8.12784 q^{59} +7.13179 q^{61} +(2.17698 - 0.510633i) q^{65} +(7.19877 - 7.19877i) q^{67} -15.5275i q^{71} +(4.63049 + 4.63049i) q^{73} +(-2.65224 - 2.65224i) q^{77} -11.2727i q^{79} +(-0.0469907 + 0.0469907i) q^{83} +(10.4122 - 2.44229i) q^{85} -9.53727 q^{89} -1.22373 q^{91} +(-2.37473 - 1.47235i) q^{95} +(9.95328 - 9.95328i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{5} - 8 q^{7} + 8 q^{17} + 8 q^{23} + 16 q^{25} - 32 q^{29} - 8 q^{35} + 16 q^{37} - 8 q^{43} + 40 q^{47} + 8 q^{53} + 8 q^{55} - 56 q^{59} + 8 q^{61} + 4 q^{65} - 16 q^{67} + 72 q^{77} + 32 q^{83}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.17829 1.90043i 0.526946 0.849899i
\(6\) 0 0
\(7\) −0.865311 + 0.865311i −0.327057 + 0.327057i −0.851466 0.524409i \(-0.824286\pi\)
0.524409 + 0.851466i \(0.324286\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.06508i 0.924155i 0.886839 + 0.462078i \(0.152896\pi\)
−0.886839 + 0.462078i \(0.847104\pi\)
\(12\) 0 0
\(13\) 0.707107 + 0.707107i 0.196116 + 0.196116i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.38200 + 3.38200i 0.820255 + 0.820255i 0.986144 0.165889i \(-0.0530494\pi\)
−0.165889 + 0.986144i \(0.553049\pi\)
\(18\) 0 0
\(19\) 1.24957i 0.286671i −0.989674 0.143336i \(-0.954217\pi\)
0.989674 0.143336i \(-0.0457829\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.64321 3.64321i 0.759661 0.759661i −0.216600 0.976261i \(-0.569497\pi\)
0.976261 + 0.216600i \(0.0694966\pi\)
\(24\) 0 0
\(25\) −2.22328 4.47851i −0.444656 0.895701i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.13854 −0.954203 −0.477101 0.878848i \(-0.658313\pi\)
−0.477101 + 0.878848i \(0.658313\pi\)
\(30\) 0 0
\(31\) 8.10633 1.45594 0.727970 0.685609i \(-0.240464\pi\)
0.727970 + 0.685609i \(0.240464\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.624880 + 2.66405i 0.105624 + 0.450306i
\(36\) 0 0
\(37\) −2.71262 + 2.71262i −0.445952 + 0.445952i −0.894006 0.448054i \(-0.852117\pi\)
0.448054 + 0.894006i \(0.352117\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.0573i 1.88303i 0.336967 + 0.941516i \(0.390599\pi\)
−0.336967 + 0.941516i \(0.609401\pi\)
\(42\) 0 0
\(43\) −2.22668 2.22668i −0.339565 0.339565i 0.516638 0.856204i \(-0.327183\pi\)
−0.856204 + 0.516638i \(0.827183\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.86992 + 5.86992i 0.856216 + 0.856216i 0.990890 0.134674i \(-0.0429986\pi\)
−0.134674 + 0.990890i \(0.542999\pi\)
\(48\) 0 0
\(49\) 5.50247i 0.786068i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.51155 + 7.51155i −1.03179 + 1.03179i −0.0323131 + 0.999478i \(0.510287\pi\)
−0.999478 + 0.0323131i \(0.989713\pi\)
\(54\) 0 0
\(55\) 5.82497 + 3.61154i 0.785438 + 0.486980i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.12784 1.05815 0.529077 0.848574i \(-0.322538\pi\)
0.529077 + 0.848574i \(0.322538\pi\)
\(60\) 0 0
\(61\) 7.13179 0.913132 0.456566 0.889690i \(-0.349079\pi\)
0.456566 + 0.889690i \(0.349079\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.17698 0.510633i 0.270021 0.0633363i
\(66\) 0 0
\(67\) 7.19877 7.19877i 0.879469 0.879469i −0.114010 0.993480i \(-0.536370\pi\)
0.993480 + 0.114010i \(0.0363696\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.5275i 1.84278i −0.388642 0.921389i \(-0.627056\pi\)
0.388642 0.921389i \(-0.372944\pi\)
\(72\) 0 0
\(73\) 4.63049 + 4.63049i 0.541958 + 0.541958i 0.924103 0.382145i \(-0.124814\pi\)
−0.382145 + 0.924103i \(0.624814\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.65224 2.65224i −0.302251 0.302251i
\(78\) 0 0
\(79\) 11.2727i 1.26828i −0.773218 0.634141i \(-0.781354\pi\)
0.773218 0.634141i \(-0.218646\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.0469907 + 0.0469907i −0.00515790 + 0.00515790i −0.709681 0.704523i \(-0.751161\pi\)
0.704523 + 0.709681i \(0.251161\pi\)
\(84\) 0 0
\(85\) 10.4122 2.44229i 1.12936 0.264904i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.53727 −1.01095 −0.505474 0.862842i \(-0.668682\pi\)
−0.505474 + 0.862842i \(0.668682\pi\)
\(90\) 0 0
\(91\) −1.22373 −0.128282
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.37473 1.47235i −0.243642 0.151060i
\(96\) 0 0
\(97\) 9.95328 9.95328i 1.01060 1.01060i 0.0106593 0.999943i \(-0.496607\pi\)
0.999943 0.0106593i \(-0.00339303\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.85216i 0.781320i 0.920535 + 0.390660i \(0.127753\pi\)
−0.920535 + 0.390660i \(0.872247\pi\)
\(102\) 0 0
\(103\) 13.2313 + 13.2313i 1.30371 + 1.30371i 0.925868 + 0.377846i \(0.123335\pi\)
0.377846 + 0.925868i \(0.376665\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.73518 + 8.73518i 0.844462 + 0.844462i 0.989436 0.144974i \(-0.0463097\pi\)
−0.144974 + 0.989436i \(0.546310\pi\)
\(108\) 0 0
\(109\) 12.6193i 1.20871i −0.796715 0.604355i \(-0.793431\pi\)
0.796715 0.604355i \(-0.206569\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.62243 1.62243i 0.152625 0.152625i −0.626664 0.779289i \(-0.715580\pi\)
0.779289 + 0.626664i \(0.215580\pi\)
\(114\) 0 0
\(115\) −2.63092 11.2164i −0.245335 1.04594i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −5.85296 −0.536540
\(120\) 0 0
\(121\) 1.60531 0.145937
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1308 1.05177i −0.995565 0.0940735i
\(126\) 0 0
\(127\) 13.5510 13.5510i 1.20246 1.20246i 0.229043 0.973416i \(-0.426440\pi\)
0.973416 0.229043i \(-0.0735597\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.5447i 1.00867i 0.863508 + 0.504335i \(0.168262\pi\)
−0.863508 + 0.504335i \(0.831738\pi\)
\(132\) 0 0
\(133\) 1.08127 + 1.08127i 0.0937579 + 0.0937579i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.03574 + 2.03574i 0.173925 + 0.173925i 0.788701 0.614776i \(-0.210754\pi\)
−0.614776 + 0.788701i \(0.710754\pi\)
\(138\) 0 0
\(139\) 4.84984i 0.411358i 0.978619 + 0.205679i \(0.0659403\pi\)
−0.978619 + 0.205679i \(0.934060\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.16734 + 2.16734i −0.181242 + 0.181242i
\(144\) 0 0
\(145\) −6.05467 + 9.76544i −0.502813 + 0.810976i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.89860 −0.565156 −0.282578 0.959244i \(-0.591190\pi\)
−0.282578 + 0.959244i \(0.591190\pi\)
\(150\) 0 0
\(151\) −8.82917 −0.718508 −0.359254 0.933240i \(-0.616969\pi\)
−0.359254 + 0.933240i \(0.616969\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.55158 15.4055i 0.767201 1.23740i
\(156\) 0 0
\(157\) −10.5659 + 10.5659i −0.843247 + 0.843247i −0.989280 0.146033i \(-0.953349\pi\)
0.146033 + 0.989280i \(0.453349\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.30501i 0.496905i
\(162\) 0 0
\(163\) 0.975758 + 0.975758i 0.0764273 + 0.0764273i 0.744287 0.667860i \(-0.232789\pi\)
−0.667860 + 0.744287i \(0.732789\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.6837 + 11.6837i 0.904112 + 0.904112i 0.995789 0.0916766i \(-0.0292226\pi\)
−0.0916766 + 0.995789i \(0.529223\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.0509 18.0509i 1.37238 1.37238i 0.515481 0.856901i \(-0.327613\pi\)
0.856901 0.515481i \(-0.172387\pi\)
\(174\) 0 0
\(175\) 5.79913 + 1.95147i 0.438373 + 0.147517i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.9797 −0.820660 −0.410330 0.911937i \(-0.634586\pi\)
−0.410330 + 0.911937i \(0.634586\pi\)
\(180\) 0 0
\(181\) 19.3924 1.44143 0.720713 0.693233i \(-0.243814\pi\)
0.720713 + 0.693233i \(0.243814\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.95890 + 8.35140i 0.144022 + 0.614007i
\(186\) 0 0
\(187\) −10.3661 + 10.3661i −0.758043 + 0.758043i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.27678i 0.526530i 0.964724 + 0.263265i \(0.0847993\pi\)
−0.964724 + 0.263265i \(0.915201\pi\)
\(192\) 0 0
\(193\) −9.86068 9.86068i −0.709787 0.709787i 0.256703 0.966490i \(-0.417364\pi\)
−0.966490 + 0.256703i \(0.917364\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.64779 + 6.64779i 0.473635 + 0.473635i 0.903089 0.429454i \(-0.141294\pi\)
−0.429454 + 0.903089i \(0.641294\pi\)
\(198\) 0 0
\(199\) 20.6855i 1.46635i −0.680038 0.733177i \(-0.738037\pi\)
0.680038 0.733177i \(-0.261963\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.44643 4.44643i 0.312078 0.312078i
\(204\) 0 0
\(205\) 22.9141 + 14.2069i 1.60039 + 0.992256i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.83003 0.264929
\(210\) 0 0
\(211\) −11.4271 −0.786676 −0.393338 0.919394i \(-0.628680\pi\)
−0.393338 + 0.919394i \(0.628680\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.85532 + 1.60798i −0.467529 + 0.109664i
\(216\) 0 0
\(217\) −7.01449 + 7.01449i −0.476175 + 0.476175i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.78287i 0.321731i
\(222\) 0 0
\(223\) −6.47685 6.47685i −0.433722 0.433722i 0.456170 0.889892i \(-0.349221\pi\)
−0.889892 + 0.456170i \(0.849221\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.03155 + 6.03155i 0.400328 + 0.400328i 0.878349 0.478020i \(-0.158646\pi\)
−0.478020 + 0.878349i \(0.658646\pi\)
\(228\) 0 0
\(229\) 12.0174i 0.794131i −0.917790 0.397065i \(-0.870029\pi\)
0.917790 0.397065i \(-0.129971\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.45100 + 1.45100i −0.0950581 + 0.0950581i −0.753037 0.657979i \(-0.771412\pi\)
0.657979 + 0.753037i \(0.271412\pi\)
\(234\) 0 0
\(235\) 18.0718 4.23893i 1.17888 0.276518i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.36939 0.541371 0.270686 0.962668i \(-0.412750\pi\)
0.270686 + 0.962668i \(0.412750\pi\)
\(240\) 0 0
\(241\) −16.8303 −1.08413 −0.542067 0.840335i \(-0.682358\pi\)
−0.542067 + 0.840335i \(0.682358\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.4571 + 6.48349i 0.668078 + 0.414215i
\(246\) 0 0
\(247\) 0.883581 0.883581i 0.0562209 0.0562209i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.70452i 0.612544i 0.951944 + 0.306272i \(0.0990816\pi\)
−0.951944 + 0.306272i \(0.900918\pi\)
\(252\) 0 0
\(253\) 11.1667 + 11.1667i 0.702045 + 0.702045i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.61723 5.61723i −0.350393 0.350393i 0.509863 0.860256i \(-0.329696\pi\)
−0.860256 + 0.509863i \(0.829696\pi\)
\(258\) 0 0
\(259\) 4.69452i 0.291703i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.97154 + 9.97154i −0.614871 + 0.614871i −0.944211 0.329340i \(-0.893174\pi\)
0.329340 + 0.944211i \(0.393174\pi\)
\(264\) 0 0
\(265\) 5.42443 + 23.1260i 0.333220 + 1.42062i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −16.5322 −1.00798 −0.503992 0.863708i \(-0.668136\pi\)
−0.503992 + 0.863708i \(0.668136\pi\)
\(270\) 0 0
\(271\) −26.9455 −1.63682 −0.818412 0.574632i \(-0.805145\pi\)
−0.818412 + 0.574632i \(0.805145\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 13.7270 6.81452i 0.827767 0.410931i
\(276\) 0 0
\(277\) −17.2129 + 17.2129i −1.03422 + 1.03422i −0.0348267 + 0.999393i \(0.511088\pi\)
−0.999393 + 0.0348267i \(0.988912\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.53372i 0.389769i −0.980826 0.194884i \(-0.937567\pi\)
0.980826 0.194884i \(-0.0624332\pi\)
\(282\) 0 0
\(283\) 0.859435 + 0.859435i 0.0510881 + 0.0510881i 0.732189 0.681101i \(-0.238499\pi\)
−0.681101 + 0.732189i \(0.738499\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −10.4333 10.4333i −0.615859 0.615859i
\(288\) 0 0
\(289\) 5.87583i 0.345637i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.51928 1.51928i 0.0887574 0.0887574i −0.661334 0.750091i \(-0.730009\pi\)
0.750091 + 0.661334i \(0.230009\pi\)
\(294\) 0 0
\(295\) 9.57692 15.4464i 0.557590 0.899324i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.15227 0.297964
\(300\) 0 0
\(301\) 3.85354 0.222114
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 8.40329 13.5535i 0.481171 0.776070i
\(306\) 0 0
\(307\) −13.0908 + 13.0908i −0.747133 + 0.747133i −0.973940 0.226807i \(-0.927171\pi\)
0.226807 + 0.973940i \(0.427171\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.08663i 0.118322i 0.998248 + 0.0591611i \(0.0188426\pi\)
−0.998248 + 0.0591611i \(0.981157\pi\)
\(312\) 0 0
\(313\) 12.1702 + 12.1702i 0.687899 + 0.687899i 0.961767 0.273868i \(-0.0883032\pi\)
−0.273868 + 0.961767i \(0.588303\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.54760 + 5.54760i 0.311584 + 0.311584i 0.845523 0.533939i \(-0.179289\pi\)
−0.533939 + 0.845523i \(0.679289\pi\)
\(318\) 0 0
\(319\) 15.7500i 0.881831i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.22605 4.22605i 0.235144 0.235144i
\(324\) 0 0
\(325\) 1.59469 4.73888i 0.0884573 0.262866i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −10.1586 −0.560063
\(330\) 0 0
\(331\) −15.0141 −0.825250 −0.412625 0.910901i \(-0.635388\pi\)
−0.412625 + 0.910901i \(0.635388\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.19855 22.1630i −0.284027 1.21089i
\(336\) 0 0
\(337\) −0.165005 + 0.165005i −0.00898839 + 0.00898839i −0.711587 0.702598i \(-0.752023\pi\)
0.702598 + 0.711587i \(0.252023\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 24.8465i 1.34551i
\(342\) 0 0
\(343\) −10.8185 10.8185i −0.584146 0.584146i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.7898 10.7898i −0.579227 0.579227i 0.355463 0.934690i \(-0.384323\pi\)
−0.934690 + 0.355463i \(0.884323\pi\)
\(348\) 0 0
\(349\) 3.76246i 0.201400i 0.994917 + 0.100700i \(0.0321082\pi\)
−0.994917 + 0.100700i \(0.967892\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.2688 + 18.2688i −0.972352 + 0.972352i −0.999628 0.0272758i \(-0.991317\pi\)
0.0272758 + 0.999628i \(0.491317\pi\)
\(354\) 0 0
\(355\) −29.5090 18.2959i −1.56617 0.971044i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.49074 0.131456 0.0657281 0.997838i \(-0.479063\pi\)
0.0657281 + 0.997838i \(0.479063\pi\)
\(360\) 0 0
\(361\) 17.4386 0.917819
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.2560 3.34388i 0.746192 0.175027i
\(366\) 0 0
\(367\) 5.73353 5.73353i 0.299288 0.299288i −0.541447 0.840735i \(-0.682123\pi\)
0.840735 + 0.541447i \(0.182123\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.9997i 0.674908i
\(372\) 0 0
\(373\) 15.1506 + 15.1506i 0.784468 + 0.784468i 0.980581 0.196114i \(-0.0628321\pi\)
−0.196114 + 0.980581i \(0.562832\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.63350 3.63350i −0.187135 0.187135i
\(378\) 0 0
\(379\) 24.9721i 1.28273i 0.767236 + 0.641364i \(0.221631\pi\)
−0.767236 + 0.641364i \(0.778369\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 21.3288 21.3288i 1.08985 1.08985i 0.0943091 0.995543i \(-0.469936\pi\)
0.995543 0.0943091i \(-0.0300642\pi\)
\(384\) 0 0
\(385\) −8.16551 + 1.91530i −0.416153 + 0.0976129i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −18.5799 −0.942039 −0.471019 0.882123i \(-0.656114\pi\)
−0.471019 + 0.882123i \(0.656114\pi\)
\(390\) 0 0
\(391\) 24.6426 1.24623
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −21.4231 13.2825i −1.07791 0.668316i
\(396\) 0 0
\(397\) 2.38571 2.38571i 0.119735 0.119735i −0.644700 0.764435i \(-0.723018\pi\)
0.764435 + 0.644700i \(0.223018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 28.9113i 1.44376i −0.692018 0.721881i \(-0.743278\pi\)
0.692018 0.721881i \(-0.256722\pi\)
\(402\) 0 0
\(403\) 5.73204 + 5.73204i 0.285533 + 0.285533i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.31439 8.31439i −0.412129 0.412129i
\(408\) 0 0
\(409\) 20.1947i 0.998564i −0.866440 0.499282i \(-0.833597\pi\)
0.866440 0.499282i \(-0.166403\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.03311 + 7.03311i −0.346076 + 0.346076i
\(414\) 0 0
\(415\) 0.0339341 + 0.144671i 0.00166576 + 0.00710163i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −16.4859 −0.805387 −0.402694 0.915335i \(-0.631926\pi\)
−0.402694 + 0.915335i \(0.631926\pi\)
\(420\) 0 0
\(421\) −26.9618 −1.31404 −0.657018 0.753875i \(-0.728183\pi\)
−0.657018 + 0.753875i \(0.728183\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.62717 22.6654i 0.369972 1.09944i
\(426\) 0 0
\(427\) −6.17121 + 6.17121i −0.298646 + 0.298646i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.8674i 1.39049i 0.718771 + 0.695247i \(0.244705\pi\)
−0.718771 + 0.695247i \(0.755295\pi\)
\(432\) 0 0
\(433\) −14.6619 14.6619i −0.704607 0.704607i 0.260789 0.965396i \(-0.416017\pi\)
−0.965396 + 0.260789i \(0.916017\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.55245 4.55245i −0.217773 0.217773i
\(438\) 0 0
\(439\) 6.42120i 0.306467i −0.988190 0.153234i \(-0.951031\pi\)
0.988190 0.153234i \(-0.0489687\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.1994 16.1994i 0.769656 0.769656i −0.208390 0.978046i \(-0.566822\pi\)
0.978046 + 0.208390i \(0.0668223\pi\)
\(444\) 0 0
\(445\) −11.2376 + 18.1249i −0.532715 + 0.859204i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −39.1796 −1.84900 −0.924500 0.381181i \(-0.875518\pi\)
−0.924500 + 0.381181i \(0.875518\pi\)
\(450\) 0 0
\(451\) −36.9565 −1.74021
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.44191 + 2.32562i −0.0675978 + 0.109027i
\(456\) 0 0
\(457\) −7.85447 + 7.85447i −0.367416 + 0.367416i −0.866534 0.499118i \(-0.833658\pi\)
0.499118 + 0.866534i \(0.333658\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.4284i 1.41719i −0.705614 0.708596i \(-0.749329\pi\)
0.705614 0.708596i \(-0.250671\pi\)
\(462\) 0 0
\(463\) −11.0289 11.0289i −0.512555 0.512555i 0.402753 0.915309i \(-0.368053\pi\)
−0.915309 + 0.402753i \(0.868053\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.50756 + 4.50756i 0.208585 + 0.208585i 0.803666 0.595081i \(-0.202880\pi\)
−0.595081 + 0.803666i \(0.702880\pi\)
\(468\) 0 0
\(469\) 12.4583i 0.575273i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.82494 6.82494i 0.313811 0.313811i
\(474\) 0 0
\(475\) −5.59622 + 2.77815i −0.256772 + 0.127470i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.78468 0.264309 0.132154 0.991229i \(-0.457811\pi\)
0.132154 + 0.991229i \(0.457811\pi\)
\(480\) 0 0
\(481\) −3.83623 −0.174917
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.18771 30.6433i −0.326377 1.39144i
\(486\) 0 0
\(487\) −14.4622 + 14.4622i −0.655346 + 0.655346i −0.954275 0.298929i \(-0.903371\pi\)
0.298929 + 0.954275i \(0.403371\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.1212i 0.862928i 0.902130 + 0.431464i \(0.142003\pi\)
−0.902130 + 0.431464i \(0.857997\pi\)
\(492\) 0 0
\(493\) −17.3785 17.3785i −0.782690 0.782690i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.4361 + 13.4361i 0.602693 + 0.602693i
\(498\) 0 0
\(499\) 14.0808i 0.630343i −0.949035 0.315172i \(-0.897938\pi\)
0.949035 0.315172i \(-0.102062\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.78932 2.78932i 0.124370 0.124370i −0.642182 0.766552i \(-0.721971\pi\)
0.766552 + 0.642182i \(0.221971\pi\)
\(504\) 0 0
\(505\) 14.9225 + 9.25210i 0.664043 + 0.411713i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.6597 −0.782755 −0.391377 0.920230i \(-0.628001\pi\)
−0.391377 + 0.920230i \(0.628001\pi\)
\(510\) 0 0
\(511\) −8.01363 −0.354502
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 40.7353 9.55488i 1.79501 0.421038i
\(516\) 0 0
\(517\) −17.9918 + 17.9918i −0.791277 + 0.791277i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.27382i 0.143429i −0.997425 0.0717144i \(-0.977153\pi\)
0.997425 0.0717144i \(-0.0228470\pi\)
\(522\) 0 0
\(523\) 4.65202 + 4.65202i 0.203419 + 0.203419i 0.801463 0.598044i \(-0.204055\pi\)
−0.598044 + 0.801463i \(0.704055\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 27.4156 + 27.4156i 1.19424 + 1.19424i
\(528\) 0 0
\(529\) 3.54590i 0.154170i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −8.52579 + 8.52579i −0.369293 + 0.369293i
\(534\) 0 0
\(535\) 26.8932 6.30807i 1.16269 0.272721i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16.8655 −0.726449
\(540\) 0 0
\(541\) −26.4084 −1.13539 −0.567693 0.823241i \(-0.692164\pi\)
−0.567693 + 0.823241i \(0.692164\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −23.9821 14.8692i −1.02728 0.636925i
\(546\) 0 0
\(547\) −17.1741 + 17.1741i −0.734311 + 0.734311i −0.971471 0.237159i \(-0.923784\pi\)
0.237159 + 0.971471i \(0.423784\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.42097i 0.273543i
\(552\) 0 0
\(553\) 9.75442 + 9.75442i 0.414800 + 0.414800i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.83852 9.83852i −0.416871 0.416871i 0.467253 0.884124i \(-0.345244\pi\)
−0.884124 + 0.467253i \(0.845244\pi\)
\(558\) 0 0
\(559\) 3.14900i 0.133188i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.5333 21.5333i 0.907519 0.907519i −0.0885528 0.996071i \(-0.528224\pi\)
0.996071 + 0.0885528i \(0.0282242\pi\)
\(564\) 0 0
\(565\) −1.17163 4.99499i −0.0492907 0.210141i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.8521 0.664554 0.332277 0.943182i \(-0.392183\pi\)
0.332277 + 0.943182i \(0.392183\pi\)
\(570\) 0 0
\(571\) −32.8273 −1.37378 −0.686890 0.726761i \(-0.741025\pi\)
−0.686890 + 0.726761i \(0.741025\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −24.4160 8.21626i −1.01822 0.342642i
\(576\) 0 0
\(577\) 19.9730 19.9730i 0.831487 0.831487i −0.156233 0.987720i \(-0.549935\pi\)
0.987720 + 0.156233i \(0.0499352\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.0813232i 0.00337385i
\(582\) 0 0
\(583\) −23.0235 23.0235i −0.953535 0.953535i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 16.5045 + 16.5045i 0.681212 + 0.681212i 0.960273 0.279061i \(-0.0900232\pi\)
−0.279061 + 0.960273i \(0.590023\pi\)
\(588\) 0 0
\(589\) 10.1294i 0.417376i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.2909 + 15.2909i −0.627923 + 0.627923i −0.947545 0.319622i \(-0.896444\pi\)
0.319622 + 0.947545i \(0.396444\pi\)
\(594\) 0 0
\(595\) −6.89647 + 11.1232i −0.282728 + 0.456005i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −38.0039 −1.55280 −0.776399 0.630242i \(-0.782956\pi\)
−0.776399 + 0.630242i \(0.782956\pi\)
\(600\) 0 0
\(601\) 17.5200 0.714657 0.357328 0.933979i \(-0.383688\pi\)
0.357328 + 0.933979i \(0.383688\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.89151 3.05078i 0.0769010 0.124032i
\(606\) 0 0
\(607\) 23.1121 23.1121i 0.938091 0.938091i −0.0601011 0.998192i \(-0.519142\pi\)
0.998192 + 0.0601011i \(0.0191423\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.30133i 0.335836i
\(612\) 0 0
\(613\) 28.0956 + 28.0956i 1.13477 + 1.13477i 0.989373 + 0.145399i \(0.0464467\pi\)
0.145399 + 0.989373i \(0.453553\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.98532 1.98532i −0.0799258 0.0799258i 0.666014 0.745939i \(-0.267999\pi\)
−0.745939 + 0.666014i \(0.767999\pi\)
\(618\) 0 0
\(619\) 26.8920i 1.08088i −0.841382 0.540441i \(-0.818258\pi\)
0.841382 0.540441i \(-0.181742\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.25270 8.25270i 0.330638 0.330638i
\(624\) 0 0
\(625\) −15.1141 + 19.9140i −0.604562 + 0.796558i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −18.3482 −0.731589
\(630\) 0 0
\(631\) −5.75241 −0.229000 −0.114500 0.993423i \(-0.536527\pi\)
−0.114500 + 0.993423i \(0.536527\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.78580 41.7198i −0.388338 1.65560i
\(636\) 0 0
\(637\) −3.89084 + 3.89084i −0.154161 + 0.154161i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.4478i 0.570653i −0.958430 0.285326i \(-0.907898\pi\)
0.958430 0.285326i \(-0.0921020\pi\)
\(642\) 0 0
\(643\) −27.3776 27.3776i −1.07967 1.07967i −0.996539 0.0831304i \(-0.973508\pi\)
−0.0831304 0.996539i \(-0.526492\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.6926 20.6926i −0.813511 0.813511i 0.171647 0.985158i \(-0.445091\pi\)
−0.985158 + 0.171647i \(0.945091\pi\)
\(648\) 0 0
\(649\) 24.9124i 0.977899i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.8427 30.8427i 1.20697 1.20697i 0.234962 0.972005i \(-0.424504\pi\)
0.972005 0.234962i \(-0.0754965\pi\)
\(654\) 0 0
\(655\) 21.9400 + 13.6030i 0.857267 + 0.531514i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.84765 0.149883 0.0749416 0.997188i \(-0.476123\pi\)
0.0749416 + 0.997188i \(0.476123\pi\)
\(660\) 0 0
\(661\) −42.5150 −1.65364 −0.826822 0.562464i \(-0.809853\pi\)
−0.826822 + 0.562464i \(0.809853\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.32892 0.780832i 0.129090 0.0302794i
\(666\) 0 0
\(667\) −18.7208 + 18.7208i −0.724871 + 0.724871i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 21.8595i 0.843875i
\(672\) 0 0
\(673\) 28.1298 + 28.1298i 1.08432 + 1.08432i 0.996101 + 0.0882236i \(0.0281190\pi\)
0.0882236 + 0.996101i \(0.471881\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.8645 + 22.8645i 0.878754 + 0.878754i 0.993406 0.114652i \(-0.0365753\pi\)
−0.114652 + 0.993406i \(0.536575\pi\)
\(678\) 0 0
\(679\) 17.2254i 0.661049i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10.8197 10.8197i 0.414004 0.414004i −0.469127 0.883131i \(-0.655431\pi\)
0.883131 + 0.469127i \(0.155431\pi\)
\(684\) 0 0
\(685\) 6.26747 1.47010i 0.239468 0.0561696i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −10.6229 −0.404702
\(690\) 0 0
\(691\) 16.6128 0.631982 0.315991 0.948762i \(-0.397663\pi\)
0.315991 + 0.948762i \(0.397663\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.21679 + 5.71451i 0.349613 + 0.216764i
\(696\) 0 0
\(697\) −40.7778 + 40.7778i −1.54457 + 1.54457i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15.5585i 0.587636i 0.955861 + 0.293818i \(0.0949260\pi\)
−0.955861 + 0.293818i \(0.905074\pi\)
\(702\) 0 0
\(703\) 3.38962 + 3.38962i 0.127842 + 0.127842i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.79456 6.79456i −0.255536 0.255536i
\(708\) 0 0
\(709\) 28.6522i 1.07606i 0.842927 + 0.538029i \(0.180831\pi\)
−0.842927 + 0.538029i \(0.819169\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 29.5330 29.5330i 1.10602 1.10602i
\(714\) 0 0
\(715\) 1.56513 + 6.67262i 0.0585326 + 0.249542i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33.1174 1.23507 0.617536 0.786543i \(-0.288131\pi\)
0.617536 + 0.786543i \(0.288131\pi\)
\(720\) 0 0
\(721\) −22.8983 −0.852777
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.4244 + 23.0130i 0.424292 + 0.854681i
\(726\) 0 0
\(727\) 6.79544 6.79544i 0.252029 0.252029i −0.569773 0.821802i \(-0.692969\pi\)
0.821802 + 0.569773i \(0.192969\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 15.0612i 0.557060i
\(732\) 0 0
\(733\) −9.37355 9.37355i −0.346220 0.346220i 0.512480 0.858699i \(-0.328727\pi\)
−0.858699 + 0.512480i \(0.828727\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22.0648 + 22.0648i 0.812766 + 0.812766i
\(738\) 0 0
\(739\) 25.2311i 0.928140i −0.885799 0.464070i \(-0.846389\pi\)
0.885799 0.464070i \(-0.153611\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −4.13825 + 4.13825i −0.151818 + 0.151818i −0.778929 0.627112i \(-0.784237\pi\)
0.627112 + 0.778929i \(0.284237\pi\)
\(744\) 0 0
\(745\) −8.12853 + 13.1103i −0.297806 + 0.480325i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −15.1173 −0.552374
\(750\) 0 0
\(751\) 41.4041 1.51086 0.755429 0.655230i \(-0.227428\pi\)
0.755429 + 0.655230i \(0.227428\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −10.4033 + 16.7792i −0.378615 + 0.610659i
\(756\) 0 0
\(757\) 10.4525 10.4525i 0.379902 0.379902i −0.491165 0.871067i \(-0.663429\pi\)
0.871067 + 0.491165i \(0.163429\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.3313i 0.519509i 0.965675 + 0.259755i \(0.0836417\pi\)
−0.965675 + 0.259755i \(0.916358\pi\)
\(762\) 0 0
\(763\) 10.9196 + 10.9196i 0.395317 + 0.395317i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.74725 + 5.74725i 0.207521 + 0.207521i
\(768\) 0 0
\(769\) 17.8845i 0.644932i −0.946581 0.322466i \(-0.895488\pi\)
0.946581 0.322466i \(-0.104512\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −26.8838 + 26.8838i −0.966943 + 0.966943i −0.999471 0.0325275i \(-0.989644\pi\)
0.0325275 + 0.999471i \(0.489644\pi\)
\(774\) 0 0
\(775\) −18.0226 36.3042i −0.647392 1.30409i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15.0665 0.539812
\(780\) 0 0
\(781\) 47.5930 1.70301
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.63007 + 32.5293i 0.272329 + 1.16102i
\(786\) 0 0
\(787\) −19.0346 + 19.0346i −0.678509 + 0.678509i −0.959663 0.281154i \(-0.909283\pi\)
0.281154 + 0.959663i \(0.409283\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.80781i 0.0998341i
\(792\) 0 0
\(793\) 5.04293 + 5.04293i 0.179080 + 0.179080i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 9.12038 + 9.12038i 0.323060 + 0.323060i 0.849940 0.526880i \(-0.176638\pi\)
−0.526880 + 0.849940i \(0.676638\pi\)
\(798\) 0 0
\(799\) 39.7042i 1.40463i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −14.1928 + 14.1928i −0.500853 + 0.500853i
\(804\) 0 0
\(805\) 11.9822 + 7.42911i 0.422319 + 0.261842i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39.3868 −1.38477 −0.692383 0.721530i \(-0.743439\pi\)
−0.692383 + 0.721530i \(0.743439\pi\)
\(810\) 0 0
\(811\) −32.6054 −1.14493 −0.572465 0.819929i \(-0.694013\pi\)
−0.572465 + 0.819929i \(0.694013\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.00409 0.704639i 0.105229 0.0246824i
\(816\) 0 0
\(817\) −2.78240 + 2.78240i −0.0973437 + 0.0973437i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 26.9109i 0.939197i −0.882880 0.469599i \(-0.844399\pi\)
0.882880 0.469599i \(-0.155601\pi\)
\(822\) 0 0
\(823\) −22.7575 22.7575i −0.793278 0.793278i 0.188747 0.982026i \(-0.439557\pi\)
−0.982026 + 0.188747i \(0.939557\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.6647 18.6647i −0.649036 0.649036i 0.303724 0.952760i \(-0.401770\pi\)
−0.952760 + 0.303724i \(0.901770\pi\)
\(828\) 0 0
\(829\) 15.3470i 0.533022i −0.963832 0.266511i \(-0.914129\pi\)
0.963832 0.266511i \(-0.0858709\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18.6094 + 18.6094i −0.644776 + 0.644776i
\(834\) 0 0
\(835\) 35.9708 8.43733i 1.24482 0.291986i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.71723 0.231905 0.115952 0.993255i \(-0.463008\pi\)
0.115952 + 0.993255i \(0.463008\pi\)
\(840\) 0 0
\(841\) −2.59542 −0.0894974
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1.90043 + 1.17829i 0.0653768 + 0.0405343i
\(846\) 0 0
\(847\) −1.38909 + 1.38909i −0.0477297 + 0.0477297i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 19.7653i 0.677545i
\(852\) 0 0
\(853\) −25.8954 25.8954i −0.886641 0.886641i 0.107558 0.994199i \(-0.465697\pi\)
−0.994199 + 0.107558i \(0.965697\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.7282 + 15.7282i 0.537265 + 0.537265i 0.922725 0.385460i \(-0.125957\pi\)
−0.385460 + 0.922725i \(0.625957\pi\)
\(858\) 0 0
\(859\) 50.0491i 1.70765i −0.520557 0.853827i \(-0.674276\pi\)
0.520557 0.853827i \(-0.325724\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 15.6038 15.6038i 0.531158 0.531158i −0.389759 0.920917i \(-0.627442\pi\)
0.920917 + 0.389759i \(0.127442\pi\)
\(864\) 0 0
\(865\) −13.0353 55.5735i −0.443215 1.88956i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 34.5518 1.17209
\(870\) 0 0
\(871\) 10.1806 0.344956
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.5417 8.72146i 0.356374 0.294839i
\(876\) 0 0
\(877\) 14.4770 14.4770i 0.488854 0.488854i −0.419090 0.907944i \(-0.637651\pi\)
0.907944 + 0.419090i \(0.137651\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 40.8517i 1.37633i 0.725554 + 0.688165i \(0.241583\pi\)
−0.725554 + 0.688165i \(0.758417\pi\)
\(882\) 0 0
\(883\) 14.6319 + 14.6319i 0.492401 + 0.492401i 0.909062 0.416661i \(-0.136800\pi\)
−0.416661 + 0.909062i \(0.636800\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.7234 + 24.7234i 0.830131 + 0.830131i 0.987534 0.157403i \(-0.0503123\pi\)
−0.157403 + 0.987534i \(0.550312\pi\)
\(888\) 0 0
\(889\) 23.4517i 0.786545i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.33489 7.33489i 0.245453 0.245453i
\(894\) 0 0
\(895\) −12.9372 + 20.8661i −0.432443 + 0.697478i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −41.6547 −1.38926
\(900\) 0 0
\(901\) −50.8081 −1.69266
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 22.8498 36.8540i 0.759554 1.22507i
\(906\) 0 0
\(907\) 2.46686 2.46686i 0.0819109 0.0819109i −0.664964 0.746875i \(-0.731553\pi\)
0.746875 + 0.664964i \(0.231553\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.35356i 0.210503i 0.994446 + 0.105251i \(0.0335647\pi\)
−0.994446 + 0.105251i \(0.966435\pi\)
\(912\) 0 0
\(913\) −0.144030 0.144030i −0.00476670 0.00476670i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9.98980 9.98980i −0.329892 0.329892i
\(918\) 0 0
\(919\) 12.4829i 0.411772i 0.978576 + 0.205886i \(0.0660076\pi\)
−0.978576 + 0.205886i \(0.933992\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.9796 10.9796i 0.361398 0.361398i
\(924\) 0 0
\(925\) 18.1794 + 6.11758i 0.597735 + 0.201145i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −36.9331 −1.21174 −0.605868 0.795565i \(-0.707174\pi\)
−0.605868 + 0.795565i \(0.707174\pi\)
\(930\) 0 0
\(931\) 6.87574 0.225343
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.48581 + 31.9143i 0.244812 + 1.04371i
\(936\) 0 0
\(937\) 10.0896 10.0896i 0.329613 0.329613i −0.522826 0.852439i \(-0.675122\pi\)
0.852439 + 0.522826i \(0.175122\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.6037i 0.378269i −0.981951 0.189134i \(-0.939432\pi\)
0.981951 0.189134i \(-0.0605682\pi\)
\(942\) 0 0
\(943\) 43.9272 + 43.9272i 1.43047 + 1.43047i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −34.1508 34.1508i −1.10975 1.10975i −0.993182 0.116571i \(-0.962810\pi\)
−0.116571 0.993182i \(-0.537190\pi\)
\(948\) 0 0
\(949\) 6.54850i 0.212573i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −13.2582 + 13.2582i −0.429475 + 0.429475i −0.888449 0.458974i \(-0.848217\pi\)
0.458974 + 0.888449i \(0.348217\pi\)
\(954\) 0 0
\(955\) 13.8290 + 8.57414i 0.447497 + 0.277453i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −3.52309 −0.113767
\(960\) 0 0
\(961\) 34.7125 1.11976
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −30.3583 + 7.12084i −0.977267 + 0.229228i
\(966\) 0 0
\(967\) 11.4930 11.4930i 0.369589 0.369589i −0.497738 0.867327i \(-0.665836\pi\)
0.867327 + 0.497738i \(0.165836\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.7690i 0.634419i −0.948356 0.317209i \(-0.897254\pi\)
0.948356 0.317209i \(-0.102746\pi\)
\(972\) 0 0
\(973\) −4.19662 4.19662i −0.134538 0.134538i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −13.7581 13.7581i −0.440159 0.440159i 0.451906 0.892065i \(-0.350744\pi\)
−0.892065 + 0.451906i \(0.850744\pi\)
\(978\) 0 0
\(979\) 29.2325i 0.934273i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 28.4513 28.4513i 0.907457 0.907457i −0.0886096 0.996066i \(-0.528242\pi\)
0.996066 + 0.0886096i \(0.0282423\pi\)
\(984\) 0 0
\(985\) 20.4667 4.80066i 0.652122 0.152962i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.2245 −0.515909
\(990\) 0 0
\(991\) 19.0657 0.605641 0.302820 0.953048i \(-0.402072\pi\)
0.302820 + 0.953048i \(0.402072\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −39.3113 24.3734i −1.24625 0.772689i
\(996\) 0 0
\(997\) −11.5009 + 11.5009i −0.364238 + 0.364238i −0.865371 0.501133i \(-0.832917\pi\)
0.501133 + 0.865371i \(0.332917\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.y.b.53.7 yes 24
3.2 odd 2 2340.2.y.a.53.6 24
5.2 odd 4 2340.2.y.a.1457.6 yes 24
15.2 even 4 inner 2340.2.y.b.1457.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.y.a.53.6 24 3.2 odd 2
2340.2.y.a.1457.6 yes 24 5.2 odd 4
2340.2.y.b.53.7 yes 24 1.1 even 1 trivial
2340.2.y.b.1457.7 yes 24 15.2 even 4 inner