Properties

Label 2340.2.y.b.53.2
Level $2340$
Weight $2$
Character 2340.53
Analytic conductor $18.685$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(53,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 53.2
Character \(\chi\) \(=\) 2340.53
Dual form 2340.2.y.b.1457.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.02935 - 0.939016i) q^{5} +(-0.932729 + 0.932729i) q^{7} -2.46212i q^{11} +(0.707107 + 0.707107i) q^{13} +(1.21893 + 1.21893i) q^{17} -7.52960i q^{19} +(-4.70605 + 4.70605i) q^{23} +(3.23650 + 3.81118i) q^{25} -6.52718 q^{29} +7.11591 q^{31} +(2.76868 - 1.01698i) q^{35} +(-5.27885 + 5.27885i) q^{37} -4.71432i q^{41} +(7.56537 + 7.56537i) q^{43} +(-1.63641 - 1.63641i) q^{47} +5.26003i q^{49} +(3.59649 - 3.59649i) q^{53} +(-2.31197 + 4.99650i) q^{55} -5.39616 q^{59} -12.1396 q^{61} +(-0.770981 - 2.09895i) q^{65} +(-2.18639 + 2.18639i) q^{67} +5.08457i q^{71} +(3.03059 + 3.03059i) q^{73} +(2.29649 + 2.29649i) q^{77} +16.0016i q^{79} +(-7.93799 + 7.93799i) q^{83} +(-1.32903 - 3.61821i) q^{85} -0.935268 q^{89} -1.31908 q^{91} +(-7.07041 + 15.2802i) q^{95} +(-4.95103 + 4.95103i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{5} - 8 q^{7} + 8 q^{17} + 8 q^{23} + 16 q^{25} - 32 q^{29} - 8 q^{35} + 16 q^{37} - 8 q^{43} + 40 q^{47} + 8 q^{53} + 8 q^{55} - 56 q^{59} + 8 q^{61} + 4 q^{65} - 16 q^{67} + 72 q^{77} + 32 q^{83}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.02935 0.939016i −0.907552 0.419941i
\(6\) 0 0
\(7\) −0.932729 + 0.932729i −0.352538 + 0.352538i −0.861053 0.508515i \(-0.830195\pi\)
0.508515 + 0.861053i \(0.330195\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.46212i 0.742357i −0.928561 0.371179i \(-0.878954\pi\)
0.928561 0.371179i \(-0.121046\pi\)
\(12\) 0 0
\(13\) 0.707107 + 0.707107i 0.196116 + 0.196116i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.21893 + 1.21893i 0.295633 + 0.295633i 0.839301 0.543668i \(-0.182965\pi\)
−0.543668 + 0.839301i \(0.682965\pi\)
\(18\) 0 0
\(19\) 7.52960i 1.72741i −0.503999 0.863704i \(-0.668139\pi\)
0.503999 0.863704i \(-0.331861\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.70605 + 4.70605i −0.981279 + 0.981279i −0.999828 0.0185491i \(-0.994095\pi\)
0.0185491 + 0.999828i \(0.494095\pi\)
\(24\) 0 0
\(25\) 3.23650 + 3.81118i 0.647300 + 0.762236i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.52718 −1.21207 −0.606033 0.795440i \(-0.707240\pi\)
−0.606033 + 0.795440i \(0.707240\pi\)
\(30\) 0 0
\(31\) 7.11591 1.27806 0.639028 0.769184i \(-0.279337\pi\)
0.639028 + 0.769184i \(0.279337\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.76868 1.01698i 0.467992 0.171902i
\(36\) 0 0
\(37\) −5.27885 + 5.27885i −0.867838 + 0.867838i −0.992233 0.124395i \(-0.960301\pi\)
0.124395 + 0.992233i \(0.460301\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.71432i 0.736253i −0.929776 0.368126i \(-0.879999\pi\)
0.929776 0.368126i \(-0.120001\pi\)
\(42\) 0 0
\(43\) 7.56537 + 7.56537i 1.15371 + 1.15371i 0.985803 + 0.167904i \(0.0537000\pi\)
0.167904 + 0.985803i \(0.446300\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.63641 1.63641i −0.238695 0.238695i 0.577615 0.816310i \(-0.303984\pi\)
−0.816310 + 0.577615i \(0.803984\pi\)
\(48\) 0 0
\(49\) 5.26003i 0.751433i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.59649 3.59649i 0.494016 0.494016i −0.415553 0.909569i \(-0.636412\pi\)
0.909569 + 0.415553i \(0.136412\pi\)
\(54\) 0 0
\(55\) −2.31197 + 4.99650i −0.311746 + 0.673728i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.39616 −0.702520 −0.351260 0.936278i \(-0.614247\pi\)
−0.351260 + 0.936278i \(0.614247\pi\)
\(60\) 0 0
\(61\) −12.1396 −1.55432 −0.777159 0.629305i \(-0.783340\pi\)
−0.777159 + 0.629305i \(0.783340\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.770981 2.09895i −0.0956284 0.260343i
\(66\) 0 0
\(67\) −2.18639 + 2.18639i −0.267110 + 0.267110i −0.827935 0.560825i \(-0.810484\pi\)
0.560825 + 0.827935i \(0.310484\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.08457i 0.603427i 0.953399 + 0.301714i \(0.0975587\pi\)
−0.953399 + 0.301714i \(0.902441\pi\)
\(72\) 0 0
\(73\) 3.03059 + 3.03059i 0.354704 + 0.354704i 0.861856 0.507153i \(-0.169302\pi\)
−0.507153 + 0.861856i \(0.669302\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.29649 + 2.29649i 0.261710 + 0.261710i
\(78\) 0 0
\(79\) 16.0016i 1.80032i 0.435559 + 0.900160i \(0.356551\pi\)
−0.435559 + 0.900160i \(0.643449\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.93799 + 7.93799i −0.871308 + 0.871308i −0.992615 0.121307i \(-0.961291\pi\)
0.121307 + 0.992615i \(0.461291\pi\)
\(84\) 0 0
\(85\) −1.32903 3.61821i −0.144154 0.392450i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.935268 −0.0991382 −0.0495691 0.998771i \(-0.515785\pi\)
−0.0495691 + 0.998771i \(0.515785\pi\)
\(90\) 0 0
\(91\) −1.31908 −0.138277
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −7.07041 + 15.2802i −0.725409 + 1.56771i
\(96\) 0 0
\(97\) −4.95103 + 4.95103i −0.502701 + 0.502701i −0.912276 0.409575i \(-0.865677\pi\)
0.409575 + 0.912276i \(0.365677\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.1040i 1.20439i 0.798348 + 0.602196i \(0.205707\pi\)
−0.798348 + 0.602196i \(0.794293\pi\)
\(102\) 0 0
\(103\) −1.32538 1.32538i −0.130593 0.130593i 0.638789 0.769382i \(-0.279436\pi\)
−0.769382 + 0.638789i \(0.779436\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.57371 9.57371i −0.925525 0.925525i 0.0718874 0.997413i \(-0.477098\pi\)
−0.997413 + 0.0718874i \(0.977098\pi\)
\(108\) 0 0
\(109\) 6.16462i 0.590463i 0.955426 + 0.295232i \(0.0953968\pi\)
−0.955426 + 0.295232i \(0.904603\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.31966 4.31966i 0.406360 0.406360i −0.474107 0.880467i \(-0.657229\pi\)
0.880467 + 0.474107i \(0.157229\pi\)
\(114\) 0 0
\(115\) 13.9693 5.13115i 1.30264 0.478482i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.27385 −0.208444
\(120\) 0 0
\(121\) 4.93796 0.448905
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.98922 10.7733i −0.267364 0.963596i
\(126\) 0 0
\(127\) −7.81705 + 7.81705i −0.693651 + 0.693651i −0.963033 0.269383i \(-0.913180\pi\)
0.269383 + 0.963033i \(0.413180\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.1135i 0.883624i 0.897108 + 0.441812i \(0.145664\pi\)
−0.897108 + 0.441812i \(0.854336\pi\)
\(132\) 0 0
\(133\) 7.02307 + 7.02307i 0.608978 + 0.608978i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.4342 + 12.4342i 1.06233 + 1.06233i 0.997924 + 0.0644032i \(0.0205144\pi\)
0.0644032 + 0.997924i \(0.479486\pi\)
\(138\) 0 0
\(139\) 2.79014i 0.236657i 0.992975 + 0.118328i \(0.0377536\pi\)
−0.992975 + 0.118328i \(0.962246\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.74098 1.74098i 0.145588 0.145588i
\(144\) 0 0
\(145\) 13.2459 + 6.12912i 1.10001 + 0.508996i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −23.0719 −1.89013 −0.945063 0.326889i \(-0.894000\pi\)
−0.945063 + 0.326889i \(0.894000\pi\)
\(150\) 0 0
\(151\) 0.562608 0.0457844 0.0228922 0.999738i \(-0.492713\pi\)
0.0228922 + 0.999738i \(0.492713\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −14.4406 6.68195i −1.15990 0.536707i
\(156\) 0 0
\(157\) −0.533485 + 0.533485i −0.0425767 + 0.0425767i −0.728075 0.685498i \(-0.759585\pi\)
0.685498 + 0.728075i \(0.259585\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.77894i 0.691877i
\(162\) 0 0
\(163\) 3.32364 + 3.32364i 0.260327 + 0.260327i 0.825187 0.564860i \(-0.191070\pi\)
−0.564860 + 0.825187i \(0.691070\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14.9029 + 14.9029i 1.15322 + 1.15322i 0.985902 + 0.167322i \(0.0535121\pi\)
0.167322 + 0.985902i \(0.446488\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.7519 15.7519i 1.19759 1.19759i 0.222710 0.974885i \(-0.428510\pi\)
0.974885 0.222710i \(-0.0714903\pi\)
\(174\) 0 0
\(175\) −6.57357 0.536020i −0.496915 0.0405193i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0.771165 0.0576396 0.0288198 0.999585i \(-0.490825\pi\)
0.0288198 + 0.999585i \(0.490825\pi\)
\(180\) 0 0
\(181\) −22.6881 −1.68640 −0.843198 0.537603i \(-0.819330\pi\)
−0.843198 + 0.537603i \(0.819330\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 15.6695 5.75570i 1.15205 0.423167i
\(186\) 0 0
\(187\) 3.00114 3.00114i 0.219465 0.219465i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.2796i 1.32267i 0.750093 + 0.661333i \(0.230009\pi\)
−0.750093 + 0.661333i \(0.769991\pi\)
\(192\) 0 0
\(193\) −4.26791 4.26791i −0.307211 0.307211i 0.536616 0.843827i \(-0.319702\pi\)
−0.843827 + 0.536616i \(0.819702\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.7146 13.7146i −0.977123 0.977123i 0.0226212 0.999744i \(-0.492799\pi\)
−0.999744 + 0.0226212i \(0.992799\pi\)
\(198\) 0 0
\(199\) 22.5559i 1.59895i −0.600700 0.799474i \(-0.705111\pi\)
0.600700 0.799474i \(-0.294889\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.08809 6.08809i 0.427300 0.427300i
\(204\) 0 0
\(205\) −4.42682 + 9.56699i −0.309183 + 0.668188i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −18.5388 −1.28235
\(210\) 0 0
\(211\) 3.79202 0.261053 0.130527 0.991445i \(-0.458333\pi\)
0.130527 + 0.991445i \(0.458333\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.24876 22.4568i −0.562561 1.53154i
\(216\) 0 0
\(217\) −6.63722 + 6.63722i −0.450564 + 0.450564i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.72382i 0.115957i
\(222\) 0 0
\(223\) 14.5849 + 14.5849i 0.976674 + 0.976674i 0.999734 0.0230597i \(-0.00734077\pi\)
−0.0230597 + 0.999734i \(0.507341\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.1903 + 16.1903i 1.07459 + 1.07459i 0.996984 + 0.0776050i \(0.0247273\pi\)
0.0776050 + 0.996984i \(0.475273\pi\)
\(228\) 0 0
\(229\) 6.52126i 0.430937i −0.976511 0.215469i \(-0.930872\pi\)
0.976511 0.215469i \(-0.0691279\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −18.7189 + 18.7189i −1.22632 + 1.22632i −0.260971 + 0.965347i \(0.584043\pi\)
−0.965347 + 0.260971i \(0.915957\pi\)
\(234\) 0 0
\(235\) 1.78423 + 4.85746i 0.116390 + 0.316866i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.88154 0.251076 0.125538 0.992089i \(-0.459934\pi\)
0.125538 + 0.992089i \(0.459934\pi\)
\(240\) 0 0
\(241\) 14.5300 0.935963 0.467981 0.883738i \(-0.344981\pi\)
0.467981 + 0.883738i \(0.344981\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.93925 10.6744i 0.315557 0.681964i
\(246\) 0 0
\(247\) 5.32423 5.32423i 0.338773 0.338773i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 9.87535i 0.623327i 0.950193 + 0.311663i \(0.100886\pi\)
−0.950193 + 0.311663i \(0.899114\pi\)
\(252\) 0 0
\(253\) 11.5869 + 11.5869i 0.728460 + 0.728460i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.8597 15.8597i −0.989298 0.989298i 0.0106454 0.999943i \(-0.496611\pi\)
−0.999943 + 0.0106454i \(0.996611\pi\)
\(258\) 0 0
\(259\) 9.84748i 0.611892i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.6873 10.6873i 0.659006 0.659006i −0.296139 0.955145i \(-0.595699\pi\)
0.955145 + 0.296139i \(0.0956992\pi\)
\(264\) 0 0
\(265\) −10.6757 + 3.92137i −0.655802 + 0.240888i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −27.2478 −1.66133 −0.830663 0.556776i \(-0.812038\pi\)
−0.830663 + 0.556776i \(0.812038\pi\)
\(270\) 0 0
\(271\) 24.7612 1.50414 0.752068 0.659085i \(-0.229056\pi\)
0.752068 + 0.659085i \(0.229056\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9.38358 7.96865i 0.565851 0.480528i
\(276\) 0 0
\(277\) 11.2845 11.2845i 0.678018 0.678018i −0.281534 0.959551i \(-0.590843\pi\)
0.959551 + 0.281534i \(0.0908431\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 8.98033i 0.535722i −0.963458 0.267861i \(-0.913683\pi\)
0.963458 0.267861i \(-0.0863167\pi\)
\(282\) 0 0
\(283\) −9.00334 9.00334i −0.535193 0.535193i 0.386920 0.922113i \(-0.373539\pi\)
−0.922113 + 0.386920i \(0.873539\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.39718 + 4.39718i 0.259557 + 0.259557i
\(288\) 0 0
\(289\) 14.0284i 0.825202i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −9.94386 + 9.94386i −0.580926 + 0.580926i −0.935158 0.354231i \(-0.884743\pi\)
0.354231 + 0.935158i \(0.384743\pi\)
\(294\) 0 0
\(295\) 10.9507 + 5.06708i 0.637574 + 0.295017i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.65536 −0.384889
\(300\) 0 0
\(301\) −14.1129 −0.813453
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 24.6355 + 11.3993i 1.41062 + 0.652721i
\(306\) 0 0
\(307\) 18.9943 18.9943i 1.08406 1.08406i 0.0879339 0.996126i \(-0.471974\pi\)
0.996126 0.0879339i \(-0.0280264\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.78543i 0.101243i 0.998718 + 0.0506213i \(0.0161201\pi\)
−0.998718 + 0.0506213i \(0.983880\pi\)
\(312\) 0 0
\(313\) −23.4660 23.4660i −1.32638 1.32638i −0.908505 0.417873i \(-0.862776\pi\)
−0.417873 0.908505i \(-0.637224\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.75170 + 7.75170i 0.435379 + 0.435379i 0.890453 0.455075i \(-0.150387\pi\)
−0.455075 + 0.890453i \(0.650387\pi\)
\(318\) 0 0
\(319\) 16.0707i 0.899786i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.17802 9.17802i 0.510678 0.510678i
\(324\) 0 0
\(325\) −0.406359 + 4.98346i −0.0225408 + 0.276433i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.05266 0.168298
\(330\) 0 0
\(331\) −7.25581 −0.398815 −0.199408 0.979917i \(-0.563902\pi\)
−0.199408 + 0.979917i \(0.563902\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.48999 2.38389i 0.354586 0.130246i
\(336\) 0 0
\(337\) −12.4606 + 12.4606i −0.678770 + 0.678770i −0.959722 0.280952i \(-0.909350\pi\)
0.280952 + 0.959722i \(0.409350\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 17.5202i 0.948774i
\(342\) 0 0
\(343\) −11.4353 11.4353i −0.617448 0.617448i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.947599 0.947599i −0.0508698 0.0508698i 0.681214 0.732084i \(-0.261452\pi\)
−0.732084 + 0.681214i \(0.761452\pi\)
\(348\) 0 0
\(349\) 11.7708i 0.630074i −0.949079 0.315037i \(-0.897983\pi\)
0.949079 0.315037i \(-0.102017\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.06174 + 3.06174i −0.162960 + 0.162960i −0.783877 0.620917i \(-0.786761\pi\)
0.620917 + 0.783877i \(0.286761\pi\)
\(354\) 0 0
\(355\) 4.77449 10.3184i 0.253404 0.547641i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.6325 −0.561162 −0.280581 0.959830i \(-0.590527\pi\)
−0.280581 + 0.959830i \(0.590527\pi\)
\(360\) 0 0
\(361\) −37.6948 −1.98394
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.30435 8.99589i −0.172957 0.470866i
\(366\) 0 0
\(367\) −23.8669 + 23.8669i −1.24584 + 1.24584i −0.288305 + 0.957539i \(0.593092\pi\)
−0.957539 + 0.288305i \(0.906908\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.70910i 0.348319i
\(372\) 0 0
\(373\) 7.35733 + 7.35733i 0.380948 + 0.380948i 0.871444 0.490496i \(-0.163184\pi\)
−0.490496 + 0.871444i \(0.663184\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.61541 4.61541i −0.237706 0.237706i
\(378\) 0 0
\(379\) 12.8168i 0.658357i −0.944268 0.329179i \(-0.893228\pi\)
0.944268 0.329179i \(-0.106772\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9.95089 + 9.95089i −0.508467 + 0.508467i −0.914056 0.405589i \(-0.867066\pi\)
0.405589 + 0.914056i \(0.367066\pi\)
\(384\) 0 0
\(385\) −2.50394 6.81682i −0.127612 0.347417i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.8520 1.31075 0.655375 0.755303i \(-0.272511\pi\)
0.655375 + 0.755303i \(0.272511\pi\)
\(390\) 0 0
\(391\) −11.4726 −0.580196
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.0258 32.4728i 0.756028 1.63388i
\(396\) 0 0
\(397\) −7.36720 + 7.36720i −0.369749 + 0.369749i −0.867386 0.497637i \(-0.834201\pi\)
0.497637 + 0.867386i \(0.334201\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.0303i 0.600763i 0.953819 + 0.300382i \(0.0971140\pi\)
−0.953819 + 0.300382i \(0.902886\pi\)
\(402\) 0 0
\(403\) 5.03171 + 5.03171i 0.250647 + 0.250647i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.9972 + 12.9972i 0.644246 + 0.644246i
\(408\) 0 0
\(409\) 29.6258i 1.46490i −0.680820 0.732451i \(-0.738376\pi\)
0.680820 0.732451i \(-0.261624\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 5.03316 5.03316i 0.247665 0.247665i
\(414\) 0 0
\(415\) 23.5628 8.65504i 1.15665 0.424859i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.07031 −0.101141 −0.0505706 0.998720i \(-0.516104\pi\)
−0.0505706 + 0.998720i \(0.516104\pi\)
\(420\) 0 0
\(421\) 9.96717 0.485770 0.242885 0.970055i \(-0.421906\pi\)
0.242885 + 0.970055i \(0.421906\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.700491 + 8.59059i −0.0339788 + 0.416705i
\(426\) 0 0
\(427\) 11.3230 11.3230i 0.547957 0.547957i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 7.70549i 0.371160i −0.982629 0.185580i \(-0.940584\pi\)
0.982629 0.185580i \(-0.0594164\pi\)
\(432\) 0 0
\(433\) −9.74531 9.74531i −0.468330 0.468330i 0.433043 0.901373i \(-0.357440\pi\)
−0.901373 + 0.433043i \(0.857440\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 35.4346 + 35.4346i 1.69507 + 1.69507i
\(438\) 0 0
\(439\) 1.08773i 0.0519143i −0.999663 0.0259572i \(-0.991737\pi\)
0.999663 0.0259572i \(-0.00826335\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.96876 4.96876i 0.236073 0.236073i −0.579149 0.815222i \(-0.696615\pi\)
0.815222 + 0.579149i \(0.196615\pi\)
\(444\) 0 0
\(445\) 1.89798 + 0.878231i 0.0899730 + 0.0416322i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.2250 0.529742 0.264871 0.964284i \(-0.414671\pi\)
0.264871 + 0.964284i \(0.414671\pi\)
\(450\) 0 0
\(451\) −11.6072 −0.546563
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.67687 + 1.23864i 0.125493 + 0.0580681i
\(456\) 0 0
\(457\) −20.6809 + 20.6809i −0.967413 + 0.967413i −0.999486 0.0320721i \(-0.989789\pi\)
0.0320721 + 0.999486i \(0.489789\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 36.7705i 1.71257i 0.516501 + 0.856286i \(0.327234\pi\)
−0.516501 + 0.856286i \(0.672766\pi\)
\(462\) 0 0
\(463\) 0.627674 + 0.627674i 0.0291705 + 0.0291705i 0.721542 0.692371i \(-0.243434\pi\)
−0.692371 + 0.721542i \(0.743434\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.9883 + 21.9883i 1.01750 + 1.01750i 0.999844 + 0.0176551i \(0.00562008\pi\)
0.0176551 + 0.999844i \(0.494380\pi\)
\(468\) 0 0
\(469\) 4.07862i 0.188333i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 18.6269 18.6269i 0.856463 0.856463i
\(474\) 0 0
\(475\) 28.6966 24.3695i 1.31669 1.11815i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.33254 0.426414 0.213207 0.977007i \(-0.431609\pi\)
0.213207 + 0.977007i \(0.431609\pi\)
\(480\) 0 0
\(481\) −7.46542 −0.340394
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.6965 5.39826i 0.667331 0.245122i
\(486\) 0 0
\(487\) 18.0280 18.0280i 0.816929 0.816929i −0.168733 0.985662i \(-0.553968\pi\)
0.985662 + 0.168733i \(0.0539675\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.9098i 1.12416i 0.827082 + 0.562081i \(0.189999\pi\)
−0.827082 + 0.562081i \(0.810001\pi\)
\(492\) 0 0
\(493\) −7.95614 7.95614i −0.358326 0.358326i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.74253 4.74253i −0.212731 0.212731i
\(498\) 0 0
\(499\) 24.1119i 1.07940i −0.841858 0.539699i \(-0.818538\pi\)
0.841858 0.539699i \(-0.181462\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.5211 18.5211i 0.825816 0.825816i −0.161119 0.986935i \(-0.551510\pi\)
0.986935 + 0.161119i \(0.0515104\pi\)
\(504\) 0 0
\(505\) 11.3658 24.5632i 0.505773 1.09305i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.898160 −0.0398103 −0.0199051 0.999802i \(-0.506336\pi\)
−0.0199051 + 0.999802i \(0.506336\pi\)
\(510\) 0 0
\(511\) −5.65344 −0.250093
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.44510 + 3.93421i 0.0636788 + 0.173362i
\(516\) 0 0
\(517\) −4.02904 + 4.02904i −0.177197 + 0.177197i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 32.4911i 1.42346i −0.702452 0.711731i \(-0.747911\pi\)
0.702452 0.711731i \(-0.252089\pi\)
\(522\) 0 0
\(523\) 17.8580 + 17.8580i 0.780877 + 0.780877i 0.979979 0.199102i \(-0.0638024\pi\)
−0.199102 + 0.979979i \(0.563802\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8.67376 + 8.67376i 0.377835 + 0.377835i
\(528\) 0 0
\(529\) 21.2938i 0.925816i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.33353 3.33353i 0.144391 0.144391i
\(534\) 0 0
\(535\) 10.4385 + 28.4182i 0.451296 + 1.22863i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.9508 0.557832
\(540\) 0 0
\(541\) 2.39106 0.102800 0.0513998 0.998678i \(-0.483632\pi\)
0.0513998 + 0.998678i \(0.483632\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.78867 12.5101i 0.247960 0.535876i
\(546\) 0 0
\(547\) −9.12276 + 9.12276i −0.390061 + 0.390061i −0.874709 0.484648i \(-0.838948\pi\)
0.484648 + 0.874709i \(0.338948\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 49.1470i 2.09373i
\(552\) 0 0
\(553\) −14.9252 14.9252i −0.634682 0.634682i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.2341 13.2341i −0.560748 0.560748i 0.368772 0.929520i \(-0.379778\pi\)
−0.929520 + 0.368772i \(0.879778\pi\)
\(558\) 0 0
\(559\) 10.6990i 0.452521i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.0737 19.0737i 0.803861 0.803861i −0.179835 0.983697i \(-0.557556\pi\)
0.983697 + 0.179835i \(0.0575565\pi\)
\(564\) 0 0
\(565\) −12.8223 + 4.70986i −0.539439 + 0.198145i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −38.8443 −1.62844 −0.814218 0.580559i \(-0.802834\pi\)
−0.814218 + 0.580559i \(0.802834\pi\)
\(570\) 0 0
\(571\) 7.02706 0.294073 0.147037 0.989131i \(-0.453026\pi\)
0.147037 + 0.989131i \(0.453026\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −33.1667 2.70447i −1.38315 0.112784i
\(576\) 0 0
\(577\) −11.4785 + 11.4785i −0.477856 + 0.477856i −0.904446 0.426589i \(-0.859715\pi\)
0.426589 + 0.904446i \(0.359715\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 14.8080i 0.614339i
\(582\) 0 0
\(583\) −8.85499 8.85499i −0.366736 0.366736i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.9683 10.9683i −0.452711 0.452711i 0.443542 0.896253i \(-0.353722\pi\)
−0.896253 + 0.443542i \(0.853722\pi\)
\(588\) 0 0
\(589\) 53.5799i 2.20772i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 24.5934 24.5934i 1.00993 1.00993i 0.00997888 0.999950i \(-0.496824\pi\)
0.999950 0.00997888i \(-0.00317643\pi\)
\(594\) 0 0
\(595\) 4.61444 + 2.13518i 0.189174 + 0.0875340i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.1117 −0.985177 −0.492589 0.870262i \(-0.663949\pi\)
−0.492589 + 0.870262i \(0.663949\pi\)
\(600\) 0 0
\(601\) −7.91998 −0.323063 −0.161531 0.986868i \(-0.551643\pi\)
−0.161531 + 0.986868i \(0.551643\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10.0208 4.63682i −0.407405 0.188514i
\(606\) 0 0
\(607\) 17.4916 17.4916i 0.709961 0.709961i −0.256566 0.966527i \(-0.582591\pi\)
0.966527 + 0.256566i \(0.0825911\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.31423i 0.0936239i
\(612\) 0 0
\(613\) −20.0407 20.0407i −0.809434 0.809434i 0.175114 0.984548i \(-0.443971\pi\)
−0.984548 + 0.175114i \(0.943971\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.21684 6.21684i −0.250281 0.250281i 0.570805 0.821086i \(-0.306631\pi\)
−0.821086 + 0.570805i \(0.806631\pi\)
\(618\) 0 0
\(619\) 29.0915i 1.16929i −0.811290 0.584643i \(-0.801234\pi\)
0.811290 0.584643i \(-0.198766\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.872352 0.872352i 0.0349500 0.0349500i
\(624\) 0 0
\(625\) −4.05015 + 24.6697i −0.162006 + 0.986790i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.8691 −0.513123
\(630\) 0 0
\(631\) −35.3792 −1.40842 −0.704211 0.709991i \(-0.748699\pi\)
−0.704211 + 0.709991i \(0.748699\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 23.2038 8.52317i 0.920816 0.338232i
\(636\) 0 0
\(637\) −3.71940 + 3.71940i −0.147368 + 0.147368i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.1152i 0.794501i 0.917710 + 0.397251i \(0.130036\pi\)
−0.917710 + 0.397251i \(0.869964\pi\)
\(642\) 0 0
\(643\) −10.1144 10.1144i −0.398871 0.398871i 0.478964 0.877835i \(-0.341013\pi\)
−0.877835 + 0.478964i \(0.841013\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.36761 + 3.36761i 0.132394 + 0.132394i 0.770199 0.637804i \(-0.220157\pi\)
−0.637804 + 0.770199i \(0.720157\pi\)
\(648\) 0 0
\(649\) 13.2860i 0.521521i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.413873 0.413873i 0.0161961 0.0161961i −0.698962 0.715158i \(-0.746355\pi\)
0.715158 + 0.698962i \(0.246355\pi\)
\(654\) 0 0
\(655\) 9.49678 20.5239i 0.371070 0.801935i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22.3354 0.870064 0.435032 0.900415i \(-0.356737\pi\)
0.435032 + 0.900415i \(0.356737\pi\)
\(660\) 0 0
\(661\) 1.64547 0.0640014 0.0320007 0.999488i \(-0.489812\pi\)
0.0320007 + 0.999488i \(0.489812\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.65748 20.8470i −0.296944 0.808413i
\(666\) 0 0
\(667\) 30.7172 30.7172i 1.18937 1.18937i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 29.8892i 1.15386i
\(672\) 0 0
\(673\) 10.5570 + 10.5570i 0.406944 + 0.406944i 0.880672 0.473727i \(-0.157092\pi\)
−0.473727 + 0.880672i \(0.657092\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 11.9259 + 11.9259i 0.458350 + 0.458350i 0.898114 0.439764i \(-0.144938\pi\)
−0.439764 + 0.898114i \(0.644938\pi\)
\(678\) 0 0
\(679\) 9.23594i 0.354443i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 15.8560 15.8560i 0.606712 0.606712i −0.335374 0.942085i \(-0.608863\pi\)
0.942085 + 0.335374i \(0.108863\pi\)
\(684\) 0 0
\(685\) −13.5574 36.9093i −0.518002 1.41023i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.08621 0.193769
\(690\) 0 0
\(691\) −22.1692 −0.843357 −0.421678 0.906746i \(-0.638559\pi\)
−0.421678 + 0.906746i \(0.638559\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.61999 5.66217i 0.0993818 0.214778i
\(696\) 0 0
\(697\) 5.74640 5.74640i 0.217661 0.217661i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.1856i 1.17787i −0.808182 0.588933i \(-0.799548\pi\)
0.808182 0.588933i \(-0.200452\pi\)
\(702\) 0 0
\(703\) 39.7476 + 39.7476i 1.49911 + 1.49911i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.2897 11.2897i −0.424594 0.424594i
\(708\) 0 0
\(709\) 18.2641i 0.685921i −0.939350 0.342961i \(-0.888570\pi\)
0.939350 0.342961i \(-0.111430\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −33.4878 + 33.4878i −1.25413 + 1.25413i
\(714\) 0 0
\(715\) −5.16787 + 1.89825i −0.193267 + 0.0709904i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 5.09190 0.189896 0.0949479 0.995482i \(-0.469732\pi\)
0.0949479 + 0.995482i \(0.469732\pi\)
\(720\) 0 0
\(721\) 2.47244 0.0920784
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −21.1252 24.8762i −0.784570 0.923880i
\(726\) 0 0
\(727\) −20.8594 + 20.8594i −0.773632 + 0.773632i −0.978739 0.205108i \(-0.934246\pi\)
0.205108 + 0.978739i \(0.434246\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.4432i 0.682148i
\(732\) 0 0
\(733\) 26.9173 + 26.9173i 0.994212 + 0.994212i 0.999983 0.00577109i \(-0.00183701\pi\)
−0.00577109 + 0.999983i \(0.501837\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.38315 + 5.38315i 0.198291 + 0.198291i
\(738\) 0 0
\(739\) 18.5886i 0.683794i −0.939737 0.341897i \(-0.888931\pi\)
0.939737 0.341897i \(-0.111069\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.3229 + 10.3229i −0.378710 + 0.378710i −0.870637 0.491926i \(-0.836293\pi\)
0.491926 + 0.870637i \(0.336293\pi\)
\(744\) 0 0
\(745\) 46.8209 + 21.6649i 1.71539 + 0.793741i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 17.8594 0.652567
\(750\) 0 0
\(751\) −2.89363 −0.105590 −0.0527950 0.998605i \(-0.516813\pi\)
−0.0527950 + 0.998605i \(0.516813\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1.14173 0.528298i −0.0415517 0.0192267i
\(756\) 0 0
\(757\) −15.3615 + 15.3615i −0.558324 + 0.558324i −0.928830 0.370506i \(-0.879184\pi\)
0.370506 + 0.928830i \(0.379184\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 19.7719i 0.716730i −0.933582 0.358365i \(-0.883334\pi\)
0.933582 0.358365i \(-0.116666\pi\)
\(762\) 0 0
\(763\) −5.74992 5.74992i −0.208161 0.208161i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.81566 3.81566i −0.137776 0.137776i
\(768\) 0 0
\(769\) 29.3463i 1.05825i 0.848543 + 0.529127i \(0.177481\pi\)
−0.848543 + 0.529127i \(0.822519\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 21.4655 21.4655i 0.772059 0.772059i −0.206407 0.978466i \(-0.566177\pi\)
0.978466 + 0.206407i \(0.0661772\pi\)
\(774\) 0 0
\(775\) 23.0306 + 27.1200i 0.827285 + 0.974179i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −35.4969 −1.27181
\(780\) 0 0
\(781\) 12.5188 0.447959
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.58358 0.581675i 0.0565202 0.0207609i
\(786\) 0 0
\(787\) −9.96255 + 9.96255i −0.355126 + 0.355126i −0.862013 0.506886i \(-0.830796\pi\)
0.506886 + 0.862013i \(0.330796\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8.05815i 0.286515i
\(792\) 0 0
\(793\) −8.58400 8.58400i −0.304827 0.304827i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.9101 + 29.9101i 1.05947 + 1.05947i 0.998116 + 0.0613542i \(0.0195419\pi\)
0.0613542 + 0.998116i \(0.480458\pi\)
\(798\) 0 0
\(799\) 3.98933i 0.141132i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.46168 7.46168i 0.263317 0.263317i
\(804\) 0 0
\(805\) −8.24356 + 17.8155i −0.290547 + 0.627914i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −46.5232 −1.63567 −0.817834 0.575454i \(-0.804825\pi\)
−0.817834 + 0.575454i \(0.804825\pi\)
\(810\) 0 0
\(811\) −6.18421 −0.217157 −0.108578 0.994088i \(-0.534630\pi\)
−0.108578 + 0.994088i \(0.534630\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.62387 9.86576i −0.126939 0.345583i
\(816\) 0 0
\(817\) 56.9642 56.9642i 1.99292 1.99292i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 29.6630i 1.03525i −0.855608 0.517624i \(-0.826817\pi\)
0.855608 0.517624i \(-0.173183\pi\)
\(822\) 0 0
\(823\) 14.5754 + 14.5754i 0.508065 + 0.508065i 0.913932 0.405867i \(-0.133030\pi\)
−0.405867 + 0.913932i \(0.633030\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.65283 + 9.65283i 0.335662 + 0.335662i 0.854732 0.519070i \(-0.173722\pi\)
−0.519070 + 0.854732i \(0.673722\pi\)
\(828\) 0 0
\(829\) 43.5282i 1.51180i 0.654688 + 0.755899i \(0.272800\pi\)
−0.654688 + 0.755899i \(0.727200\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −6.41159 + 6.41159i −0.222148 + 0.222148i
\(834\) 0 0
\(835\) −16.2491 44.2374i −0.562325 1.53090i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.74571 −0.0947926 −0.0473963 0.998876i \(-0.515092\pi\)
−0.0473963 + 0.998876i \(0.515092\pi\)
\(840\) 0 0
\(841\) 13.6040 0.469104
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.939016 2.02935i 0.0323031 0.0698117i
\(846\) 0 0
\(847\) −4.60578 + 4.60578i −0.158256 + 0.158256i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 49.6851i 1.70318i
\(852\) 0 0
\(853\) −26.9180 26.9180i −0.921655 0.921655i 0.0754913 0.997146i \(-0.475947\pi\)
−0.997146 + 0.0754913i \(0.975947\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.01644 + 9.01644i 0.307996 + 0.307996i 0.844132 0.536136i \(-0.180117\pi\)
−0.536136 + 0.844132i \(0.680117\pi\)
\(858\) 0 0
\(859\) 25.4335i 0.867779i −0.900966 0.433889i \(-0.857141\pi\)
0.900966 0.433889i \(-0.142859\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −21.9159 + 21.9159i −0.746027 + 0.746027i −0.973731 0.227703i \(-0.926878\pi\)
0.227703 + 0.973731i \(0.426878\pi\)
\(864\) 0 0
\(865\) −46.7574 + 17.1748i −1.58980 + 0.583960i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 39.3979 1.33648
\(870\) 0 0
\(871\) −3.09202 −0.104769
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 12.8367 + 7.26046i 0.433961 + 0.245448i
\(876\) 0 0
\(877\) −19.5319 + 19.5319i −0.659547 + 0.659547i −0.955273 0.295726i \(-0.904439\pi\)
0.295726 + 0.955273i \(0.404439\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 27.9504i 0.941671i −0.882221 0.470836i \(-0.843952\pi\)
0.882221 0.470836i \(-0.156048\pi\)
\(882\) 0 0
\(883\) −5.71709 5.71709i −0.192396 0.192396i 0.604335 0.796730i \(-0.293439\pi\)
−0.796730 + 0.604335i \(0.793439\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.4029 + 11.4029i 0.382871 + 0.382871i 0.872135 0.489265i \(-0.162735\pi\)
−0.489265 + 0.872135i \(0.662735\pi\)
\(888\) 0 0
\(889\) 14.5824i 0.489077i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.3215 + 12.3215i −0.412324 + 0.412324i
\(894\) 0 0
\(895\) −1.56496 0.724136i −0.0523109 0.0242052i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −46.4468 −1.54909
\(900\) 0 0
\(901\) 8.76771 0.292095
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 46.0421 + 21.3045i 1.53049 + 0.708186i
\(906\) 0 0
\(907\) −29.2239 + 29.2239i −0.970364 + 0.970364i −0.999573 0.0292097i \(-0.990701\pi\)
0.0292097 + 0.999573i \(0.490701\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 29.3299i 0.971744i −0.874030 0.485872i \(-0.838502\pi\)
0.874030 0.485872i \(-0.161498\pi\)
\(912\) 0 0
\(913\) 19.5443 + 19.5443i 0.646822 + 0.646822i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −9.43320 9.43320i −0.311512 0.311512i
\(918\) 0 0
\(919\) 25.3332i 0.835667i 0.908524 + 0.417833i \(0.137210\pi\)
−0.908524 + 0.417833i \(0.862790\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.59533 + 3.59533i −0.118342 + 0.118342i
\(924\) 0 0
\(925\) −37.2036 3.03365i −1.22325 0.0997456i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.53879 0.312958 0.156479 0.987681i \(-0.449986\pi\)
0.156479 + 0.987681i \(0.449986\pi\)
\(930\) 0 0
\(931\) 39.6059 1.29803
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.90848 + 3.27224i −0.291338 + 0.107014i
\(936\) 0 0
\(937\) −31.8235 + 31.8235i −1.03963 + 1.03963i −0.0404469 + 0.999182i \(0.512878\pi\)
−0.999182 + 0.0404469i \(0.987122\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 43.6984i 1.42453i 0.701912 + 0.712264i \(0.252330\pi\)
−0.701912 + 0.712264i \(0.747670\pi\)
\(942\) 0 0
\(943\) 22.1858 + 22.1858i 0.722469 + 0.722469i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 27.6085 + 27.6085i 0.897154 + 0.897154i 0.995184 0.0980291i \(-0.0312538\pi\)
−0.0980291 + 0.995184i \(0.531254\pi\)
\(948\) 0 0
\(949\) 4.28590i 0.139126i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −6.99634 + 6.99634i −0.226634 + 0.226634i −0.811285 0.584651i \(-0.801231\pi\)
0.584651 + 0.811285i \(0.301231\pi\)
\(954\) 0 0
\(955\) 17.1648 37.0956i 0.555441 1.20039i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −23.1955 −0.749022
\(960\) 0 0
\(961\) 19.6362 0.633425
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 4.65344 + 12.6687i 0.149799 + 0.407820i
\(966\) 0 0
\(967\) −18.1830 + 18.1830i −0.584726 + 0.584726i −0.936198 0.351472i \(-0.885681\pi\)
0.351472 + 0.936198i \(0.385681\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 25.3915i 0.814851i 0.913238 + 0.407426i \(0.133573\pi\)
−0.913238 + 0.407426i \(0.866427\pi\)
\(972\) 0 0
\(973\) −2.60245 2.60245i −0.0834306 0.0834306i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 30.4477 + 30.4477i 0.974108 + 0.974108i 0.999673 0.0255653i \(-0.00813856\pi\)
−0.0255653 + 0.999673i \(0.508139\pi\)
\(978\) 0 0
\(979\) 2.30274i 0.0735960i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −29.2000 + 29.2000i −0.931335 + 0.931335i −0.997789 0.0664547i \(-0.978831\pi\)
0.0664547 + 0.997789i \(0.478831\pi\)
\(984\) 0 0
\(985\) 14.9534 + 40.7098i 0.476456 + 1.29712i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −71.2060 −2.26422
\(990\) 0 0
\(991\) −8.19522 −0.260330 −0.130165 0.991492i \(-0.541551\pi\)
−0.130165 + 0.991492i \(0.541551\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −21.1804 + 45.7738i −0.671464 + 1.45113i
\(996\) 0 0
\(997\) −13.2182 + 13.2182i −0.418625 + 0.418625i −0.884730 0.466104i \(-0.845657\pi\)
0.466104 + 0.884730i \(0.345657\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.y.b.53.2 yes 24
3.2 odd 2 2340.2.y.a.53.11 24
5.2 odd 4 2340.2.y.a.1457.11 yes 24
15.2 even 4 inner 2340.2.y.b.1457.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2340.2.y.a.53.11 24 3.2 odd 2
2340.2.y.a.1457.11 yes 24 5.2 odd 4
2340.2.y.b.53.2 yes 24 1.1 even 1 trivial
2340.2.y.b.1457.2 yes 24 15.2 even 4 inner